当前位置:首页 » 挖矿知识 » 哥伦布挖矿怎么分节点

哥伦布挖矿怎么分节点

发布时间: 2024-04-19 08:54:07

1. 区块链节点能否在一台电脑

区块链节点可以在一台电脑。如果只是挖矿,不需要完整节点。而区块链节点也分为轻节点和全节点。轻节点存部分区块链上的信息,全节点储存区块链上的全部信息。

区块链的运行原理:

比特币的区块链系统为例。比特币一个新区块诞生的时间系统设定为十分钟。

1、一笔交易产生以后,为了让全网承认有效,必须先广播到区块链网络中其他参与的节点(链接的计算机)。

2、每个节点要正确无误地给这十分钟的交易都盖上时间戳,并且放进这个区块。

3、如果一个节点解开了随机数那道数学题,拥有了合法区块记账权,这个节点就会向全网公布他这 10 分钟所有盖上时间戳的交易,并由全网中其他参与的节点来核对。

4、比特币系统会给赢下合法区块记账权的节点以奖励,他广播以后,别的节点就要核对这个区块记账的准确性。别的节点其实同时也在解那道数学题,同时也在盖时间戳,只不过他们没有在那道数学题上算得更快。也就是说,这个区块他们赢不了奖励了,他们只好在下一个区块上想办法。

5、一般来说,每一笔交易,必须要经过 6 次的确认,也就是要通过 6 个的 10 分钟记账,才能在系统里被承认为是合法交易,一次的记账是不被承认的。

2. 详解比特币挖矿原理

可以将区块链看作一本记录所有交易的公开总帐簿(列表),比特币网络中的每个参与者都把它看作一本所有权的权威记录。

比特币没有中心机构,几乎所有的完整节点都有一份公共总帐的备份,这份总帐可以被视为认证过的记录。

至今为止,在主干区块链上,没有发生一起成功的攻击,一次都没有。

通过创造出新区块,比特币以一个确定的但不断减慢的速率被铸造出来。大约每十分钟产生一个新区块,每一个新区块都伴随着一定数量从无到有的全新比特币。每开采210,000个块,大约耗时4年,货币发行速率降低50%。

在2016年的某个时刻,在第420,000个区块被“挖掘”出来之后降低到12.5比特币/区块。在第13,230,000个区块(大概在2137年被挖出)之前,新币的发行速度会以指数形式进行64次“二等分”。到那时每区块发行比特币数量变为比特币的最小货币单位——1聪。最终,在经过1,344万个区块之后,所有的共20,999,999.9769亿聪比特币将全部发行完毕。换句话说, 到2140年左右,会存在接近2,100万比特币。在那之后,新的区块不再包含比特币奖励,矿工的收益全部来自交易费。

在收到交易后,每一个节点都会在全网广播前对这些交易进行校验,并以接收时的相应顺序,为有效的新交易建立一个池(交易池)。

每一个节点在校验每一笔交易时,都需要对照一个长长的标准列表:

交易的语法和数据结构必须正确。

输入与输出列表都不能为空。

交易的字节大小是小于MAX_BLOCK_SIZE的。

每一个输出值,以及总量,必须在规定值的范围内 (小于2,100万个币,大于0)。

没有哈希等于0,N等于-1的输入(coinbase交易不应当被中继)。

nLockTime是小于或等于INT_MAX的。

交易的字节大小是大于或等于100的。

交易中的签名数量应小于签名操作数量上限。

解锁脚本(Sig)只能够将数字压入栈中,并且锁定脚本(Pubkey)必须要符合isStandard的格式 (该格式将会拒绝非标准交易)。

池中或位于主分支区块中的一个匹配交易必须是存在的。

对于每一个输入,如果引用的输出存在于池中任何的交易,该交易将被拒绝。

对于每一个输入,在主分支和交易池中寻找引用的输出交易。如果输出交易缺少任何一个输入,该交易将成为一个孤立的交易。如果与其匹配的交易还没有出现在池中,那么将被加入到孤立交易池中。

