当前位置:首页 » 比特币问答 » 比特币与拜占庭将军问题

比特币与拜占庭将军问题

发布时间: 2023-01-26 09:21:27

㈠ 拜占庭容错和PBFT共识算法

实用的拜占庭容错算法
BFT 是区块链共识算法中,需要解决的一个核心问题。比特币的POW,eos的dpos,以及共识算法pos,这些公链算法,解决的是共识节点众多情况下的bft问题。

拜占庭将军问题。也称为拜占庭容错。
用来描述分布式系统一致性问题。

背景如下:
拜占庭帝国想要进攻一个强大的敌人,为此派出了10支军队去包围这个敌人。这个敌人虽不比拜占庭帝国,但也足以抵御5支常规拜占庭军队的同时袭击。这10支军队在分开的包围状态下同时攻击。他们任一支军队单独进攻都毫无胜算,除非有至少6支军队(一半以上)同时袭击才能攻下敌国。他们分散在敌国的四周,依靠通信兵骑马相互通信来协商进攻意向及进攻时间。困扰这些将军的问题是,他们不确定他们中是否有叛徒,叛徒可能擅自变更进攻意向或者进攻时间。在这种状态下,拜占庭将军们才能保证有多于6支军队在同一时间一起发起进攻,从而赢取战斗?

单从上面的说明可能无法理解这个问题的复杂性,我们来简单分析一下:

先看在没有叛徒情况下,假如一个将军A提一个进攻提议(如:明日下午1点进攻,你愿意加入吗?)由通信兵通信分别告诉其他的将军,如果幸运中的幸运,他收到了其他6位将军以上的同意,发起进攻。如果不幸,其他的将军也在此时发出不同的进攻提议(如:明日下午2点、3点进攻,你愿意加入吗?),由于时间上的差异,不同的将军收到(并认可)的进攻提议可能是不一样的,这是可能出现A提议有3个支持者,B提议有4个支持者,C提议有2个支持者等等。

再加一点复杂性,在有叛徒情况下,一个叛徒会向不同的将军发出不同的进攻提议(通知A明日下午1点进攻, 通知B明日下午2点进攻等等),一个叛徒也会可能同意多个进攻提议(即同意下午1点进攻又同意下午2点进攻)。

叛徒发送前后不一致的进攻提议,被称为“拜占庭错误”,而能够处理拜占庭错误的这种容错性称为「Byzantine fault tolerance」,简称为BFT。

使用密码学算法保证节点之间的消息传送是不可篡改的, 通过下面的算法我们可以保证A将军收到B将军发来的消息确实是B将军本人的真实请求

我们采用的是哈希函数(散列算法)SHA256 -- 从数据(byte)值中创建独一无二的hash值,并压缩成摘要,将数据格式固定下来。通过这个摘要与个人私钥生成Digital Signature 和个人公钥Public-key certificate,接收方验证签名和摘要,如果是通过验证,即证明摘要内容没有经过篡改。

pbft容忍无效或者恶意节点数量 e 。为了保证整个系统可以正常运作,需要有2f+1个正常节点,系统的总结点数为 :3f+1。即pbft算法容忍小于1/3的恶意或者无效节点。 原因见节点作恶的极端情况

pbft是一种状态机副本复制算法,所有副本在一个view轮换过程中操作,哪些是主节点(进攻的提议者的大将军们,轮流当)通过view中其他节点(其他将军)赋予的编号和节点数集合来确定,即:主节点p=v mod |R| 。 v:view编号,|R|节点个数,p:主节点编号。 关于状态机复制算法、view change的意义(主要是防止主节点作恶),主节点详见论文。

基于拜占庭将军问题,PBFT算法一致性的确保主要分为这三个阶段:预准备(pre-prepare)、准备(prepare)和确认(commit)。流程如下图所示:

[图片上传失败...(image-e3329d-1562488133052)]

首先解释一下上面各个符号表达的意思:

下面结合上图,详细说一下PBFT的步骤:

根据上述流程,在 N ≥ 3F + 1 的情况下一致性是可能解决, N为总计算机数,F为有问题的计算机总数

下面所有的校验流程略去对消息内容、签名和身份的验证,即已经保证了节点之间消息传播是不可篡改的

上述算法中,比较重要的一个点是view change,为了能恢复之前的请求,每一个副本节点收到消息之后或者发送消息的时候都会记录消息到本地的log记录中。当执行请求后,副本节点需要把之前该请求的记录消息清除掉。最简单的做法是在reply消息后,在执行一次当前状态的共识同步,但是为了节省资源,一般在多条请求K后执行一次状态同步。这个状态同步就是checkpoint消息。

为了节省内存,系统需要一种将日志中的 无异议消息记录 删除的机制。为了保证系统的安全性,副本节点在删除自己的消息日志前,需要确保至少 f+1 个正常副本节点执行了消息对应的请求,并且可以在视图变更时向其他副本节点证明。另外,如果一些副本节点错过部分消息,但是这些消息已经被所有正常副本节点删除了,这就需要通过 传输部分或者全部服务状态实现该副本节点的同步 。因此,副本节点同样需要证明状态的正确性。

在每一个操作执行后都生成这样的证明是非常消耗资源的。因此,证明过程只有在请求序号可以被某个常数(比如100)整除的时候才会周期性地进行。我们将这些请求执行后得到的状态称作 检查点(checkpoint) ,并且将具有证明的检查点称作 稳定检查点(stable checkpoint)

上述情况是理想情况,实际上当副本节点i向其他节点发出checkpoint消息之后,其他节点还没有完成K条请求的相互共识,所以不会立即对i的请求作出响应。其他节点会按照自己的处理步骤和顺序,向前行进和共识。但是此时i发出的checkpoint没有形成stable,为了防止i太快,超过自己太多,于是被便会设置一个高水位H=h+L,其中L就是我们指定允许的高度差,等于checkpoint周期处理数K的整数倍,可以设置为L=2K。当副本节点i处理请求超过高水位H时,副本节点即使接受到请求也会视为非法请求。等待stable checkpoint发生变化,再继续向前推进处理。

如果主节点作恶,它可能会给不同的请求编上相同的序号,或者不去分配序号,或者让相邻请求的序号不连续。备份节点(备份主节点)应当有职责来主动检查这些序号的合法性。如果主节点掉线或者作恶不广播客户端的请求,客户端设置超时机制,超时的话,向所有副本节点广播请求消息。副本节点检测出主节点或者下线,发起view change流程。

我们在上面讲到,当网络中有F台有问题的计算机时,至少需要3F+1台计算机才能保证一致性问题的解决,我们在这里讨论一下原因。

我们可以考虑:由于有F个节点为故障或被攻击的节点,故我们只能从N-F个节点中进行判断。但是由于异步传输,故当收到N-F个消息后,并不能确定后面是否有新的消息。(有可能是目前收到的N-F个节点的消息中存在被攻击的节点发来的消息,而好的节点的消息由于异步传输还没有被收到。)

我们考虑最坏的情况,即剩下F个都是好的节点,收到的中有F个被攻击的节点,故我们需要使得收到的中好节点的数量 (N-F)-F 大于被攻击节点的数量 F ,于是有 N-2F>F ,即 N>3F ,所以N的最小整数为 N=3F+1

pbft是需要参与认证的节点进行的。所以一个完整的共识算法包括DPOS+PBFT。其速度是可以达到1500tps左右的。

参考文献:

https://mathpretty.com/9602.html

https://blog.csdn.net/jfkidear/article/details/81275974

Practical Byzantine Fault Tolerance

Miguel Castro and Barbara Liskov Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139 castro,liskov @lcs .mit.e

https://www.jianshu.com/p/fb5edf031afd 部分论文翻译

㈡ 拜占庭问题

拜占庭帝国即中世纪的土耳其,拥有巨大的财富,周围10个邻邦垂诞已久,但拜占庭高墙耸立,固若金汤,没有一个单独的邻邦能够成功入侵。任何单个邻邦入侵的都会失败,同时也有可能自身被其他9个邻邦入侵。拜占庭帝国防御能力如此之强,至少要有十个邻邦中的一半以上同时进攻,才有可能攻破。

