BTC11v0开关电源
A. 5v200w电源怎么维修
接修一批LED显示屏专用开关电源——CLA-200-5型诚联开关电源(5V/ 40A)。观察该开关电源(见附图,根据实物绘制),结构简单,无副电源,无过多保护控制电路,通电自启动。具体分析如下:
电阻R4A(150K)、R4B(150K)、R7(2.7K)以及R8A(150K)、R8B(150K)、R9(2.7K)构成Q1(2SC2625)、Q2(2SC2625)的偏置电路。通电瞬间,Q1、Q2的静态工作点已经建立,300V直流电在对C6、C5充电的同时,另一路经Q1、推动变压器T2的3~5绕组、主电源开关变压器T1的1~2绕组、振荡电容C7(2.2μ/400V),回到C6的负极。在此期间,T2的3~5绕组产生的感应电动势通过3~4绕组同相作用于Q1的b极,形成正反馈,使Q1加速导通;反之,Q2的b极则属负反馈,快速截止,因此防止了由Q1、Q2构成的单桥臂直通故障。同样在此期间,一旦主电源开关变压器T1次级的⑤~⑥绕组,经D9(FR107)、D10(FR107)整流出超过7V的电压,IC1(KA7500B)即开始工作,其⑧、11脚输出相位差180°的脉宽调制信号,输出频率为其⑤、⑥脚外接定时阻容元件C14、R20的振荡频率的一半,去控制与推动管Q3、Q4的c极相连接的T2次级绕组的激励振荡。IC1的13脚(输出方式控制端)接稳压+5V (由IC1内部14脚稳压输出+5V电压),决定了脉宽调制器为并联推挽式输出。此后,T2初级它激振荡产生的感应电动势继续作用于T1主电源开关变压器的初级绕组,从T1次级3、4绕组整流输出+5V电压,供负载使用(见附图)。D15(1N4148)、D16(1N4148)以及C13(4.7μ/50V)用于抬高推动管Q3(C1815)、Q4(C1815)的e极电平,使Q3、Q4的b极有低电平脉冲时能可靠截止。
电源过载或短路保护电路,由Q5(C1815)、R26、R27、R28、D17组成,连至IC1的4脚。当电源过载或短路时,+5V输出电压大幅降低,Q5 的b极为低电平,c极呈现高电平,经D17传至IC1的4脚,当上升的电压超过3V时,关闭IC1⑧、11脚的脉宽调制电压输出,使T2推动变压器、T1主电源开关变压器停振,+5V输出电压消失,电源处于待机状态(一旦保护,需重启电源才能工作)。而由电阻R29、R30、R31、电位器RW(1K)组成了输出电压控制及微调电路,连至IC1的1脚。电路中IC1各引脚电压(空载)见附图所标注,供以后维修时参考。以下为该电源典型故障实例汇总。
故障实例1:打开电源金属外壳,发现主滤波电容C5、C6鼓顶(损坏原因是错加380V交流电所致),但测量保险丝(FUSE)未熔断(见附图)。在路测量Q1、Q2未击穿,更换C5、C6后(更换过程中,用无水酒精清洗过该处线路板),试通电,LED指示灯亮起绿光,测量+5V输出端电压为5.1V,基本正常。但用数字表的200V挡测量C6两端电压为166V,C5两端电压为127V,分压很不均衡。怀疑与Q1、Q2的导通状态有关,快速测量Q1、Q2两基极的驱动电压,均为-0.24V(空载)。拆掉Q1、Q2及C7后又加电,测量C5、C6分压仍不正常。断开隔离平衡电阻R1、R2的一脚,测量其阻值均为150K,至此,问题只能出在C5、C6两元件了。直接更换C5(因该电容分压值较小,有轻微击穿短路的可能),问题依旧,更换C6后,再测两电容分压均为148V。恢复以上所有元件,加电测试各项参数正常,开关电源修复。
事后对比测量换下的“问题电容”C6,发现指针式万用表的R×100挡摆动幅度并无明显差别,只是两种电容的顶部封装及引脚长度略有不同,由此说明C5、C6的更换必须使用同一批次元件。
故障实例2:打开电源金属外壳,仔细观察电源板上各元件无明显烧焦、变色及变形等外状。在路测量Q1、Q2未击穿,保险丝完好。试加电,LED指示灯不亮。快速测量主滤波电容C5、C6两端无300V左右的直流电压;而电源互感滤波器LF1的输入端有交流220V(见附图),输出端则无。断电后检查出LF1的输出端引脚焊盘内部接触不良,锉刀打磨补焊后故障排除。因LED显示屏处于长期工作状态,开关电源元件引脚脱焊也较常见。实际维修中,要注意补焊LF1。