对于每一个输入,如果引用的输出交易是一个coinbase输出,该输入必须至少获得COINBASE_MATURITY (100)个确认。

对于每一个输入,引用的输出是必须存在的,并且没有被花费。

使用引用的输出交易获得输入值,并检查每一个输入值和总值是否在规定值的范围内 (小于2100万个币,大于0)。

如果输入值的总和小于输出值的总和,交易将被中止。

如果交易费用太低以至于无法进入一个空的区块,交易将被拒绝。

每一个输入的解锁脚本必须依据相应输出的锁定脚本来验证。

以下挖矿节点取名为 A挖矿节点

挖矿节点时刻监听着传播到比特币网络的新区块。而这些新加入的区块对挖矿节点有着特殊的意义。矿工间的竞争以新区块的传播而结束,如同宣布谁是最后的赢家。对于矿工们来说,获得一个新区块意味着某个参与者赢了,而他们则输了这场竞争。然而,一轮竞争的结束也代表着下一轮竞争的开始。

验证交易后,比特币节点会将这些交易添加到自己的内存池中。内存池也称作交易池,用来暂存尚未被加入到区块的交易记录。

A节点需要为内存池中的每笔交易分配一个优先级,并选择较高优先级的交易记录来构建候选区块。

一个交易想要成为“较高优先级”,需满足的条件:优先值大于57,600,000,这个值的生成依赖于3个参数:一个比特币(即1亿聪),年龄为一天(144个区块),交易的大小为250个字节:

High Priority > 100,000,000 satoshis * 144 blocks / 250 bytes = 57,600,000

区块中用来存储交易的前50K字节是保留给较高优先级交易的。 节点在填充这50K字节的时候,会优先考虑这些最高优先级的交易,不管它们是否包含了矿工费。这种机制使得高优先级交易即便是零矿工费,也可以优先被处理。

然后,A挖矿节点会选出那些包含最小矿工费的交易,并按照“每千字节矿工费”进行排序,优先选择矿工费高的交易来填充剩下的区块。

如区块中仍有剩余空间,A挖矿节点可以选择那些不含矿工费的交易。有些矿工会竭尽全力将那些不含矿工费的交易整合到区块中,而其他矿工也许会选择忽略这些交易。

在区块被填满后,内存池中的剩余交易会成为下一个区块的候选交易。因为这些交易还留在内存池中,所以随着新的区块被加到链上,这些交易输入时所引用UTXO的深度(即交易“块龄”)也会随着变大。由于交易的优先值取决于它交易输入的“块龄”,所以这个交易的优先值也就随之增长了。最后,一个零矿工费交易的优先值就有可能会满足高优先级的门槛,被免费地打包进区块。

UTXO(Unspent Transaction Output) : 每笔交易都有若干交易输入,也就是资金来源,也都有若干笔交易输出,也就是资金去向。一般来说,每一笔交易都要花费(spend)一笔输入,产生一笔输出,而其所产生的输出,就是“未花费过的交易输出”,也就是 UTXO。

块龄:UTXO的“块龄”是自该UTXO被记录到区块链为止所经历过的区块数,即这个UTXO在区块链中的深度。

区块中的第一笔交易是笔特殊交易,称为创币交易或者coinbase交易。这个交易是由挖矿节点构造并用来奖励矿工们所做的贡献的。假设此时一个区块的奖励是25比特币,A挖矿的节点会创建“向A的地址支付25.1个比特币(包含矿工费0.1个比特币)”这样一个交易,把生成交易的奖励发送到自己的钱包。A挖出区块获得的奖励金额是coinbase奖励(25个全新的比特币)和区块中全部交易矿工费的总和。

A节点已经构建了一个候选区块,那么就轮到A的矿机对这个新区块进行“挖掘”,求解工作量证明算法以使这个区块有效。比特币挖矿过程使用的是SHA256哈希函数。

用最简单的术语来说, 挖矿节点不断重复进行尝试,直到它找到的随机调整数使得产生的哈希值低于某个特定的目标。 哈希函数的结果无法提前得知,也没有能得到一个特定哈希值的模式。举个例子,你一个人在屋里打台球,白球从A点到达B点,但是一个人推门进来看到白球在B点,却无论如何是不知道如何从A到B的。哈希函数的这个特性意味着:得到哈希值的唯一方法是不断的尝试,每次随机修改输入,直到出现适当的哈希值。