然而,如果其中的一个或者几个邻邦本身答应好一起进攻,但实际过程出现背叛,那么入侵者可能都会被歼灭。

于是每一方都小心行事,不敢轻易相信邻国。这就是拜占庭将军问题。

在拜占庭问题中,最重要的point就是: 所有将军如何达成一致攻打拜占庭的共识 ,这当中,可能出现的情况举例如下:

用一个模型解释一下:

假设只有3个人,A、B、C,三人中如果其中一个是叛徒。当A发出进攻命令时,B如果是叛徒,他可能告诉C,他收到的是“撤退”的命令。这时C收到一个“进攻”,一个“撤退“,于是C被信息迷惑,而无所适从。

如果A是叛徒。他告诉B“进攻”,告诉C“撤退”。当C告诉B,他收到“撤退”命令时,B由于收到了司令“进攻”的命令,而无法与C保持一致。

正由于上述原因,在只有三个角色的系统中,只要有一个是叛徒,即叛徒数等于1/3,拜占庭问题便不可解。

可以看得出, 只要叛徒的数量大于或等于1/3,拜占庭问题不可解

从技术上理解, 拜占庭将军问题是分布式系统容错性问题 。加密货币建立在P2P网络之上,是典型的分布式系统,类比一下, 将军就是P2P网络中的节点,信使就是节点之间的通信,进攻还是撤退的决定就是需要达成的共识 如果某台独立的节点计算机拓机、掉线或攻击网络搞破坏,整个系统就要停止运行,那这样的系统将非常脆弱,所以容许部分节点出错或搞破坏而不影响整个系统运行是必要的 这就需要算法理论上的支撑,保证分布式系统在一定量的错误节点存在的情况下,仍然保持一致性和可用性

而且,拜占庭将军与两军问题不同,前者假定信差没有问题,只是将军出现了叛变等问题;后者研究信差的通信问题。

终极解决方案到了——

如果 10个将军中的几个同时发起消息,势必会造成系统的混乱,造成各说各的攻击时间方案,行动难以一致

谁都可以发起进攻的信息,但由谁来发出呢?中本聪巧妙地在个系统加入了 发送信息的成本 ,即:

它加入的 成本就是”工作量“ —— 节点必须完成一个计算工作才能向各城邦传播消息 ,当然,谁第一个完成工作,谁才能传播消息。(这也是 工作量证明机制的意义:以检验结果的方式证明你过去所做过了多少工作

这种加密技术——非对称加密,完全可以解决古代难以解决的签名问题:

中本聪在设计比特币时,它采用了一种工作量证明机制叫哈希现金,在一个交易块这要找到一个随机数,计算机只能用穷举法来找到这个随机数,可以说,能不能找到全靠运气,所以对于各个节点来说,这个世界上,只有随机才是真正的公平,实现随机的最好办法是使用数学,所有的将军在寻找共识的过程,借助了大家都认可的数学逻辑。

当然了, 凭什么要义务进行计算工作,那么肯定要有一个激励机制 :比特币的奖励机制是每打包一个块,目前是奖励25个比特币,而拜占庭将军问题的奖励机制可以是瓜分拜占庭获得的利益。

在这个分布式网络里:

每个将军都有一份实时与其他将军同步的消息账本
账本里有每个将军的签名都是可以验证身份的。 如果有哪些消息不一致,可以知道消息不一致的是哪些将军
尽管有消息不一致的,只要超过半数同意进攻,少数服从多数,共识达成(只要大多数是好人,那么就可以实现共识)。

区块链上的共识机制主要解决 由谁来构造区块 ,以及 如何维护区块链统一 的问题。

拜占庭容错问题需要解决的也同样是 谁来发起信息 ,如何 实现信息的统一同步 的问题。

注:区块链学习新人,若有不正确的地方,望指出

㈢ 比特币机制研究

现今世界的电子支付系统已经十分发达,我们平时的各种消费基本上在支付宝和微信上都可以轻松解决。但是无论是支付宝、微信,其实本质上都依赖于一个中心化的金融系统,即使在大多数情况这个系统运行得很好,但是由于信任模型的存在,还是会存在着仲裁纠纷,有仲裁纠纷就意味着不存在 不可撤销的交易 ,这样对于 不可撤销的服务 来说,一定比例的欺诈是不可避免的。在比特币出来之前,不存在一个 不引入中心化的可信任方 就能解决在通信通道上支付的方案。
比特币的强大之处就在于:它是一个基于密码学原理而不是依赖于中心化机构的电子支付系统,它能够允许任何有交易意愿的双方能直接交易而不需要一个可信任的第三方。交易在数学计算上的不可撤销将保护 提供不可撤销服务 的商家不被欺诈,而用来保护买家的 程序化合约机制 也比较容易实现。

假设网络中有A, B ,C三个人。
A付给B 1比特币 ,B付给C 2比特币 ,C付给A 3比特币
如下图所示:

为了刺激比特币系统中的用户进行记账,记账是有奖励的。奖励来源主要有两方面:

比特币中每一笔交易都会有手续费,手续费会给记账者

记账会有打包区块的奖励,中本聪在08年设计的方案是: 每10分钟打一个包,每打一个包奖励50个比特币,每4年单次打包的奖励数减半,即4年后每打一个包奖励25个比特币,再过四年后就奖励12.5个比特币... 这样我们其实可以算出比特币的总量:

要说明打包的记录以谁为准的问题,我们需要引入一个知名的 拜占庭将军问题 (Byzantine failures)。拜占庭将军问题是由莱斯利·兰伯特提出的点对点通信中的基本问题。含义是在存在消息丢失的不可靠信道上试图通过消息传递的方式达到一致性是不可能的。

假设有9个互相远离的将军包围了拜占庭帝国,除非有5个及以上的将军一起攻打,拜占庭帝国才能被打下来。而这9个将军之间是互不信任的,他们并不知道这其中是否有叛徒,那么如何通过远距离协商来让他们赢取战斗呢?

口头协议有3个默认规则:
1.每个信息都能够被准确接收
2.接收者知道是谁发送给他的
3.谁没有发送消息大家都知道
4.接受者不知道转发信息的转发者是谁
将军们遵循口头规则的话,那就是下面的场景:将军1对其他8个将军发送了信息,然后将军2~9将消息进行转达(广播),每个将军都是消息的接受者和转发者,这样一轮下来,总共就会有9×8=72次发送。这样将军就可以根据自己手中的信息,选择多数人的投票结果行动即可,这个时候即便有间谍,因为少数服从多数的原则,只要大部分将军同意攻打拜占庭,自己就去行动。
这个方案有很多缺点:
1.首先是发送量大,9个将军之间要发送72次,随着节点数的增加,工作量呈现几何增长。
2.再者是无法找出谁是叛徒,因为是口头协议,接受者不知道转发信息的转发者是谁,每个将军手里的数据仅仅只是一个数量的对比:

这里我们假设有3个叛徒,在一种最极端的情况下即叛徒转发信息时总是篡改为“不进攻”,那么我们最坏的结果就如上图所示。将军1根据手里的信息可以推出要进攻的结论,却无法获知将军里面谁是叛徒。
这样我们就有了方案二:书面协议。

书面协议即将军在接受到信息后可以进行签字,并且大家都能够识别出这个签字是否是本人,换种说法就是如果有人篡改签字大家可以知道。书面协议相对比口头协议就是增加了一个认证机制,所有的消息都有记录。一旦发现有人所给出的信息不一致,就是追查间谍。
有了书面协议,那么将军1手里的信息就是这样的:

可以很明显得看出,在最坏的一种情况——叛徒总是转发“不进攻”的消息之下,将军7、8、9是团队里的叛徒。
这个方案解决了口头协议里历史信息不可追溯的问题,但是在发送量方面并没有做到任何改进。

在我们的示例中,比特币系统里的每个用户发起了一笔交易,都会通过自己的私钥进行签名,用数学公式表示就是:

所以之前的区块就变成了这样:

这样每一笔交易都由交易发起者通过私钥进行数字签名,由于私钥是不公开的,所以交易信息也就无法被伪造了。

如书面协议末尾所说的那样,书面协议未能解决信息交流过多的问题。当比特币系统中存在上千万节点的时候,如果要互相广播验证,请求响应的次数那将是一个非常庞大的数字,显然势必会造成网络拥堵、节点处理变慢。为了解决这个问题,中本聪干脆让整个10分钟出一个区块,这个区块由谁来打包发出呢?这里就采用了工作量证明机制(PoW)。工作量证明,说白了就是解一个数学题,谁先解出来数学题,谁就能有打包区块的权力。换在拜占庭将军的例子中就是,谁先做出数学题,谁就成为将军们里面的总司令,其他将军听从他发号的命令。

首先,矿工会将区块头所占用的128字节的字符串进行两次sha256求值,即:

这样求得一个值Hash,将其与目标值相比对,如果符合条件,则视为工作量证明成功。
工作量证明成功的条件写在了区块链头部的 难度数 字段,它要求了最后进行两次sha256运算的Hash值必须小于定下的目标值;如果不是的话,那就改变区块头的 随机数 (nonce),通过一次次地重复计算检验,直到符合条件为止。

此外, 比特币有自己的一套难度控制系统,使得比特币系统要在全网不同的算力条件下,都保持10分钟生成一个区块的速率。这也就意味着:难度值必须根据全网算力的变化进行调整。难度调整的策略是由最新2016个区块的花费时长与期望时长(期望时长为20160分钟即两周,是按每10分钟一个区块的产生速率计算出的总时长)比较得出的,根据实际时长与期望时长的比值,进行相应调整(或变难或变易)。也就是说,如果区块产生的速率比10分钟快则增加难度,比10分钟慢则降低难度。

PoW其实在比特币中是做了以下的三件事情。

这样可以防止一台高性能机器同时跑上万个节点,因为每完成一个工作都要有足够的算力。

有经济奖励就会加速整个系统的去中心化,也鼓励大家不要去作恶,要积极地按照协议本来的执行方式去执行。(所以说,无币区块链其实是不可行的,无币区块链一定导致中心化。)

也就是说,每个节点都不能以自身硬件条件去控制出快速度。现在的比特币上平均10分钟出一个块,性能再好的机器也无法打破这个规则,这就能够保证 区块链是可以收敛到共同的主链上的 ,也就是我们所说的共识。

综上,共识只是PoW三个作用中的一点,事实上PoW设计的作用有点至少有这么三种。

默克尔树的概念其实很简单,如图所示

这样,我们区块的结构就大致完整了,这里分成了区块头和区块体两部分。

区块链的每个节点,都保存着区块链从创世到现在的每一区块,即每一笔交易都被保存在节点上,现在已经有几百个GB了。
每当比特币系统中有一笔新的交易生成,就会将新交易广播到所有的节点。每个节点都把新交易收集起来,并生成对应的默克尔根,拼接完区块头后,就开始调整区块头里的随机数值,然后就开始算数学题

将算出的result和网络中的目标值进行比对,如果是结果是小于的话,就全网广播答案。其他矿工收到了这个信息后,就会立马放下手里的运算,开始下一个区块的计算。
举个例子,当前A节点在挖38936个区块,A挖矿节点一旦完成计算,立刻将这个区块发给它的所有相邻节点。这些节点在接收并验证这个新区块后,也会继续传播此区块。当这个新区块在网络中扩散时,每个节点都会将它作为第38936个区块(前一个区块为38935)加到自身节点的区块链副本中。当挖矿节点收到并验证了这个新区块后,它们会放弃之前对构建这个相同高度区块的计算,并立即开始计算区块链中下一个区块的工作。
整个流程就像下一张图所展示的这样:

简单来说,双花问题是一笔钱重复花了两次。具体来讲,双花问题可分为两种情况:
1.同一笔钱被多次使用;
2.一笔钱只被使用过一次,但是通过黑客攻击或造假等方式,将这笔钱复制了一份,再次使用。
在我们生活的数字系统中,由于数据的可复制性,使得系统可能存在同一笔数字资产因不当操作被重复使用的情况,为了解决双花问题,日常生活中是依赖于第三方的信任机构的。这类机构对数据进行中心化管理,并通过实时修改账户余额的方法来防止双重支付的出现。而作为去中心化的点对点价值传输系统,比特币通过UTXO、时间戳等技术的整合来解决双花问题。

UTXO的英文全称是 unspent transaction outputs ,意为 未使用的交易输出 。UTXO是一种有别于传统记账方式的新的记账模型。
银行里传统的记账方式是基于账户的,主要是记录某个用户的账户余额。而UTXO的交易方式,是基于交易本身的,甚至没有账户的概念。在UTXO的记账机制里,除了货币发行外,所有的资金来源都必须来自于前面某一个或几个交易。任何一笔的交易总量必须等于交易输出总量。UTXO的记账机制使得比特币网络中的每一笔转账,都能够追溯到它前面一笔交易。
比特币的挖矿节点获得新区块的挖矿奖励,比如 12.5 个比特币,这时,它的钱包地址得到的就是一个 UTXO,即这个新区块的币基交易(也称创币交易)的输出。币基交易是一个特殊的交易,它没有输入,只有输出。
当甲要把一笔比特币转给乙时,这个过程是把甲的钱包地址中之前的一个 UTXO,用私钥进行签名,发送到乙的地址。这个过程是一个新的交易,而乙得到的是一个新的 UTXO。
这就是为什么有人说在这个世界上根本没有比特币,只有 UTXO,你的地址中的比特币是指没花掉的交易输出。
以Alice向Bob进行转账的过程举例的话:

UTXO 与我们熟悉的账户概念的差别很大。我们日常接触最多的是账户,比如,我在银行开设一个账户,账户里的余额就是我的钱。
但在比特币网络中没有账户的概念,你可以有多个钱包地址,每个钱包地址中都有着多个 UTXO,你的钱是所有这些地址中的 UTXO 加起来的总和。
中本聪发明比特币的目标是创建一个点对点的电子现金,UTXO 的设计正可以看成是借鉴了现金的思路:我们可能在这个口袋里装点现金,在那个柜子角落里放点现金,在这种情况下不存在一个账户,你放在各处的现金加起来就是你所有的钱。
采用 UTXO 设计还有一个技术上的理由,这种特别的数据结构可以让双重花费更容易验证。对比一下:

㈣ 拜占庭问题与共识算法

“拜占庭将军问题”(Byzantine Generals Problem)是一个经典难题,这个难题是这样描述的:拜占庭是东罗马帝国的首都,它的军队分成多个师,每个师都由一个将军统领。这些将军通过信使进行交流,来达成一个共同作战方案,有些将军可能是叛徒,想故意破坏这个过程,这会造成那些忠诚的将军也无法达成一个统一的作战计划。这个难题在于如何让那些忠诚的将军在这样的情况下达成统一作战方案,而避免那些叛徒对作战方案的误导。

在点对点、分布式的区块链中,常常用拜占庭问题来比喻节点如何达成共识的问题。将军即对应着一个个节点,达成统一作战方案即达成共识,正确的打包与验证区块数据,防止恶意节点(叛徒将军)破坏区块链的运行。

顾名思义,就是能够解决拜占庭问题,使各个节点达成共识,解决共识问题的各种机制也被称为共识算法。在各种各样的共识算法中,又一直存在一个「不可能三角」的难题,这三角是指“安全性”、“去中心化”和“速度”,也就是说难以同时保证速度、安全性和去中心化程度,三者之间往往会顾此失彼。

现在各种共识算法算起来有好几十种,计算机界也一直处于研究阶段,并没有说哪种算法已经完美。
下面盘点一下讲解pBET和POW两种算法,以及它们的“安全性”、“去中心化”和“速度”如何。

实用拜占庭容错是一种较早的共识算法。pBFT的一个原则,就是少数服从多数。节点通过在相互传递有关决策的消息,谁的决策赞同的人数多,就采用谁的。所以在这个系统中,安全性随着诚实节点的数量而增加。诚实节点同意正确的决策,拒绝恶意节点的错误决策,只要恶意节点的数量少于总数的1/3,就能保证达成共识。

达成共识可以简化为四步:

pBFT 使用投票机制以循环方式选举领导节点。
领导者发起决策并将其广播给辅助节点。
所有节点,包括领导节点和辅助节点,都发送响应。
当 ⅔ + 1 个节点发送相同的响应时,该响应被认为是有效的。

如果领导者有恶意行为,它可以被大多数节点删除。

按少数服从多数的原则。那按理来说,只要恶意节点的数量少于1/2就够了啊,那么为什么PBFT算法的容错数量要满足恶意节点的数量少于总数的1/3呢?

