使用Python预测btc
A. 有没有会用Python编写一个简单的建模股票价格的小程序能够对股票数据进行简单预测即可!求助!
虽然懂python 但是不懂股票,
采用random()可以么,哈哈
B. 如何用Python在10分钟内建立一个预测模型
预测模型的分解过程 我总是集中于投入有质量的时间在建模的初始阶段,比如,假设生成、头脑风暴、讨论或理解可能的结果范围。所有这些活动都有助于我解决问题,并最终让我设计出更强大的商业解决方案。为什么你要在前面花费这段时间,这有充分的理由: 你有足够的时间投入并且你是无经验的(这是有影响的) 你不带有其它数据观点或想法的偏见(我总是建议,在深入研究数据之前做假设生成) 在后面的阶段,你会急于完成该项目而没有能力投入有质量的时间了。 这个阶段需要投入高质量时间,因此我没有提及时间表,不过我建议你把它作为标准的做法。这有助于你建立建立更好地预测模型,在后面的阶段的只需较少的迭代工作。让我们来看看建立第一个模型的剩余阶段的时间表: 数据描述性分析——50%的时间
C. python sklearn中怎样预测给定的新数据
最近在拿 sklearn 做中文文本分类器,
网上找到的例子都是拿带标签的数据,二八划分后,八成用于训练模型,两成用于测试,
然后分析测试结果看精确度。
现在,我已经使用训练数据做好了模型训练(存在文本分类器的对象了),
拿一段之前数据集里面没有的文本数据,使用训练好的文本分类器做类别预测,
问题是如何拿到预测的类别的名称呢。。。
代码如下:
# cls 是之前已经训练好的文本分类器对象
pred = clf.predict(X_new)
怎样从预测结果 pred ( ndarray )获取到分类的类别名称呢?
我有尝试过如下的方式去获取:
label_list = list()
D. 我用Python进行随机森林回归,训练好模型后用来预测,预测值却为一个定值,请问这是什么原因导致的
随机森林是以决策树为基础的一种更高级的算法。随机森林可用于回归也可以用于分类。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。最后对这些预测进行集成,因此优于任何一个单分类的做出预测,是一种优秀的机器学习模型。
之所以你没能学习到有效的模型,可能是你的数据中的因子与预测指标的关联强度不够,因此学习到的是常数模型,也有可能是数据的处理流程或者模型的使用方法不对。网页链接这个网址上的课程完整讲解了随机森林算法的使用,希望对你有帮助
E. python 有什么方法能进行pm2.5预测
如你所说,现有的都是从历史预测未来,但是我们在做模型的时候,更关注的是,哪些维度可以对结果有表征性,哪些维度没有
比如PM2.5,只看历史数据,无疑,随时间肯定会越来越高,但是这是我们需要的结果吗?难道我们做预测不应该是将输入和输出建立一定的关系么?历史数据也是由于输入导致的,所以,从这个意义上,我们更应该关注哪些维度形成了历史的数据这个结果;
举个例子,某天污染气体排放量是X吨,pm是y,当然,排放量只是一个维度,当我们建立起很多很多的维度的时候,这些维度又能直接加权输出Y值,这个模型就比较准确了;
你说的预测,个人觉得从时间序列分析的角度说,也行的通,但不好解释,结果更是不可控,比如今年禁煤,这个冬天比起往年的数据是否是小一些,但是从模型来说,趋势肯定是升的,最终预测肯定比去年高;
正确的方式是,获取各种和PM2.5相关的维度和数据,用这些维度数据做回归,以PM2.5的值做监督值,进行模型训练,把这些维度和PM2.5的值建立起关系,得到模型,才是一个好用的模型。
最后,当你搜集到【维度值】-->【PM2.5】这种样本足够多时,你可以用任何任何机器学习算法去建模,神经网络也好,CART也好,SVR也好,就简单的多了,多试试?