需要以下参数

• block的版本 version

• 上一个block的hash值: prev_hash

• 需要写入的交易记录的hash树的值: merkle_root

• 更新时间: ntime

• 当前难度: nbits

挖矿的过程就是找到x使得

SHA256(SHA256(version + prev_hash + merkle_root + ntime + nbits + x )) < TARGET

上式的x的范围是0~2^32, TARGET可以根据当前难度求出的。

简单打个比方,想象人们不断扔一对色子以得到小于一个特定点数的游戏。第一局,目标是12。只要你不扔出两个6,你就会赢。然后下一局目标为11。玩家只能扔10或更小的点数才能赢,不过也很简单。假如几局之后目标降低为了5。现在有一半机率以上扔出来的色子加起来点数会超过5,因此无效。随着目标越来越小,要想赢的话,扔色子的次数会指数级的上升。最终当目标为2时(最小可能点数),只有一个人平均扔36次或2%扔的次数中,他才能赢。

如前所述,目标决定了难度,进而影响求解工作量证明算法所需要的时间。那么问题来了:为什么这个难度值是可调整的?由谁来调整?如何调整?

比特币的区块平均每10分钟生成一个。这就是比特币的心跳,是货币发行速率和交易达成速度的基础。不仅是在短期内,而是在几十年内它都必须要保持恒定。在此期间,计算机性能将飞速提升。此外,参与挖矿的人和计算机也会不断变化。为了能让新区块的保持10分钟一个的产生速率,挖矿的难度必须根据这些变化进行调整。事实上,难度是一个动态的参数,会定期调整以达到每10分钟一个新区块的目标。简单地说,难度被设定在,无论挖矿能力如何,新区块产生速率都保持在10分钟一个。

那么,在一个完全去中心化的网络中,这样的调整是如何做到的呢?难度的调整是在每个完整节点中独立自动发生的。每2,016个区块(2周产生的区块)中的所有节点都会调整难度。难度的调整公式是由最新2,016个区块的花费时长与20,160分钟(两周,即这些区块以10分钟一个速率所期望花费的时长)比较得出的。难度是根据实际时长与期望时长的比值进行相应调整的(或变难或变易)。简单来说,如果网络发现区块产生速率比10分钟要快时会增加难度。如果发现比10分钟慢时则降低难度。

为了防止难度的变化过快,每个周期的调整幅度必须小于一个因子(值为4)。如果要调整的幅度大于4倍,则按4倍调整。由于在下一个2,016区块的周期不平衡的情况会继续存在,所以进一步的难度调整会在下一周期进行。因此平衡哈希计算能力和难度的巨大差异有可能需要花费几个2,016区块周期才会完成。

举个例子,当前A节点在挖277,316个区块,A挖矿节点一旦完成计算,立刻将这个区块发给它的所有相邻节点。这些节点在接收并验证这个新区块后,也会继续传播此区块。当这个新区块在网络中扩散时,每个节点都会将它作为第277,316个区块(父区块为277,315)加到自身节点的区块链副本中。当挖矿节点收到并验证了这个新区块后,它们会放弃之前对构建这个相同高度区块的计算,并立即开始计算区块链中下一个区块的工作。

比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。

每一个节点对每一个新区块的独立校验,确保了矿工无法欺诈。在前面的章节中,我们看到了矿工们如何去记录一笔交易,以获得在此区块中创造的新比特币和交易费。为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?这是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒绝,因此,该交易就不会成为总账的一部分。

比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块,它将尝试将新的区块连接到到现存的区块链,将它们组装起来。

节点维护三种区块:

· 第一种是连接到主链上的,

· 第二种是从主链上产生分支的(备用链),

· 第三种是在已知链中没有找到已知父区块的。

有时候,新区块所延长的区块链并不是主链,这一点我们将在下面“ 区块链分叉”中看到。

如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。

选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链,新块本身就代表它们的投票。

因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链视角。解决的办法是, 每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就是最长的或最大累计难度的链。

当有两个候选区块同时想要延长最长区块链时,分叉事件就会发生。正常情况下,分叉发生在两名矿工在较短的时间内,各自都算得了工作量证明解的时候。两个矿工在各自的候选区块一发现解,便立即传播自己的“获胜”区块到网络中,先是传播给邻近的节点而后传播到整个网络。每个收到有效区块的节点都会将其并入并延长区块链。如果该节点在随后又收到了另一个候选区块,而这个区块又拥有同样父区块,那么节点会将这个区块连接到候选链上。其结果是,一些节点收到了一个候选区块,而另一些节点收到了另一个候选区块,这时两个不同版本的区块链就出现了。

分叉之前

分叉开始

我们看到两个矿工几乎同时挖到了两个不同的区块。为了便于跟踪这个分叉事件,我们设定有一个被标记为红色的、来自加拿大的区块,还有一个被标记为绿色的、来自澳大利亚的区块。