因为 PBFT 算法的除了需要支持容错故障节点之外,还需要支持容错作恶节点。假设集群节点数为 N,有问题的节点为 f。有问题的节点中,可以既是故障节点,也可以是作恶节点,或者只是故障节点或者只是作恶节点。那么会产生以下两种极端情况:

(1)这f 个有问题节点既是故障节点,又是作恶节点,那么根据少数服从多数的原则,集群里正常节点只需要比f个节点再多一个节点,即 f+1 个节点,正确节点的数量就会比故障节点数量多,那么集群就能达成共识,即总节点数为f+(f+1)=n,也就是说这种情况支持的最大容错节点数量是 (n-1)/2。
(2)故障节点和作恶节点都是不同的节点。那么就会有 f 个作恶节点和 f 个故障节点,当发现节点是作恶节点后,会被集群排除在外,剩下 f 个故障节点,那么根据少数服从多数的原则,集群里正常节点只需要比f个节点再多一个节点,即 f+1 个节点,确节点的数量就会比故障节点数量多,那么集群就能达成共识。所以,所有类型的节点数量加起来就是 f+1 个正常节点,f个故障节点和f个作恶节点,即 3f+1=n。

结合上述两种情况,因此PBFT算法支持的最大容错节点数量是(n-1)/3,即少于1/3。

pBFT的优缺点
pBFT 系统不需要高计算资源或大量能源来运行。pBFT 在节点少的时候可以快速达成共识,因为所有节点都在不断地相互通信。一旦节点就决策达成一致,交易就完成了。

然而,pBFT的缺点也很明显:频繁的通信使它只能在节点数量有限的网络中正常工作。随着每个新节点加入网络,通信开销呈指数增长,响应所需的时间也随之增加。

pBFT 网络也容易受到女巫(Sybil)攻击,女巫就是恶意黑客制造的不同节点,黑客可以控制多个节点,使其超过1/3,那系统将无法达成正确的共识。

从不可能三角的角度来看,由此可见pBFT在节点少的时候速度快,但安全性差,去中心化低;节点多了又会导致速度很慢。

中本聪设计了POW共识机制来解决上面pBFT这个经典共识的可扩展性问题。

上面说到,pBFT通过不断广播然后计算节点的消息数,时间花费过长。POW是怎么做的:我不要计算节点数是否超过2/3,我直接选一个节点,按它的决策,其他节点全部同步它的决策。这样就省去在全节点通信然后计算节点数的费时操作。

那么,对于哪个节点来打包区块,那就很重要,万一是恶意节点呢?必须对打包的节点进行要求,哪个节点有权力进行打包呢?那就是解决复杂的数学问题,俗称挖kuang。节点必须花费大量算力和电费来争取某次打包区块的权力。这样的成本就限制了黑客的女巫攻击。

如果打包区块的权力真的被黑客抢到了,那可能会有什么问题?

(1)窃取冰糖橙
黑客能够窃取属于另一个用户,不受她控制的地址里的冰糖橙吗?答案是否定的。即使这一轮是由黑客打包区块链上的下一个区块,她也不可能窃取别人的比特币。这么做的话,黑客需要发起一笔有效的交易来转移比特币到自己的地址。这就要求黑客伪造比特币拥有者的签名,然而如果数字签名机制是安全的,她是无法办到的。只要背后的密码学基础是牢靠的,她就无法轻易窃取比特币。
(2)拒绝服务攻击
让我们来考虑另一种攻击。假设黑客不喜欢叫鲍勃的某个用户,黑客可以决定她不把鲍勃发起的任何交易放进她所提议的区块里。换言之,她拒绝提供服务给鲍勃。尽管这是黑客可以开展的有效的攻击,但幸好这不过是个小问题。如果鲍勃的交易没有被放进黑客所打包的下一个区块,鲍勃只要等到下一个诚实节点发起区块的时候,他的交易记录就会被放进这个区块里。所以这其实也不算是一个有效的攻击。

也就是说,黑客花费重大成本取得的打包,但并不能起到有效的攻击。由于对恶意节点进行惩罚、对诚实节点进行奖励这样的机制下,共识就达成了。

尽管有所改进,POW也引入了其他问题。工作量证明需要所有节点解决复杂的数学问题,这会消耗大量的能源,就是大家所熟知的挖kuang耗费电力。并且解决复杂的数学问题的时间也要求不短,10分钟左右。

从不可能三角的角度来看,POW去中心化高,安全性高,但速度还是慢,但至少已经不会像pBFT那样由于节点多导致花费时间呈指数增长。

共识算法各式各样,冰糖橙的POW并不是真正去解决分布式共识问题,它不能完美的套用到其他场景。但它在货币系统的这个特定场景下解决了冰糖橙的共识问题。POW在冰糖橙里运行得非常好。

㈤ 比特币因为什么可以被称为主流币

拜占庭将军问题

在讨论比特币为什么会被称为主流币之前先看一个有趣的问题,这个问题的名字叫做拜占庭将军问题。

这个问题是由莱斯利·兰伯特提出的点对点通信的基本问题。

为什么会被称为拜占庭将军问题呢?有两大历史渊源。

一、拜占庭位于如今土耳其的伊斯坦布尔,是东罗马帝国的首都,由于罗马帝国当时土地辽阔,每个军队都相隔较远,信息传递全靠信差。而在战争时拜占庭的所有将军必须达成是否攻击的共识,这样才能赢得战争。但是因为有叛徒和间谍的存在就会扰乱秩序,使得难以形成正确的共识。拜占庭将军问题就这样形成了。

二、Leslie Lamport(2013 年的图灵讲得主)用来为描述分布式系统一致性问题(Distributed Consensus)在论文中抽象出来一个著名的例子。

Leslie Lamport在20页的文章中举了一个具体的例子来描述什么是拜占庭将军问题,拜占庭排出了10支部队去围攻一个城池,10支部队由10个将军带领,分布在城池的四周靠通信兵传递信息,由于敌人实力强悍,必须要6队或以上的人马同时发起进攻才能赢得战争。如何保证至少6支军队可以同时发起进攻。

从字面上看起来似乎不是一个很难的问题,其实际解决起来却没那么容易,在中本聪提出比特币网络概念之前这个问题一直就没有得到较好的解决。

为什么这么难解决呢?

因为信息传递是分散的,并且其中还可能存在间谍叛徒捣乱。

先不考虑有叛徒和间谍的情况,光10个将军想要统一一个发动进攻的时间都很难,举例:每一个将军都有着自己的进攻想法,想要统一一个进攻时间就要将自己的想法让通信兵传达给剩余的9位将军,并询问是否同意在这个时间发起进攻,又由于路途远近的不同,收到的提议的时间都不同,这样就很容易形成一个混乱的局面。

如果再加上叛徒和间谍就更可怕了,叛徒和间谍可以向不同的将军发出不同的提案,或者同意多个将军的进攻提案。

这样来看这个问题是不是就极其复杂了。

其实拜占庭将军问题,就是要解决分散的人们在没有一个中心化指挥时,如何达成共识的问题。

那中本聪如何成功解决拜占庭将军问题的呢?