故障实例3:打开电源金属外壳,在路测量保险丝完好,但Q1、Q2已击穿,同时发现推动变压器T2 的初级一侧引脚焦黄,经测量T2初级1~2绕组断路(见附图)。从其它相同型号废旧电源板上拆下T2替换,同时在路检测D4至D7正常、加速电容C10(1μ/50V)、C11(1μ/50V)外观完好,再将Q1、Q2换新。试加电,绿灯亮起,测量+5V输出端电压为5.1V ,C5、C6两主滤波电容分压均衡,开关电源修复。
因T2 初级1~2绕组与地直连,在Q2击穿损坏的同时,过高的直流电压极有可能通过R11(1.8Ω/0.5W),又反向击穿C11(短暂性击穿,可恢复),加至初级1~2绕组上,使其瞬间过流烧断。因此在实际检修中,T2初级1~2绕组也不能放过。
故障实例4:打开电源金属外壳,在路测量保险丝完好,Q1、Q2未击穿,主电容 C5 略显鼓顶。补焊LF1的引脚后,试加电,指示灯不亮,用数字表测量+5V输出端电压为0,又快速测量C5、 C6两端分压正常。正纳闷时,维修台灯闪了一下,电源主板发出过短暂的“嘶嘶”声。断电后,测量Q1、Q2已击穿,保险丝FUSE(4A)熔断。将C5、C6换新,拆下Q1、Q2暂不更换,逐一检测与Q1、Q2相关的分压电阻均无问题。试加电,测量C5、 C6两端分压正常,R7(2.7K)、R9(2.7K)上压降均为1.3V,基集分压电路正常。将Q1、Q2换新后恢复到电路中,但将其C极引脚悬空;试加电,测量Q1、Q2的基集电压均为0.55V。断电,将Q1、Q2 的 C极引脚补焊,预先把数字表指针连至+5V输出端,再加电,只见数字表上“5V”数字一闪便降为“0V”。赶紧断电,测量Q1、Q2未击穿。在路测量过载或短路保护控制三极管Q5未击穿,T2推动变压器次级的Q3、Q4正常。考虑到每次加电测试均为空载状态,主电源开关变压器T1次级自身短路的可能性较大。用数字表的两指针交换测量 T1次级整流管 D18、D19两端阻值均为0,而正常电源板上T1次级整流管 D18、D19两端阻值约为47Ω(因为+5V输出接有负载电阻R34,见附图)。分别断开D18、D19的一脚,测量发现D18反向击穿。从同型号废旧电源板上拆下D18替换,再加电,绿灯亮起,接大功率风扇负载运行正常,电源彻底修复。
B. 开关电源作用有哪一些什么情况下比较适合用开关电源
电源装置是电子电气设备中所不可缺少的部件,开关电源以其效率高、体积小、重量轻、电压适应性好等优点,受到相关行业的青睐。但目前存在的缺陷是电磁骚扰大,对环境或对其他设备造成不利影响。目前对于可变负载的开关电源,笔者所了解到的产品最低输出噪声电压也在70 mv以上。设计低电磁骚扰的开关电源,也就成了许多设计人员的希望,为此提出了种种方法。本例设计要点不同于常规技术,而是采取了从源头上对电磁噪声进行消除,再结合一些常规措施。将电源输出端口的噪声电压降至20 mv以下,显著提高开关电源的电磁兼容性指标。
开关电源电路结构与降噪原理(有一个电气以及变压器知识都蛮好的地方,你可以去了解一下。去查一下 浙江埃莫森电气 ,浙江埃莫森电气 有不少好的电气资料。)
该开关电源的设计目标是稳定20 v输出,输出电流0~2 a可变,用于音响系统。为了突出降低电磁噪声的处理技术,简化电路,用单片开关电源芯片top224y进行设计。top224y内部已包含了pwm调制所需的所有电路以及激励管输出,由它激励变压器,开关频率为100 khz,内部mos激励管的耐压为700 v,输出功率小于45 w。电路如图1所示,该电路可以获得更大的输出功率,只需更改部分器件。图1中左边的电路r1,l1,d1,c1至c7是常规的共模滤波和整流电路,获取约300 v的直流电压供dc-dc变换电路使用;最右边电路l5,c11等是普通的lc滤波电路;ic2,d8,r9,r10组成电压反馈电路,形成闭环结构,稳定电源输出电压;中间部分是dc-dc变换器,降噪声的关键是对这一部分的电路进行适当处理。
C. 反激开关电源LC滤波
这个图是你自己画的?