F. 如何利用Python预测股票价格
预测股票价格没有意义。
单支股票价格,多股组合,大盘这些都可以使用神经网络来学习,02年就做过了,涨跌预测平均能达到54%到57%的准确率,但是只能定性,无法定量,因此,在扣除印花税之后无利可图。
纯粹使用股票交易数据来预测并保证总体获利不是程序能办到的,人也办不到。
目前世界上最先进的炒股机器也只能利用网络时差那微不可计的零点几秒在欧洲与美国证券间倒来倒去,那套系统研发费用数千万,硬件(主要是独立光缆)费用以亿计。
G. python 姓别预测用什么方法
最近,我从孙子(指《孙子兵法》——译者注)那里学到了一些策略:速度和准备
“兵之情主速,乘人之不及,由不虞之道,攻其所不戒也。”(《孙子兵法•九地篇》)无备为战之大患,有备无患,其乃至德也。(哈哈,译者自己写了这句,想必大家能明白。)
这与数据科学博客有什么关系呢?这是你赢得竞争和编程马拉松的关键。如果你比竞争对手准备得更充分,你学习、迭代执行的速度越快,那么你就取得更好的名次,带来更好的结果。
由于近几年来,Python用户数量上涨及其本身的简洁性,使得这个工具包对数据科学世界的Python专家们变得有意义。本文将帮助你更快更好地建立第一个预测模型。绝大多数优秀的数据科学家和kagglers建立自己的第一个有效模型并快速提交。这不仅仅有助于他们领先于排行榜,而且提供了问题的基准解决方案。
预测模型的分解过程
我总是集中于投入有质量的时间在建模的初始阶段,比如,假设生成、头脑风暴、讨论或理解可能的结果范围。所有这些活动都有助于我解决问题,并最终让我设计出更强大的商业解决方案。为什么你要在前面花费这段时间,这有充分的理由:
你有足够的时间投入并且你是无经验的(这是有影响的)
你不带有其它数据观点或想法的偏见(我总是建议,在深入研究数据之前做假设生成)
在后面的阶段,你会急于完成该项目而没有能力投入有质量的时间了。
这个阶段需要投入高质量时间,因此我没有提及时间表,不过我建议你把它作为标准的做法。这有助于你建立建立更好地预测模型,在后面的阶段的只需较少的迭代工作。让我们来看看建立第一个模型的剩余阶段的时间表:
数据描述性分析——50%的时间
数据预处理(缺失值和异常值修复)——40%的时间
数据建模——4%的时间
性能预测——6%的时间
让我们一步一步完成每个过程(每一步投入预测的时间):
阶段1:描述性分析/数据探索
在我刚开始成为数据科学家的时候,数据探索占据了我大量的时间。不过,随着时间的推移,我已经把大量的数据操作自动化了。由于数据准备占据建立第一个模型工作量的50%,自动化的好处是显而易见的。
这是我们的第一个基准模型,我们去掉任何特征设计。因此,描述分析所需的时间仅限于了解缺失值和直接可见的大的特征。在我的方法体系中,你将需要2分钟来完成这一步(假设,100000个观测数据集)。
我的第一个模型执行的操作:
确定ID,输入特征和目标特征
确定分类和数值特征
识别缺失值所在列
阶段2:数据预处理(缺失值处理)
有许多方法可以解决这个问题。对于我们的第一个模型,我们将专注于智能和快速技术来建立第一个有效模型。
为缺失值创建假标志:有用,有时缺失值本身就携带了大量的信息。
用均值、中位数或其它简单方法填补缺失值:均值和中位数填补都表现良好,大多数人喜欢用均值填补但是在有偏分布的情况下我建议使用中位数。其它智能的方法与均值和中位数填补类似,使用其它相关特征填补或建立模型。比如,在Titanic生存挑战中,你可以使用乘客名字的称呼,比如:“Mr.”, “Miss.”,”Mrs.”,”Master”,来填补年龄的缺失值,这对模型性能有很好的影响。
填补缺失的分类变量:创建一个新的等级来填补分类变量,让所有的缺失值编码为一个单一值比如,“New_Cat”,或者,你可以看看频率组合,使用高频率的分类变量来填补缺失值。
由于数据处理方法如此简单,你可以只需要3到4分钟来处理数据。
阶段3:数据建模
根据不同的业务问题,我推荐使用GBM或RandomForest技术的任意一种。这两个技术可以极其有效地创建基准解决方案。我已经看到数据科学家通常把这两个方法作为他们的第一个模型同时也作为最后一个模型。这最多用去4到5分钟。
阶段4:性能预测
有各种各样的方法可以验证你的模型性能,我建议你将训练数据集划分为训练集和验证集(理想的比例是70:30)并且在70%的训练数据集上建模。现在,使用30%的验证数据集进行交叉验证并使用评价指标进行性能评估。最后需要1到2分钟执行和记录结果。
本文的目的不是赢得比赛,而是建立我们自己的基准。让我们用python代码来执行上面的步骤,建立你的第一个有较高影响的模型。
让我们开始付诸行动
首先我假设你已经做了所有的假设生成并且你擅长使用python的基本数据科学操作。我用一个数据科学挑战的例子来说明。让我们看一下结构:
步骤1:导入所需的库,读取测试和训练数据集。
#导入pandas、numpy包,导入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函数
现在可以提交了!
H. python输出模型预测结果语句怎么写
result=model(data)
I. 使用python做量化交易策略测试和回验,有哪些比较成熟一些的库
numpy
介绍:一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。
scipy
介绍:SciPy是一款方便、易于使用、专为科学和工程设计的Python工具包。它包括统计、优化、线性代数、傅里叶变换、信号和图像处理、常微分方程求解等等。
pandas
介绍:Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
quantdsl
介绍: quantdsl包是Quant DSL语法在Python中的一个实现。Quant DSL 是财务定量分析领域专用语言,也是对衍生工具进行建模的功能编程语言。Quant DSL封装了金融和交易中使用的模型(比如市场动态模型、最小二乘法、蒙特卡罗方法、货币的时间价值)。
statistics
介绍:python内建的统计库,该库提供用于计算数值数据的数学统计的功能。
PyQL
介绍: PyQL构建在Cython之上,并在QuantLib之上创建一个很浅的Pythonic层,是对QuantLib的一个包装,并利用Cython更好的性能。
J. 如何用Python在10分钟内树立一个预测模型
所谓预测模型我理解是机器学习的监督式算法。 常用的有 K 近邻, 决策树, 朴素贝叶斯等。 举例: 使用k近邻算法预测一个女的是不是美女: 我们抽取特征值:
身高,体重,三围等。 你先设置一些经验数据,例如: A: 165CM 50KG, 23 32,31 美 B 150 60KG 23 23 23 丑 现在输入 C 163 45 25 30 30 选择K =3, 算法会找经验数据中和这个数据最接近的三个 值,判断这三个对象是 美 还是丑。 如果2,3个美,则预测为美。否则为丑。
对应的python代码在网上都有,估计20-30 行吧。 自己找找。