POW工作量证明

中本聪提出用工作量证明的方法解决这个问题。

POW工作量证明通过增加信息发送的成本,降低节点发送信息的速率,保证在一个时间只有很少的节点进行信息的传递,并且信息的传递附上签名的办法很好的解决了拜占庭将军问题。

那工作量证明是什么呢?其实际就是一个散列函数,当你输入一个任意值X进入这个函数进行运算,会对应得到H(X)的结果,但当你稍微变动一下X,H(X)就会发生巨大的变化 , 也就是说理论上你无法在得知H(X)的情况下反推出X的结果,想要算出X唯一的办法就是穷举运算,也就是我们常说的一个一个带进去试 。 由于这个运算量很大,而运算的过程就是工作的过程。

哈希函数

前面说到的散列函数实际上就是哈希函数,只是翻译不同哈希是Hash的音译。

其实在比特币网络的整体架构中,哈希函数到处都有体现,整个网络的运行就是围绕中哈希函数展开的。

比特币在记账时,使用哈希函数对记录的数据进行哈希,数据哈希可以带来一下好处,首先信息变短并且原始信息被隐藏,其次有了标识和验证信息的办法。

下面用一个大概流程进行展示。

区块链在记账时先把正常的信息进行Hash,会得到一个Hash值。

1.Hash(序号0、记账时间、交易记录) = 123456ABC

账页的信息和Hash值组合就构成了一个完整的区块。

在记下一页账时,将上一个区块的Hash值和当前的账页信息一同Hash。

2.Hash(上一个Hash值、序号1、记账时间、交易记录) = 654321CBA

这样第二个区块不仅包含自己区块的信息还间接包含了前一个区块的信息。

矿工在挖矿时,实际上就是在计算Hash函数。之后会专门写一篇文章来讲解挖矿的过程。

在确定数字货币所有权方面,其实也是经过两次Hash从私钥得到了地址,这个地址平常我们打币使用的地址。谁拥有私钥谁就可以进行交易,私钥就是你唯一的资产凭证,所以一定要保管好自己的私钥。

为什么比特币可以被称为主流币呢?不是因为它涨幅有多么惊人,市值有多高,而是因为它的出现解决了许多问题,给人们提供了一种全新的点对点电子分布式网络架构。

㈥ 比特币的价值到底在哪方面

还是稀缺性吧

㈦ 你对比特币的认识可能都是错的!请重新认比特币

比特币(Bitcoin)的概念最初由中本聪在2008年11月1日提出,并于2009年1月3日正式诞生 。

根据中本聪的思路设计发布的开源软件以及建构其上的P2P网络。比特币是一种P2P形式的虚拟的加密数字货币。点对点的传输意味着一个去中心化的支付系统。

与所有的货币不同,比特币是依据特定算法,通过大量的计算产生,比特币经济使用整个P2P网络中众多节点构成的分布式数据库来确认并记录所有的交易行为,并使用密码学的设计来确保货币流通各个环节安全性。P2P的去中心化特性与算法本身可以确保无法通过大量制造比特币来人为操控币值。基于密码学的设计可以使比特币只能被真实的拥有者转移或支付。这同样确保了货币所有权与流通交易的匿名性。

比特币与其他虚拟货币最大的不同,是其总数量非常有限,具有极强的稀缺性。

比特币的趋势:

比特币是一种去中心化的点对点的电子现金系统,从出世到现在,已经10年有余。比特币现在的价格在1万美元徘徊,很多人觉得价格已经太高了,现在买不划算。但事实上,尽管比特币已经走了10年,它仍然像腹中胎儿,很多少并不知道比特币的存在。

比特币还没有成长为婴儿孩童,还有巨大的成长空间,它的前景是广阔的。不妨下一个十年,我们再来看比特币究竟到达了怎样的高度。越来越多的人将会知道比特币,人人都需要比特币,比特币的交易需求会极为旺盛。

比特币是庞氏骗局吗?:

首先庞氏骗局是对金融领域投资诈骗的称呼,是金字塔骗局(Pyramid scheme)的始祖。很多非法的传销集团就是用这一招聚敛钱财的,这种骗术是一个名叫查尔斯·庞兹的投机商人“发明”的。庞氏骗局在中国又称“拆东墙补西墙”“空手套白狼”。简言之就是利用新投资人的钱来向老投资者支付利息和短期回报,以制造赚钱的假象进而骗取更多的投资。

想让全世界知道你对比特币技术完全无知,最好的方法有:一是使用郁金香泡沫作比喻,二是说比特币是一种庞氏骗局。一个人喜欢这么说,大多是因为在对一件自己不了解的事物做出断言前,根本没有能力去做一些基础研究。

当你了解比特币背后的技术和它被发明的原因,或许就会发现比特币完全不是旁氏骗局。好了,让我们抽丝剥茧地来做一个分解。有人说,庞氏骗局是一种欺骗性的投资骗局,承诺高回报率,对投资者来说风险很小。

中本聪最初发布的比特币白皮书,大概有八页那么长,相当有技术性,但消化起来也不是特别困难。其中没有提到任何关于比特币“投资”的回报,它甚至没有提到比特币的价格。

它简单地解决了计算机科学中最古老的问题之一,即拜占庭将军的问题,从而确立了它在这个过程中的价值。比特币的价值主张从来都不是利润驱动,在最初的几年里持有比特币被认为是“正当的”。

比特币绝对不是一项机密,它是世界上最开放的技术之一。它是开源的,任何人都可以查看代码,任何人都可以为代码做出贡献,任何人都可以自动运行软件并参与到网络中。所有比特币交易的 历史 ,对世界上任何一个人来说都是可见的。

比特币不产生回报,但比特币的价格与稀缺性,导致了其与人们的需求直接相关,这种需求不是强加给别人的。比特币的最大支持者也不会四处询问你有多少钱,然后蛊惑你去投资更多的比特币。加入比特币网络的新用户,不会用新资金去为老用户提供资金。可以毫不客气地说,宣传比特币是庞氏骗局的人,大都懒于去认真研究理解比特币的真正价值。

区块链是什么:

区块链是一个信息技术领域的术语。从本质上讲,它是一个共享数据库,存储于其中的数据或信息,具有“不可伪造”“全程留痕”“可以追溯”“公开透明”“集体维护”等特征。基于这些特征,区块链技术奠定了坚实的“信任”基础,创造了可靠的“合作”机制,具有广阔的运用。

区块链起源于比特币,2008年11月1日,一位自称中本聪的人发表了《比特币:一种点对点的电子现金系统》一文 ,阐述了基于P2P网络技术、加密技术、时间戳技术、区块链技术等的电子现金系统的构架理念,这标志着比特币的诞生。两个月后理论步入实践,2009年1月3日第一个序号为0的创世区块诞生。几天后2009年1月9日出现序号为1的区块,并与序号为0的创世区块相连接形成了链,标志着区块链的诞生 。

虚拟货币是不是骗局?:

㈧ 拜占庭协议

拜占庭将军问题是指“在存在消息丢失的不可靠信道上试图通过消息传递的方式达到一致性是不可能的”。因此在系统中存在除了消息延迟或不可送达的故障以外的错误,包括消息被篡改、节点不按照协议进行处理等,将会潜在地会对系统造成针对性的破坏。

改进型实用拜占庭容错 (Practical Byzantine Fault Tolerance/PBFT)

PBET共识机制是少数服从多数,根据信息在分布式网络中节点间互相交换后各节点列出所有得到的信息,一个节点代表一票,选择大多数的结果作为解决办法。PBET将容错量控制在全部节点数的1/3,即如只要有超过2/3的正常节点,整个系统便可正常运作。

授权拜占庭容错算法(Delegated Byzantine Fault Tolerance/dBFT)

dBFT,是基于持有权益比例来选出专门的记账人(记账节点),然后记账人之间通过拜占庭容错算法(即少数服从多数的投票机制)来达成共识,决定动态参与节点。dBFT可以容忍任何类型的错误,且专门的多个记账人使得每一个区块都有最终性、不会分叉。