电容的额定电压是怎么取值的? 是峰值的 1.5-2倍。
C11 上基本就是直流了,峰值就是 12V 了, 取值是 18-24之间,没有正好合适的,就取值 25V 或者稍微大的 50V,
C9 怎么取值呢, 先算一下峰值 -峰值 根号2 X 12V =16.968,
取值 1.5-2 倍 就是 25.452 V - 33.936V, 直接 取50V, 你知道滤波一下 电压会上升1.2-1.4倍, 你的16V 电容一上去 立刻就爆炸。
C12 可以,
D. 跪求此开关电源原理
这个图确实不规范,C12接反了,插电就“放烟花”。这个图大概的原理是:4、5脚输入交流电,经保险丝、互感滤波电路给D1~D4组成的桥式整流电路整流后变成脉动的直流电,再经C12(画反了,正极应该朝下)滤波变成很平滑的直流电压;在这里电压分两路,一路经启动电阻R8、R10、R11给5M0365R厚膜IC提供启动电压,一路经热敏电阻NTC到开关变压器的主绕组(貌似楼主画错了)。5M0365R得到启动电压后内部开关管导通,主绕组有电流流过,产生感应电动势,和主绕组一边的另一个反馈绕组会感应到一个感应电压,感应电压经D6反馈回来经R10给5M0365R提供更大的电压和电流,使其内部的开关管导通程度加大,流过主绕组的电流加大,产生的感应电动势加大(楞次定律),反馈绕组感应到的电压增大,并最终使开关管达到饱和。由于开关管饱和后,流过它的电流不再变化,所以流过主绕组的电流不再变化,根据楞次定律,流过电感线圈的电流为恒定值或为0时是不会产生感应电动势的,所以组绕组的感应电动势消失,反馈绕组没有感应电压,所以流过D6的电压会慢慢下降,这时又是一个正反馈过程,由于反馈绕组的电压开始下降,就意味着IC内部的开关管基极电流开始下降,那么它的集电极电流也开始下降,根据楞次定律,流过电感线圈的电流突变时,电感线圈就会产生一个感应电流阻碍它变化。也就是说,当流过主绕组的电流减小时,主绕组会产生一个感应电流阻碍它减小,那么这时在主绕组上会产生一个反向电动势,这个反向电压很高,如果输入的是220V的交流电的话,这个反向电压可以达到1000V(瞬间高压,专业术语叫“尖峰脉冲电压”),这对于开关管来说是很危险的,所以电路设计了由D7、R9、C11组成的尖峰脉冲吸收电路来吸收掉这个高压,从而保护了开关管。主绕组产生的这个反向电动势,同样会被反馈绕组感应到,也就是说反馈绕组上的电压变成了负电压,这时流过D6的电流和压会急剧下降,甚至变成负电压(这就是为什么开关电源起振后基极变成负电位的原因),这时开关管截止。
开关管截止后主绕组又没电压了,反馈绕组也没有感应电压了,那开关管再次导通靠什么呢?就是靠那三个启动电阻了,从整流滤波来的电压使开关管又开始慢慢导通,重复上面的过程,那么开关电路就开始振荡,次级线圈也会感应到电压,感应的电压经双向整流二极管STPS2045CT整流,L1、C1滤波后输入低压直流电。
最后还有就是自动稳压控制电路了,是由光耦(楼主画错了)、三极管、电位器等元件组成,这个电路,三极管的基极那里可能画错了。它的大概原理是如果输出电压有变化(升高或降低),过三极管的电流就会有变化,那么光耦的亮度也会有变化,流过光耦的电流也会有变化,光耦是连到厚膜IC的,那么这个变化会控制内部开关管的导通时间,从而控制输出电压保持稳定。逻辑关系是,以输出电压升高为例:输出电压升高——流过三极管的C极电流增大——光耦内部的发光二极管变亮——光耦另一半的光敏三极管CE极电流增大——厚膜IC内部的开关管B极电流减小——开关管导通时间缩短——输出电压下降。输出电压下降的情况,楼主可以自己分析一下。
看在在下打了差不多一个钟的字的份上,没功劳也有苦劳,希望楼主采纳,谢谢!有问题可以发邮件给我:[email protected]。
E. 开关电源中开关变压器原级绕组引脚反接会有影响吗
变压器饱和
变压器饱和现象
