有机无机杂化材料cu3btc2的合成与储氢特性
① 无机化合物A中含有金属Li元素,遇水强烈水解,主要用于有机合成和药物制造,是具有良好前景的储氢材料.
在一定条件下,2.30g固体A与5.35gNH4Cl固体恰好完全反应,生成固体B和4.48L气体C (标准状况),气体C极易溶于水得到碱性溶液,可推知C为NH3,电解无水B可生成一种短周期元素的金属单质D和氯气,B为金属D氯化物,4.48L氨气的物质的量=
4.48L |
22.4L/mol |
(1)由上述分析可知,A为LiNH2,C为氨气,其电子式为

② “有机/无机杂化材料”与“无机材料的表面有机化改性”这两个概念有什么不同么材料的性能方面那个更好
前者是杂化材料,也就是两者进行混合,这是整体的。
无机材料的表面有机化改性,是对无机材料的表面进行改性而已。
前者相当于你跟另一个人合体了,像变形金刚一样的合体。
后者相当于给你换一件衣服而已。这两者显然是很不同的。
至于材料的性能哪个更好,这是一个伪命题,没答案。首先,你并没有指哪方面的性能。其次,如论是什么材料,都有他性能好的一方面,和性能差的一方面。最后,性能的好坏,最主要的还是得看你的要求。满足要求的就是好性能,不满足要求的,自然就是性能不好了。所以这样直接进行比较,没有意义。
仅供参考
③ Cu-3(btc)是什么物质
BTC是(三氯甲基)碳酸酯的简称,是一个化学物质的简称,主要有碳、氯、氧组成,化学式是C3Cl6O3,可作为剧毒光气和双光气在合成中的替代产物。
BTC=Bis(trichloromethyl)carbonate 双(三氯甲基)碳酸酯,即三光气。
CAS Registry Number32315-10-9
分子式 C3Cl6O3
分子量 296.748
(3)有机无机杂化材料cu3btc2的合成与储氢特性扩展阅读:
三光气在有机合成中用作试剂,并且是用于各种化学转化的光气的较不危险的替代物,包括将一个羰基键合至两个醇,并将胺基转化为异氰酸酯。
三光气的毒性与光气相同,因为它在加热和与亲核试剂反应时分解成光气。 即使微量水分也会导致光气的形成。 因此,如果对光气采取所有预防措施,则该试剂可以安全地处理。
作为剧毒光气和双光气在合成中的替代产物,本品毒性低,使用安全方便,而且反应条件温和,选择性好,收率高。
本品为二级有机有毒品。宜存于干燥、阴凉、通风的库房内,远离火源,并与有机胺、碱性化学品等分开保存。
④ 溶胶凝胶方法为什么适合多孔有机无机杂化材料的制备
无机材料的制备大多要经过高温处理,而有机物一般在高温下都会分解,通过溶胶-凝胶法较低的反应温度将阻止相转变和分解的发生,采用这种方法可以得到有机—无机纳米复合材料。凝胶在制备材料过程中由于溶剂挥发,非常容易形成孔道,所以对于多孔有机无机杂化材料的制备是得天独厚的。
⑤ 无机化合物A中含有金属Li元素,遇水强烈水解,主要用于有机合成和药物制造,是具有良好前景的储氢材料。在
(1)LiNH 2
![]() ⑥ 有机/无机杂化材料定义 有机无机杂化材料是在溶胶凝胶法的基础上发展起来,介于有机聚合物与无机聚合物间的一种新型复合材料. ⑦ 问复合材料和杂化材料什么区别 复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。杂化材料(Hybrid material)包含有二种在纳米或分子水平成份的复合材料。一般,这种复合物成份的一种是无机;另一种是自然界中有机物。它和传统复合物不同;后者成份的尺寸在微米至毫米范围宏观尺寸。杂化材料在微观尺度混合;内部较均匀;使它显示的不是介于二相间的特性,而显示出新特性。许多自然材料包含无机和有机构成块的大小在纳米范围。大多情况,无机部分提供机械强度且分布在整个物体。而有机部份则和无机构块连接。这种材料的典型例子是骨头或珍珠母。 ⑧ 国内外有哪些在做有机无机杂化簇 复合材料(Compositematerials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。复合材料是一种混合物。在很多领域都发挥了很大的作用,代替了很多传统的材料。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,再生树脂复合材料使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。有机无机杂化材料是一种分散均匀的多相材料,兼备有机聚合物或无机聚合物的性能优势。它可以是无机改性有机聚合物,也可以是有机改性无机玻璃。可以通过调节有机相与无机相的组分及比例,实现对材料功能的“剪裁”和“组装”。 ⑨ 冯新亮的科研情况 研究方向 ⑩ 溶胶凝胶法合成杂化材料加入交联剂的作用和原理是什么 摘要 交联剂能分解生成自由基,进而引发聚合物的自由链式反应,从而使聚合物发生交联。交联剂实际上是一种引发剂。通常使用有机过氧化物。 热点内容
|