拜占庭协议采用的方法是确保可以通过分布式的方法达成共识,即使出现了拜占庭式的失败也不会影响。“拜占庭失败”指的则是分布式系统中算法执行过程中的任意一个错误,也包括非理性的行为。

而联邦拜占庭协议的主要特点是权力下放和任意行为容忍:

FBA带来了开放的成员名单以及对拜占庭协议的去中心化控制;

任何人都可以加入其中;

通过分布式的方式,FBA使得法定人数或者节点足够的群体能够达成一致。每个节点决定信任对象,不同的节点也不需要依赖于信赖相同的参与者组合,即可完成共识。

非联邦拜占庭协议的主要特点包括了中心化和任意行为容忍。它要求所有参与者对系统成员资源达成一致共识——这意味着这是一个中心化的系统。网络中的每个节点必须提前知晓且验证过。

和非联盟的拜占庭协议相比,比特币设定理性行为者控制着大多数的计算能力,并通过分发硬币来激励潜在攻击者遵守协议。因此,拜占庭协议可以抵御拥有巨大计算能力的外部攻击者,但是成员名单是非公开的。

而SCP灵感正是来源于比特币。同时它从比特币中汲取经验,同时在低算力环境中扩展了对非理性行为的容忍能力。

㈨ 如何用最简单的方式解读区块链

大家最近天天都能听到区块链这个词,那什么是区块链呢?“分布式、难以篡改、一致存储”等解释太技术化且较为干涩。我这里来通俗的科普下:区块链主要为了解决互不信任的个体之间的信任问题。

举个通俗的例子:话说老李和老王一个村,老李最近手头有点紧,想向老王借点钱。老王呢,担心借了老李后他赖账怎么办,于是找来“德高望重”的村长,不过想想,村长也不可信,以前村长还偷过别人家的地瓜啊!怎么办?

区块链的方法是:老王借了1000块钱给老李后,然后用大喇叭在村里大喊“我老王今天借了老李1000元钱,大家都赶紧记录下”,于是村里的所有人都记录在了自己家里的账本上,谨慎的保管了起来。这下可好,老李再也赖不过了,村里即便有不守信的人,那还是好人多呀,老李也不可能找村里全部的人偷偷抹掉自己的借钱记录的。就这样,区块链解决了互不信任的老王和老李之间的借钱的信任问题。

在没有出现区块链之前,我们是如何解决互不信任个体间的信任问题呢?简单啊,找两者都信任的“德高望重”的“见证人”就好了,例如故事里的村长,例如买卖双方之间的支付宝,例如公证处等等。不过可能这类“见证人”也不一定一直诚信下去,所以区块链干脆就让大家都作为见证人。

老王放心了,但老李头疼啊!老李要等村里人都记录好了才能拿到借给他的钱,谁家还没个大爷大妈手脚慢一些的。所以目前区块链距离应用还有一定的距离,效率问题需要得到大幅提升才可以。

回想一下,你平时是怎么和别人交易的:一件漂亮的衣服,你可以在实体店挑好,确认好了对方衣服质量不错,对方确认你的钱是真钱,那么我们面对面一手交钱一手拿货。

要是我们隔着十万八千里,彼此既不认识也不信任还是想交易呢?那就要有我们都信任的第三方了,也就是达成所谓的共识机制。比如:你可以在淘宝通过第三方见证担保完成交易,钱先给支付宝——支付宝收款让卖家发货——卖家发货——你确认收货——支付宝再把钱给卖家。

但是,倘若这个中心化的机构作恶了,马爸爸撕了账本,不承认你给了钱,或者和卖家联合起来骗你钱,那可怎么办?

又或者政府借了你一100万,最后用超发货币的方式还给你钱,100万缩水到1万,由你来承受通货膨胀的损失,你又怎么办?

有没有不被任何政府、组织机构控制,能公开透明的完成仲裁,记录了就不被篡改,没有跑路风险的第三方呢?

别着急,我们的主角区块链技术解决就是这样的问题——你们之间的交易可以被所有在这个区块链系统的人见证,大家的小账本里头都会记录你们的交易。B如果否认收了A的钱,或者A说自己借了300块钱,都会被路人甲乙丙丁质疑。具体是如何做到的呢?

1)系统给每个人都发了个小账本,让每个人都有记账的权利,咱们称之为分布式记账。

2)为了鼓励大家帮别人记账,系统代码设定将比特币这样的代币奖励给记账者,为了防止一堆人记账堵死,还将代币设为有限个,甲乙丙丁需要通过系统规定的机制进行计算,算的最快最好的才能获得记账的权利,记录之后通过系统广播给大家,所有人复制一份相同的账本,这个通过计算获得奖励的过程就叫挖矿,记账的路人甲乙丙丁就是矿工。

3)有一天,最初记录这笔交易的甲Game Over了,这个账本却还是存在在其他人的账本里,A和B谁想否认都不行。我们把通过代码写好了如何仲裁和分配,无需银行、政府、企业等中心化组织机构作为第三方见证(去中心化),直接点对点(P2P)交易的方式,称为去中心化。

4)系统把多个交易打包成区块,按时间顺序链接起来成为最后人手一本的账本,这就是区块链技术

其实把区块链简单理解为账本不过是最浅显的解读了,把它的每个特点拆分开来,所能应用的领域很多很多。

现在传统金融行业、券商、投资机构正在跑步入场,物联网, 游戏 ,储存,版权,防伪,征信,支付,预测市场(赌博之类)、社区等众多领域已经开始了区块链的 探索 应用。

互联网让万物皆可连,区块链能否让所连皆可信呢?

我用天地自然运化的奇石解读一下区块链:

所有科学、哲学、道义⋯⋯天地都包涵着。任何一个事物、任何一种文化都与天地道化有关。

区块链自然逃不脱天地运化法:即顺然、随然、无穷、无常。

它就是这块奇石,其表面整体上的数据运化,一是,整体向着无形无象。二是线点守着一个规律:即无常之道。就是说它们每条线,每个点,追求的都不是一个闭合的目标和一个局限的目的。这样说大家我好理解了:一个画家要画一只鸡,是有目的的,有终结相的,而奇石,大自然造化时,是没有终结相的。所以相不闭合,线、点数据也不终结。区块连接之技术,就是这个天运之道。无常运化无形无象,永无终结。(无中心化,就是无形无相,形式不封闭,结构不封闭,思想不封闭⋯⋯如“石”办事就行)。

山东曲阜孔子灵石馆

大家好,我是皮皮,我在这里用几个生活小例子给大家解读一下什么叫区块链?

去中心化,不可篡改级,分布式存贮的,以加密信息做链接地址的数据区块链接系统,叫区块链

这玩意本来就是许多高 科技 的复合品,没法简单,再简单也是一大段话,而且未必能说清楚

区块链(Blockchain)严格的定义是指通过基于密码学技术设计的共识机制方式,在对等网络中多个节点共同维护一个持续增长,由时间戳和有序记录数据块所构建的链式列表账本的分布式数据库技术。该技术方案让参与系统中的任意多个节点,把一段时间系统内全部信息交流的数据,通过密码学算法计算和记录到一个数据块(block),并且生成该数据块的指纹用于链接(chain)下个数据块和校验,系统所有参与节点来共同认定记录是否为真。

区块链是一种类似于NoSQL(非关系型数据库)这样的技术解决方案统称,并不是某种特定技术,能够通过很多编程语言和架构来实现区块链技术。并且实现区块链的方式种类也有很多,目前常见的包括POW(Proof of Work,工作量证明),POS(Proof of Stake,权益证明),DPOS(Delegate Proof of Stake,股份授权证明机制)等。

区块链的概念首次在论文《比特币:一种点对点的电子现金系统(Bitcoin: A Peer-to-Peer Electronic Cash System)》中提出,作者为自称中本聪(Satoshi Nakamoto)的个人(或团体)。因此可以把比特币看成区块链的首个在金融支付领域中的应用。

