当前位置:首页 » 比特币问答 » 布隆过滤器比特币

布隆过滤器比特币

发布时间: 2022-04-19 03:16:06

『壹』 用python安装布隆过滤器报错,这怎么解决

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位列阵变成整数数组

『贰』 布隆过滤器和替代算法

布隆过滤器和替代算法:但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

但是包含查找的数据项的数据文件它一定是会返回的,key-value系统中bloom filter返回的数据文件还是需要查看里面的内容才能知道是否存在所需的数据的,这就保证了执行结果的正确性和完整性。

只是多访问一些数据文件而已。在数据量很大key-value系统中,建立统一的B+树索引的代价是非常大的,维护成本也很高,因此综合起来bloom filter的性能是最好的。

缺点:

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。常见的补救办法是建立一个小的白名单,存储那些可能被误判的元素。但是如果元素数量太少,则使用散列表足矣。

另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。

『叁』 缓存穿透有哪些解决办法

具体有哪些解决办法?

最基本的就是首先做好参数校验,一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于 0、传入的邮箱格式不对的时候直接返回错误消息给客户端等等。

1)缓存无效 key : 如果缓存和数据库都查不到某个 key 的数据就写一个到 redis 中去并设置过期时间,具体命令如下:SET key value EX 10086。这种方式可以解决请求的 key 变化不频繁的情况,如何黑客恶意攻击,每次构建的不同的请求key,会导致 redis 中缓存大量无效的 key 。很明显,这种方案并不能从根本上解决此问题。如果非要用这种方式来解决穿透问题的话,尽量将无效的 key 的过期时间设置短一点比如 1 分钟。另外,一般情况下我们是这样设计 key 的: 表名:列名:主键名:主键值。


2)布隆过滤器:布隆过滤器是一个非常神奇的数据结构,通过它我们可以非常方便地判断一个给定数据是否存在与海量数据中。我们需要的就是判断 key 是否合法,有没有感觉布隆过滤器就是我们想要找的那个“人”。具体是这样做的:把所有可能存在的请求的值都存放在布隆过滤器中,当用户请求过来,我会先判断用户发来的请求的值是否存在于布隆过滤器中。不存在的话,直接返回请求参数错误信息给客户端,存在的话才会走下面的流程。总结一下就是下面这张图(这张图片不是我画的,为了省事直接在网上找的):

『肆』 看过的视频让用户不再观看为什么使用布隆过滤器而不是直接使用setBit与getBit进行取值比对呢

不行。

因为布隆过滤器的原理是用多个hash函数对id进行hash后得到一系列值,而在布隆数组中看这些值对应的位上是否命中,如果都命中说明这个值重复。
用id不经过hash直接去对比,乍一想好像可以,但是你想想,假如id是10位,并且我们只用数字,那么布隆过滤器的长度只有10位(0123456789),这个长度的过滤器几乎没法使用,容量太低,误差率太高。即使算上大小写字母,也只有62个,看似62很多,但是这里定死了id必须用这62个字符,而假如中间加一层hash,那id用什么字符和我布隆过滤器用什么字符以及过滤器的长度都可以自由指定,灵活很多。

『伍』 布隆过滤器既然有错误率,为什么还能应用在key-value系统中

bloom filter的特点是会出现误报,但不会漏报,也就是说对于bloom filter验证的一个数据文件,可能不包含你查找的数据项,但是包含你查找的数据项的数据文件它一定是会返回的,key-value系统中bloom filter返回的数据文件还是需要查看里面的内容才能知道是否存在所需的数据的,这就保证了执行结果的正确性和完整性。因此key-value系统不会因此而出错的,只是多访问一些数据文件而已。在数据量很大key-value系统中,建立统一的B+树索引的代价是非常大的,维护成本也很高,因此综合起来bloom filter的性能是最好的。

『陆』 布隆过滤器用的多少个hash函数

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外, Hash函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

『柒』 如何用python写布隆过滤器

下面的是网络上找到的python的布隆过滤器的实现.