在高压或低压输入下开机(包含轻载,重载,容性负载),输出短路,动态负载,高温等情况下,通过变压器(和开关管)的电流呈非线性增长,当出现此现象时,电流的峰值无法预知及控制,可能导致电流过应力和因此而产生的开关管过压而损坏。
对这款FSQ0170RNA芯片,电感电流控制是以Vfb为参考电压的,Vfb电压的波形与电感电流的包络成正比。控制Vfb的上升时间即可控制电感包络的上升时间,即增加传递能量的时间。
IC的OCP功能是检测Vfb达到Vsd(如6V)实现的。所以要降低Vfb斜率,就可以延长Vfb的上升时间。
输出电压未达到正常值时,如果反馈脚电压Vfb已经上升到保护点,传递能量时间不够。重载、容性负载启动时,输出电压建立较慢,加到光耦电压较低,通过光耦二极管的电流小,光耦光敏管高阻态(趋向关断)的时间较长。IC内部电流源给与反馈脚相接的电容充电较快,如果Vfb在这段时间内上升到保护点(如6V),MOSFET将关断。输出不能达到正常值,启动失败。
解决办法:
使输出电压达到正常值时,反馈脚电压Vfb仍然小于保护点。使Vfb远离保护点而缓慢上升,或延长反馈脚Vfb上升到保护点的时间,即降低Vfb的上升斜率,使输出有足够的时间上升到正常值。
A.增大反馈电容(C9),可以将Vfb的上升斜率降低,如图所示,由D线变成A线。但是反馈电容太大会影响正常工作状态,降低反馈速度,使输出纹波变大。所以此电容不能变化太大。
B.由于A方法有不足,将一个电容(C7)串连稳压管(D6,3.3V)并联到反馈脚。此法不会影响正常工作,如B线所示,当Vfb<3.3V时,稳压管不会导通,分流。上升3.3V时,稳压管进入稳压状态,电容C7开始充电分流,减小后续Vfb的上升斜率。C。在431的K-A端并联一个电容(C11),电源启动时,C11电压较低,并由光耦二极管和431的偏置电阻R10进行充电。这样光耦就有较大电流通过,使光耦光敏管阻抗较低而分流,Vfb将缓慢上升,如C线所示。R10×C11影响充电时间,也就影响输出的上升时间。
注意点:
1)增加反馈脚电容(包括稳压管串电容),对解决超大容性负载问题作用较小;
2)增大峰值电流限流点I_limit,同时也增加了稳态下的OCP点。需要在容性负载,输入最低情况下检查变压器是否会饱和;
3)如果要保持限流点,须使R10×C11更大,但在超大容性负载(10000uF)情况下,可能会增加5Vsb的上升时间超过20mS,此法需要检查动态响应是否受太大影响;
4)431的偏置电阻R10太小,431并联的C11要更大;
5)为了保证上升时间,增大OCP点和增大R10×C11方法可能要同时使用。
空载、轻载输出反跳
现象:在输出空载或轻载时,关闭输入电压,输出(如5V)可能会出现如下图所示的电压反跳的波形。
原因:输入关掉时,5V输出将会下降,Vcc也跟着下降,IC停止工作,但是空载或轻载时,巨大的PC电源大电容电压并不能快速下降,仍然能够给高压启动脚提供较大的电流使得IC重新启动,5V又重新输出,反跳。
解决方法:
在启动脚串入较大的限流电阻,使得大电容电压下降到仍然比较高的时候也不足以提供足够的启动电流给IC。
将启动接到整流桥前,启动不受大电容电压影响。输入电压关断时,启动脚电压能够迅速下降。
北京稳固得电子主要设计、制造AC/DC、DC/DC、DC/AC模块化开关电源变换器。产品在技术及品质上具备较强的竞争优势,广泛应用于邮电通信设备、基站及用户电源系统、监控系统、铁路信号、电力系统、医疗设备、仪器仪表、工业自动化控制及航空航天、军工等领域。
F. 开关电源的作用
开关电源的作用是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电流或电压。
开关电源利用的切换晶体管在全开模式(饱和区)及全闭模式(截止区)之间切换,这两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。开关电源本身是不会消耗电能的。