【通俗解释】

无论多大的系统或者多小的网站,一般在它背后都有数据库。那么这个数据库由谁来维护?在一般情况下,谁负责运营这个网络或者系统,那么就由谁来进行维护。如果是微信数据库肯定是腾讯团队维护,淘宝的数据库就是阿里的团队在维护。大家一定认为这种方式是天经地义的,但是区块链技术却不是这样。

如果我们把数据库想象成是一个账本:比如支付宝就是很典型的账本,任何数据的改变就是记账型的。数据库的维护我们可以认为是很简单的记账方式。在区块链的世界也是这样,区块链系统中的每一个人都有机会参与记账。系统会在一段时间内,可能选择十秒钟内,也可能十分钟,选出这段时间记账最快最好的人,由这个人来记账,他会把这段时间数据库的变化和账本的变化记在一个区块(block)中,我们可以把这个区块想象成一页纸上,系统在确认记录正确后,会把过去账本的数据指纹链接(chain)这张纸上,然后把这张纸发给整个系统里面其他的所有人。然后周而复始,系统会寻找下一个记账又快又好的人,而系统中的其他所有人都会获得整个账本的副本。这也就意味着这个系统每一个人都有一模一样的账本,这种技术,我们就称之为区块链技术(Blockchain),也称为分布式账本技术。

由于每个人(计算机)都有一模一样的账本,并且每个人(计算机)都有着完全相等的权利,因此不会由于单个人(计算机)失去联系或宕机,而导致整个系统崩溃。既然有一模一样的账本,就意味着所有的数据都是公开透明的,每一个人可以看到每一个账户上到底有什么数字变化。它非常有趣的特性就是,其中的数据无法篡改。因为系统会自动比较,会认为相同数量最多的账本是真的账本,少部分和别人数量不一样的账本是虚假的账本。在这种情况下,任何人篡改自己的账本是没有任何意义的,因为除非你能够篡改整个系统里面大部分节点。如果整个系统节点只有五个、十个节点也许还容易做到,但是如果有上万个甚至上十万个,并且还分布在互联网上的任何角落,除非某个人能控制世界上大多数的电脑,否则不太可能篡改这样大型的区块链。

【要素】

结合区块链的定义,我们认为必须具有如下四点要素才能被称为公开区块链技术,如果只具有前3点要素,我们将认为其为私有区块链技术(私有链)。

1、点对点的对等网络(权力对等、物理点对点连接)

2、可验证的数据结构(可验证的PKC体系,不可篡改数据库)

3、分布式的共识机制(解决拜占庭将军问题,解决双重支付)

4、纳什均衡的博弈设计(合作是演化稳定的策略)

【特性】

结合定义区块链的定义,区块链会现实出四个主要的特性:去中心化(Decentralized)、去信任(Trustless)、集体维护(Collectively maintain)、可靠数据库(Reliable Database)。并且由四个特性会引申出另外2个特性:开源(Open Source)、隐私保护(Anonymity)。如果一个系统不具备这些特征,将不能视其为基于区块链技术的应用。

去中心化(Decentralized):整个网络没有中心化的硬件或者管理机构,任意节点之间的权利和义务都是均等的,且任一节点的损坏或者失去都会不影响整个系统的运作。因此也可以认为区块链系统具有极好的健壮性。

去信任(Trustless):参与整个系统中的每个节点之间进行数据交换是无需互相信任的,整个系统的运作规则是公开透明的,所有的数据内容也是公开的,因此在系统指定的规则范围和时间范围内,节点之间是不能也无法欺骗其它节点。

集体维护(Collectively maintain):系统中的数据块由整个系统中所有具有维护功能的节点来共同维护的,而这些具有维护功能的节点是任何人都可以参与的。

可靠数据库(Reliable Database):整个系统将通过分数据库的形式,让每个参与节点都能获得一份完整数据库的拷贝。除非能够同时控制整个系统中超过51%的节点,否则单个节点上对数据库的修改是无效的,也无法影响其他节点上的数据内容。因此参与系统中的节点越多和计算能力越强,该系统中的数据安全性越高。

开源(Open Source):由于整个系统的运作规则必须是公开透明的,所以对于程序而言,整个系统必定会是开源的。

隐私保护(Anonymity):由于节点和节点之间是无需互相信任的,因此节点和节点之间无需公开身份,在系统中的每个参与的节点的隐私都是受到保护的。

【区块链意义之一 :解决拜占庭将军问题】

区块链解决的核心问题不是“数字货币”,而是在信息不对称、不确定的环境下,如何建立满足经济活动赖以发生、发展的“信任”生态体系。而这个问题称之为“拜占庭将军问题”,也可称为“拜占庭容错”或者“两军问题”,这是一个分布式系统中进行信息机交互时面临的难题,即在整个网络中的任意节点都无法信任与之通信的对方时,如何能创建出共识基础来进行安全的信息交互而无需担心数据被篡改。区块链使用算法证明机制来保证整个网络的安全,借助它,整个系统中的所有节点能够在去信任的环境下自动安全的交换数据。更多介绍请参见《比特币与拜占庭将军问题》。

【区块链意义之二:实现跨国价值转移】

互联网诞生最初,最早核心解决的问题是信息制造和传输,我们可以通过互联网将信息快速生成并且复制到全世界每一个有着网络的角落,但是它尚始终不能解决价值转移和信用转移。这里所谓的价值转移是指,在网络中每个人都能够认可和确认的方式,将某一部分价值精确的从某一个地址转移到另一个地址,而且必须确保当价值转移后,原来的地址减少了被转移的部分,而新的地址增加了所转移的价值。这里说的价值可以是货币资产,也可以是某种实体资产或者虚拟资产(包括有价证券、金融衍生品等)。而这操作的结果必须获得所有参与方的认可,且其结果不能受到任何某一方的操纵。

在目前的互联网中也有各种各样的金融体系,也有许多政府银行提供或者第三方提供的支付系统,但是它还是依靠中心化的方案来解决。所谓中心化的方案,就是通过某个公司或者政府信用作为背书,将所有的价值转移计算放在一个中心服务器(集群)中,尽管所有的计算也是由程序自动完成,但是却必须信任这个中心化的人或者机构。事实上通过中心化的信用背书来解决,也只能将信用局限在一定的机构、地区或者国家的范围之内。由此可以看出,必须要解决的这个根本问题,那就是信用。所以价值转移的核心问题是跨国信用共识。

在如此纷繁复杂的全球体系中,要凭空建立一个全球性的信用共识体系是很难的,由于每个国家的政治、经济和文化情况不同,对于两个国家的企业和政府完全互信是几乎做不到的,这也就意味着无论是以个人抑或企业政府的信用进行背书,对于跨国之间的价值交换即使可以完成,也有着巨大的时间和经济成本。但是在漫长的人类 历史 中,无论每个国家的宗教、政治和文化是如何的不同,唯一能取得共识的是数学(基础科学)。因此,可以毫不夸张的说,数学(算法)是全球文明的最大公约数,也是全球人类获得最多共识的基础。如果我们以数学算法(程序)作为背书,所有的规则都建立一个公开透明的数学算法(程序)之上,能够让所有不同政治文化背景的人群获得共识。

【未来的发展】

互联网将使得全球之间的互动越来越紧密,伴随而来的就是巨大的信任鸿沟。目前现有的主流数据库技术架构都是私密且中心化的,在这个架构上是永远无法解决价值转移和互信问题。所以区块链技术有可能将成为下一代数据库架构。通过去中心化技术,将能够在大数据的基础上完成数学(算法)背书、全球互信这个巨大的进步。

区块链技术作为一种特定分布式存取数据技术,它通过网络中多个参与计算的节点开共同参与数据的计算和记录,并且互相验证其信息的有效性(防伪)。从这一点来,区块链技术也是一种特定的数据库技术。互联网刚刚进入大数据时代,但是从目前来看,大数据还处于非常基础的阶段。但是当进入到区块链数据库阶段,将进入到真正的强信任背书的大数据时代。这里面的所有数据都获得坚不可摧的质量,任何人都没有能力也没有必要去质疑。