假设有这样一种情况,一个在加拿大的矿工发现了“红色”区块的工作量证明解,在“蓝色”的父区块上延长了块链。几乎同一时刻,一个澳大利亚的矿工找到了“绿色”区块的解,也延长了“蓝色”区块。那么现在我们就有了两个区块:一个是源于加拿大的“红色”区块;另一个是源于澳大利亚的“绿色”。这两个区块都是有效的,均包含有效的工作量证明解并延长同一个父区块。这个两个区块可能包含了几乎相同的交易,只是在交易的排序上有些许不同。

比特币网络中邻近(网络拓扑上的邻近,而非地理上的)加拿大的节点会首先收到“红色”区块,并建立一个最大累计难度的区块,“红色”区块为这个链的最后一个区块(蓝色-红色),同时忽略晚一些到达的“绿色”区块。相比之下,离澳大利亚更近的节点会判定“绿色”区块胜出,并以它为最后一个区块来延长区块链(蓝色-绿色),忽略晚几秒到达的“红色”区块。那些首先收到“红色”区块的节点,会即刻以这个区块为父区块来产生新的候选区块,并尝试寻找这个候选区块的工作量证明解。同样地,接受“绿色”区块的节点会以这个区块为链的顶点开始生成新块,延长这个链。

分叉问题几乎总是在一个区块内就被解决了。网络中的一部分算力专注于“红色”区块为父区块,在其之上建立新的区块;另一部分算力则专注在“绿色”区块上。即便算力在这两个阵营中平均分配,也总有一个阵营抢在另一个阵营前发现工作量证明解并将其传播出去。在这个例子中我们可以打个比方,假如工作在“绿色”区块上的矿工找到了一个“粉色”区块延长了区块链(蓝色-绿色-粉色),他们会立刻传播这个新区块,整个网络会都会认为这个区块是有效的,如上图所示。

所有在上一轮选择“绿色”区块为胜出者的节点会直接将这条链延长一个区块。然而,那些选择“红色”区块为胜出者的节点现在会看到两个链: “蓝色-绿色-粉色”和“蓝色-红色”。 如上图所示,这些节点会根据结果将 “蓝色-绿色-粉色” 这条链设置为主链,将 “蓝色-红色” 这条链设置为备用链。 这些节点接纳了新的更长的链,被迫改变了原有对区块链的观点,这就叫做链的重新共识 。因为“红”区块做为父区块已经不在最长链上,导致了他们的候选区块已经成为了“孤块”,所以现在任何原本想要在“蓝色-红色”链上延长区块链的矿工都会停下来。全网将 “蓝色-绿色-粉色” 这条链识别为主链,“粉色”区块为这条链的最后一个区块。全部矿工立刻将他们产生的候选区块的父区块切换为“粉色”,来延长“蓝色-绿色-粉色”这条链。

从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。

比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。

3. 挖矿获取比特币的时间点是什么时候比如是一挖出就可得到,还是等接在该区块后再出来5个区块才能得到

首先你要理解挖取比特币的时间点是怎么一回事:
比特币总共发行2100W个,每生成一个块周期10分钟,一个块奖励一定数目的比特币。最开始挖矿每个块奖励50个比特币,以后每21000个块奖励减半(约4年奖励减半一次),现在每生成一个块奖励12.5个比特币。每个块的生成时间10分钟,但是随着计算机技术的发展,现在的挖矿算力在不断升高,那么生成一个块的时间肯定小于10分钟,这就需要一定的控制措施来保证这个时间。这个措施就是挖矿难度,如果每个块产出时间小于10分钟,则提高挖矿难度,大于10分钟则降低挖矿难度,每次难度调整时间为2016块,即2周。
挖矿难度会在每2016个块后所有节点都会按照一定的公式自动进行调整,这个公式由最新的也就是这个周期内2016个区块的花费时间和期望的时间(期望时间20160分钟即两周)比较得出的。
新难度 = 旧难度值 * (过去2016个区块花费的时长 / 20160分钟)