开关电源的高转换效率是其一大优点,而且因为开关电源工作频率高,可以使用小尺寸、轻重量的变压器,因此开关电源也会比线性电源的尺寸要小,重量也会比较轻。
(6)BTC11v0开关电源扩展阅读
原理
开关电源利用了脉冲宽度调制原理,控制方式是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。
在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
G. 此KA7500的开关电源属于哪种拓扑
这是最常见的半桥开关电源电路,KB7500,其实就是日版的TL494,和TL494直接可以互换
对于电路,如果你做产品,给你点建议:
1:D1D2改为FR107
2:ZD1 ZD2 不要用稳压管,用FR107,否则容易坏
3:驱动管C1815要用日本东芝原装的管子,国产的真的不行!虽然价格低了5倍。
4:R4 R13用2.7K电阻,你的2.6K电阻不好买
5:C11用1UF的,不要用4.7UF的,这个说不上理由,但是我见过的都是1UF的,我见过不少于50万这种开关电源
H. BTz52c11是什么二极管
其实二极管就是一种设备所运行的管道。
I. 开关电源整流300V正常,无电压输出,震荡电路不工作
看一下C26,可以用替换法试试。然后再重点查D4、D5、C22、R10、R15这几个原件。
J. 如何实现单片开关电源的设计
1 用TOPswitch—GX设计的250W开关电源
TOPSwitch—GX设计的250W开关电源电路如图1所示。直流电压经变压器的原边加到TOPSwitch—GX的漏极D;频率选择端F 和极限电流设定端X与源极S相连,则该两端的功能都没用,即不从外部设定极限电流,内部自动设定自保护电流ILIMIT,开关工作频率为132K;控制极和光耦LTV817相连,接受反馈信号以实现对内部集成的高压功率MOS管占空比的控制;线路检测端L通过一2MΩ的电阻和直流高压输入的正端相连以实现过压、欠压线电压前馈的线电压检测。整个电路为单端反激式,TOPSwitch—GX为开关集成稳压器,反馈电路主要有光耦LTV817和与之串连的三个稳压二极管构成。电容C1为高频滤波电容;瞬态电压抑制器P6KE200和超快恢复二极管BYV26C构成钳位电路,并在其中串入RC吸收电路(由 R2,R3和C6组成),这样除了可以吸收部分漏感中的能量以外,还可将电压钳位在200V,可使开关电源在启动或过载的情况下TOPSwitch—GX 内部集成MOS管的漏极电压不超过700V;光耦LTV817和稳压二极管(VR2~VR4)构成反馈电路,R6是光耦中LED的限流电阻,它还决定控制环路的增益,输出电压变化时则流过光耦中LED的电流相应变化,从而光送到芯片控制极C的电流也相应变化,芯片内部据此产么的PWM信号占空比发生变化最终使输出电压稳定;高频变压器T1的副边输出经过MURl640CT整流和C9,C10和C11滤波,再经过磁珠L1和C12滤掉开关噪声后,得到输出电压;VD4和C14构成软启动电路。
2 高频变压器设计
对于PI公司的单片开关电源来说,高频变压器采用PI公司相关的开关电源计算机辅助设计软件来设计。本方案采用的是PI Expert 7.0专家系统。图2是用该软件设计的变压器的结构。
3 测试结果
该电源输出功率为250W,效率至少为85%,负载调整率为±5%,纹波电压峰一峰值小于100mV,空载功耗不大于1.4W。
本方案选用TOP249Y设计,输出功率250W时工作于其上限功率,故要保持良好的散热条件(芯片温度要保持在110℃以下),也可用TOP250Y替换该元件。
4 结束语
单片开关电源具有单片集成化、最简外围电路、最佳性能指标、能以无工频变压器电器实现完全隔离等显著优点,是我们设计290W以下开关电源的理想选择。