也许我们现在正处在一个重大的转折点之上——和工业革命所带来的深刻变革几乎相同的重大转折的早期阶段。不仅仅是新技术指数级、数字化和组合式的进步与变革,更多的惊喜也许还会在我们前面。在未来的24个月里,这个星球所增长的计算机算力和记录的数据将会超过所有 历史 阶段的总和。在过去的24个月里,这个增值可能已经超过了1000倍。这些数字化的数据信息还在以比摩尔定律更快的速度增长。区块链技术将不仅仅应用在金融支付领域,而是将会扩展到目前所有应用范围,诸如去中心化的微博、微信、搜索、租房,甚至是打车软件都有可能会出现。因为区块链将可以让人类无地域限制的、去信任的方式来进行大规模协作。

区块链是一种技术,基于这项技术产生很多应用,包括与数据和信息相关的一切行业业务,比特币就是其中最为人熟知的一种应用。对于区块链的通俗解释就是,假如在网上买一只口红,首先找到心仪的产品和卖家下单,先把钱给中间平台,等到卖家发货买家确认收货以后,中间平台再把钱转给卖家,因为信任问题买卖家之间都依赖于中间平台,而区块链作为去中心化的分布式账本数据库,则着力于去掉这个中间平台但同时又解决信任问题。在区块链中每个人拥有自己的记账本,用来记录发生的每一件事,假如在交易中出现卖家拿钱不发货的行为,这一条记录将永久存在不可修改,不需要互相交换信息,区块链的世界会选择在同一个时间节点记录最快质量最好的那个人的记账本进行复制发送并串联,最后越叠越厚形成区块。

大家在谈论虚拟货币时,往往离不开区块链这个概念,那么区块链到底是个神马玩意呢?

区块链是一种底层技术,本质上是一个去中心化的分布式账本数据库。听起来好像十分高端,遥不可及,其实是很容易理解的。

举个例子,假如要在淘宝上购买商品,那么一般首先要做的就是打开淘宝,找到想要的商品并下单将钱支付给作为交易中介的淘宝。等收到商品并确认收货后淘宝便会将货款打给卖家。这本来只是我和卖家的交易,但却多了个“中心”,即淘宝。

在交易进行的过程中,这个“中心”拥有无限大的权力,甚至随意修改账单。因此,“中心”往往需要强大的后台为其背书。

于是,有一个名叫中本聪的男人想要干掉这个权力无穷大的中心,他想创造一个去中心化的系统,在这个系统里,每个人都是中心,都有记账的权力。于是,他创造了比特币。

在比特币的系统中,每个人都有一个小账本用以记录发生的每一笔交易。一笔交易只有经过大部分人确认后才有效。如果卖家不发货,那么每个人的小账本都会将这件事记录下来,让他无处可逃。

这时候大家可能会有疑问,既然只是一个公开的账本,那么为什么又要叫区块链呢?这就涉及到了共识问题,区块链系统是一个由众多“中心”组成的系统,整个区块链是属于所有参与记账的个体的。这时候就产生了新的问题,一个系统必须要有秩序才能长远的存在。假如记账者可以不计成本地胡作非为,那就可能出现本来只是购买一台手机,但收到的却是一台特斯拉的情况。

于是,中本聪发明了一种名为PoW的共识方式。这种方式提高了记账者记账的成本,让其不能轻易作恶。PoW通过密码学的方式要求记账者需要通过竞争计算能力来获取记账权,第一个计算出结果的记账者即可获得一个由若干笔交易打包而来的区块的记账权,同时获得一定的代币作为奖励。这就是我们俗称的“挖矿”。

既然记账者已经将一个包含了若干笔交易的区块记录了下来,那么系统就需要进行整理排序,不可能让无数的区块杂乱无章地分布在系统中。于是就需要把所有区块按照时间顺序首尾相连链接链接起来,这时,区块链便诞生了。区块链的核心是技术。

㈩ 拜占庭将军很忙—《区块链思维》第21块

无论在链圈,还是在币圈混,经常听到一个名词“拜占庭将军问题”。

到底拜占庭是啥,拜占庭将军怎么啦,到处都被提及,这位将军好忙啊!

先说拜占庭这个地方。很久很久以前的欧洲,建立在比中世纪还古老的时期,历史上就是东罗马帝国,跨越了千年的历史期盼。

扯远了,回到正题,什么是拜占庭将军问题。

拜占庭这个地方异常坚固,同时被十个独立邻邦环伺,分别有一位将军,单独攻城必败,只有一半以上的将军同时攻打才能破城。

十位将军为了协调一致,在那个古老的时代,累死传令兵,要么飞鸽传书(那时的欧洲比中国落后,好像没有这个高速通信手段)。十位将军相互通信一次就需要90次传信,每位将军都有各自的攻城计划,要想达成统一就需要往复传递不知道多少次。

我们可以假设一个场景,一个桌子上坐着十位将军,每个人各自说着自己的想法,同时听其他九位的说法,但是信息的传递不是实时的,有快有慢,有早有晚。想明白了吗?也就是说,这十位将军如果想达成一致,理论上有可能,实际上他们的有生之年都实现不了,难怪拜占庭帝国经历了千年也没有被这十位将军攻破。

中本聪这个神人,利用互联网信息传递的及时性特点,引入时间戳可以明确知道“谁先说、谁后说”的特性,创造性地加入挖矿机制(就是用计算机算随机数满足一定难度才算成功)比拼各位将军的智商来决定谁做本次进攻的统帅,使用非对称加密保证信息传输的安全性等等手段融合到比特币中,用实例说明自己破解了这个历史难题“拜占庭将军问题”。从而向世人证明解决60亿人口的互信问题是有去中心化解决方案地。

币圈和链圈的朋友很焦虑的另一个关键问题就是:这个圈子概念太TM多。除了这个“拜占庭将军问题”,还有一个“拜占庭容错”,这是什么鬼?这两个是一样的吗?这两个是故意有一个被写错了吗?还是说我的智商税没交够?其实,你都说对了。

“拜占庭将军问题”假设所有十个将军都是好的,都想攻破拜占庭,只是达成共识很难,比特币提供了好人达成共识的方案。

“拜占庭容错”是说十个将军可以很好地达成共识。但是,如果其中出了坏人,怎么解决?

如果十个将军中出现了坏人(叫叛徒也行),进攻计划是否会永远无法达成共识呢?

“拜占庭容错”告诉大家,是可以达成地,并且,还能找出这些“叛徒”是谁。只是,10个将军中叛徒的数量不能超过3个,超出了就无法“容错”,也找不出这些叛徒是谁。对应的公式就是:3n+1。其中3n+1是将军总数(区块链的账本/矿机总数),n是能够“容错”的“叛徒”(恶意记错账)总数。

对于十个将军来说,最多容忍三个叛徒,多了就彻底没戏啦。为了比特币的容错能力越来越强,就需要更多的节点,这样才能容忍并找出更多的叛徒。懂了吧。

小结一下:拜占庭将军问题是假设都是好人前提下如何达成共识,拜占庭容错就是全网最多能够容忍多少叛徒并且能找出他们。

请交智商税到如下地址:

国税BTC到Kcash:

地税ETH及各种原生Token到 Imtoken:

不交税的,祝你做“韭菜”一切顺利 :D

热点内容
币圈杠杆可以变成现货吗 发布:2025-05-16 08:21:27 浏览:767
币圈之家比特币价格 发布:2025-05-16 08:15:10 浏览:845
区块链加密算法接收 发布:2025-05-16 08:14:31 浏览:850
区块链fabric10 发布:2025-05-16 08:03:26 浏览:445
数字货币怎么看k线走势 发布:2025-05-16 08:02:01 浏览:962
币圈舞小视频 发布:2025-05-16 07:54:15 浏览:550
买了比特币怎么交易 发布:2025-05-16 07:49:05 浏览:218
比特币世界打不开了 发布:2025-05-16 07:24:26 浏览:407
浦发银行区块链 发布:2025-05-16 07:05:20 浏览:657
xrp现在还有多少家交易所 发布:2025-05-16 07:03:51 浏览:41