4. 区块链为什么有分叉分叉会发生什么情况

    区块链的分叉(fork)的形成原因可能有多种。

    当两个结点几乎在同一个时间挖到了矿并同时发布区块,此时就出现临时性的的分叉(state fork),

    本质上是对比特币这个区块链当前的状态产生了意见分歧,

    当人为的发起分叉攻击(forking attack),也就是故意造成这类分叉(deliberate fork)还有一类分叉是,当比特币的协议发生了改变的时候,软件需要升级。而在分布式系统中不能保证所有节点同时升级软件,假设存在部分节点未升级,会导致协议分叉(protocol fork)。对协议修改的内容的不同,又可以将分叉分为硬分叉(hard fork)和软分叉(soft fork);

    比特币协议增加新协议,扩展新功能,未升级软件的旧节点会不认可这些修改,会认为这些特性是非法的。这也就是对比特币协议内容产生分歧,从而导致的分叉叫 硬分叉 。此时,就出现了新节点永远沿着新节点产生的链挖矿,旧节点永远沿着旧节点链挖矿,由于新节点算力足够强,所以形成两条永远都在延伸且平行的链。只要这部分旧节点永远不更新,则旧链将一直延续,可见这种分叉是持久性的。

出现hard fork后,便变成了两条平行的链,也就造成了社区分裂。社区中有一部分人,会认为下面的链才是根正苗红,各个链上的货币独立。以太坊历史上的一件大事就是硬分叉事件。以太坊称为ETH,但目前看到的ETH已经不是最初的ETH了,以太坊在历史上发生过硬分叉,另一个链称为ETC。实际上,ETC才是以太坊设计原本的协议,而ETH是黑客攻击ETH上一个智能合约THE DAO后,进行回滚的协议链(将黑客攻击偷取的以太币采用硬分叉方式回滚回到另一智能合约,然后退还给真正拥有者)。

    分叉之初,由于两个链分叉造成了互相影响,产生了很多麻烦。比如:在ETH链上有一笔转账B->C,有人便在ETC链上回放,将ETC链上的货币页转给了C(C收到两笔钱)。后来,对两条链各添加了一个chainID,将两个链区分开,才使得这两条链真正分开。

如果对BTC协议添加限制,使得原本合法交易在新交易中不合法,便会形成软分叉。

当大多数节点已经更新完毕之后,旧节点认可新节点挖出的区块,因此发布自己挖出的区块,但新节点不认可旧结点挖出的区块,便沿着上一个新节点发布的区块继续挖矿,当新节点拥有大部分算力的时候,新链会越来越长,从而旧节点挖出并发布的区块一直被抛弃,无法获得出块奖励,最终倒逼旧节点升级软件,实现所有节点认可新协议并进行升级。可见,只要系统中拥有半数以上算力节点更新软件,此类分叉不会出现永久性分叉。比特币脚本中的P2SH就是通过软分叉方法加进去的。

 

    这一部分我并没有查到太多的资料,但是在绝大多数共识协议之中我们都假设需要过半算力;

    在理论上,如果掌握了50%以上的算力,就拥有了获得记账权的绝对优势,可以更快地生成区块,也拥有了篡改区块链数据的权利。因此,当具有过半的算力,也就是51%都是诚实可靠的,能保证整一个区块链在合法有序的进行运行。

    但是为什么选择过半的算力,而不是过半的用户?比特币系统,任何人都可以加入,且创建账户及其简单,只需要本地产生公私钥对即可。只有转账(交易)时候,比特币系统才能知道该账户的存在。这样,黑客可以使用计算机专门生成大量公私钥对,当其产生大量公私钥对超过系统中一半数目,就可以获得支配地位(女巫攻击)。因此,比特币系统中很巧妙的使用算力作为投票的依据。

热点内容
百越广场到琶洲会展中心怎么去 发布:2024-05-02 07:09:15 浏览:850
奇亚币第二大矿池 发布:2024-05-02 06:59:56 浏览:908
btc不拉稀eth会拉升吗 发布:2024-05-02 06:46:39 浏览:366
国内显卡价格暴涨还要靠抢挖矿的 发布:2024-05-02 06:40:04 浏览:506
btc每天交易高峰期 发布:2024-05-02 06:26:07 浏览:195
剔除挖矿软件抽水方法 发布:2024-05-02 06:24:20 浏览:367
ltc链接音控台 发布:2024-05-02 06:02:41 浏览:909
以太坊挖矿软件是什么 发布:2024-05-02 05:43:31 浏览:304
货币可以买erc20的usdt吗 发布:2024-05-02 05:35:52 浏览:524
去凯旋路疾控中心坐几路车 发布:2024-05-02 05:35:30 浏览:465