#!/usr/local/bin/python2.7
#coding=gbk
'''
Createdon2012-11-7

@author:palydawn
'''
importcmath
fromBitVectorimportBitVector

classBloomFilter(object):
def__init__(self,error_rate,elementNum):
#计算所需要的bit数
self.bit_num=-1*elementNum*cmath.log(error_rate)/(cmath.log(2.0)*cmath.log(2.0))

#四字节对齐
self.bit_num=self.align_4byte(self.bit_num.real)

#分配内存
self.bit_array=BitVector(size=self.bit_num)

#计算hash函数个数
self.hash_num=cmath.log(2)*self.bit_num/elementNum

self.hash_num=self.hash_num.real

#向上取整
self.hash_num=int(self.hash_num)+1

#产生hash函数种子
self.hash_seeds=self.generate_hashseeds(self.hash_num)

definsert_element(self,element):
forseedinself.hash_seeds:
hash_val=self.hash_element(element,seed)
#取绝对值
hash_val=abs(hash_val)
#取模,防越界
hash_val=hash_val%self.bit_num
#设置相应的比特位
self.bit_array[hash_val]=1

#检查元素是否存在,存在返回true,否则返回false
defis_element_exist(self,element):
forseedinself.hash_seeds:
hash_val=self.hash_element(element,seed)
#取绝对值
hash_val=abs(hash_val)
#取模,防越界
hash_val=hash_val%self.bit_num

#查看值
ifself.bit_array[hash_val]==0:
returnFalse
returnTrue

#内存对齐
defalign_4byte(self,bit_num):
num=int(bit_num/32)
num=32*(num+1)
returnnum

#产生hash函数种子,hash_num个素数
defgenerate_hashseeds(self,hash_num):
count=0
#连续两个种子的最小差值
gap=50
#初始化hash种子为0
hash_seeds=[]
forindexinxrange(hash_num):
hash_seeds.append(0)
forindexinxrange(10,10000):
max_num=int(cmath.sqrt(1.0*index).real)
flag=1
fornuminxrange(2,max_num):
ifindex%num==0:
flag=0
break

ifflag==1:
#连续两个hash种子的差值要大才行
ifcount>0and(index-hash_seeds[count-1])<gap:
continue
hash_seeds[count]=index
count=count+1

ifcount==hash_num:
break
returnhash_seeds

defhash_element(self,element,seed):
hash_val=1
forchinstr(element):
chval=ord(ch)
hash_val=hash_val*seed+chval
returnhash_val
'''
#测试代码
bf=BloomFilter(0.001,1000000)
element='palydawn'
bf.insert_element(element)
printbf.is_element_exist('palydawn')'''

#其中使用了BitVector库,python本身的二进制操作看起来很麻烦,这个就简单多了

如果解决了您的问题请采纳!
如果未解决请继续追问

『捌』 spv 客户端 怎么使用 比特币

有SPV、SPV节点和SPV钱包,你说的是哪个?
SPV指的是“支付验证“,而不是“交易验证”。
SPV节点:支持使用布隆过滤器(Bloom filter)在快速检索并返回相关数据的节点。
还是瘦客户端?央务数字?

『玖』 布隆过滤器的优点

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外, Hash函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。
布隆过滤器可以表示全集,其它任何数据结构都不能;
k和m相同,使用同一组Hash函数的两个布隆过滤器的交并差运算可以使用位操作进行。
布隆过滤器

『拾』 布隆过滤器的缺点

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。
另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。
在降低误算率方面,有不少工作,使得出现了很多布隆过滤器的变种。

热点内容
比特币和挖矿机啥原理 发布:2025-07-26 15:44:50 浏览:931
区块链的通证是共识算法吗 发布:2025-07-26 15:39:54 浏览:915
比特币勒索病毒分布 发布:2025-07-26 15:38:27 浏览:651
比特币挖矿机多长时间挖出一个 发布:2025-07-26 15:34:24 浏览:233
比特币挣钱事例 发布:2025-07-26 15:25:54 浏览:688
为什么比特币在2017年爆发 发布:2025-07-26 15:17:16 浏览:905
橡胶怎么移仓合约 发布:2025-07-26 15:10:02 浏览:680
usdt如何兑换人民币需要多久 发布:2025-07-26 15:08:18 浏览:525
币圈交易平台骗局 发布:2025-07-26 15:02:14 浏览:182
元宇宙里面使用什么钱 发布:2025-07-26 15:01:38 浏览:154