eth0流量不停的增长
❶ 如果中断是共享的,内核会决定具体调用哪一个驱动的中断服务例程
先说说环境
1.硬件:DELL R410
2.网卡:板载1000M BCM5709
2.OS: RHEL 5.5 x86_64
3.KERNEL: 2.6.18-194.el5
所出现的问题
1.网卡毫无征兆的down掉,而且没有任何log信息
2.当流量增大时,不到理论上限的1/3时机器出现网络延迟严重,伴随大量的丢包
3.机器的cpu软中断不均衡,只有1个cpu处理软中断,并且该cpu的软中断周期性的达到100%
4.内外网网卡做nat丢包数据量不一致,差别很大,不在同一个数量级
想必第一个问题,大部分使用bcm网卡,rhel 5.3以后得机器都会遇到这种情况,网上的资料比较的多,我也不多啰嗦了,直接升级网卡驱动就可以解决了。第二,三,四其实是同一个问题都是由于网卡中断过多,cpu处理不过来(准确的说,cpu分配不均衡,导致只有一个cpu处理,处理不过来),引起丢包,那么为什么两个网卡丢包的数量级不一样呢,下面从原理上进行解释,既然是做nat多出口,那么就有大量的路由信息,是一个网络应用,当一个数据包请求nat时,数据包先被网卡驱动的数据接收,网卡收到数据时,触发中断。在中断执行例程中,把skb挂入输入队列,并触发软中断。稍后的某个时刻,当软中断执行时,再从该队列中把skb取下来,投递给上层协议。
如果在这个过程当中cpu没有及时处理完这个队列导致网卡的buffer满了,网卡将直接丢弃该数据包。这里牵涉到2个队列,一个是tx,一个是rx,它的队列的大小默认都是255,可以通过ethtool -g eth0(你指定的网卡),为了防止丢包,当时我通过ethtool -G eth0 rx xxx 把它调大了,但是调大以后,还是杯水车薪啊,通过ethtool -S eth0 |grep rx_fw_discards,发现数值还是不停的在增长,也就是说还在不停的丢包,cpu处理不过来,这时候找到网上有人在利用lvs时也遇到这个问题,cpu软中断分配不均衡,只有一个cpu处理软中断的问题,网上的资料五花八门,有建议使用修改设备中断方式。即通过修改设置中断/proc/irq/${网卡中断号}/smp_affinit这时候,我也修改过,没有什么实质的效果,
从官方的bug报告,,其中提到rhel5.6已经修复了这个bug,这其中也提到目前我们的版本可以升级内核到kernel-2.6.18-194.3.1.el5可以解决这个问题。
红帽子官方修复报告中的说明如下:,我们升级了这个内核算是解决单核处理软中断的问题,升级后各个cpu已经能够平均的分配这个软中断,也不丢包了,那么为什么cpu处理不过来这个软中断呢,数据量并不是特别的大啊,上层应用接到这个数据包后,通过路由协议,找到某个出口给nat出去,找nat出口是需要查找路由表,查询路由表是一件很耗时的工作,而每一个不同源地址,不同目的地址的数据包都得重新查找一次路由表,导致cpu处理不过来,为了提高路由查询的效率。Linux内核引用了路由缓存,用于减少对路由表的查询。Linux的路由缓存是被设计来与协议无关的独立子系统,查看路由缓存可以通过命令route -Cn,由于路由缓存当中是采用hash算法进行才找,它的查找速度非常之快,既然是cache就有超时这一概念。系统默认为10分钟,可以通过这个文件进行查看和修改/proc/sys/net/ipv4/route/secret_interval。而当路由缓存当中未找到或者已经超时的路由信息才开始查找路由表,查询到的结果保存在路由缓存中。如果路由表越大,那么查询的时间就越长,一个新的连接进来后或者是老连接cache超时后,占用大量的cpu查询时间,导致cpu周期性的软中断出现100%,而两个网卡丢包的情况来看不均衡也是因为用户的数据包是经过其中一个网卡进来后查询路由表耗时过长,cpu处理不过来,导致那块网卡的队列满了,丢包严重。当然在路由表变动不大的情况下可以加大cache的时间,修改上述内容后,从我监测的情况来看,扛流量能力得到了大大的提升。
❷ 如何看待以太坊ETH2.0
我个人不是特别看好以太坊2.0。
以目前以太坊的发展情况来看,以太坊已经成为了世界上最大的一条公链,这点毫无疑问。伴随着以太坊得进一步发展,我们会发现区块链行业也取得了长足的进步。
一、我先讲一下关于目前以太坊的现状。
以太坊在这一次牛市中非常亮眼,换而言之,这一次的牛市就是因为以太坊上面的应用而拉起的。目前的以太坊有几个困境:第1个困境是交易费率太高,吓跑了很多人。第2个困境是交易速度太慢,网络拥堵问题非常严重。第3个困境是交易相对繁琐,其他公链显然要优于以太坊。这正是以太坊需要破局的地方,当以太坊升级到2.0以后,这些问题都会相应解决。
❸ ubuntu上网问题啊!!各位高手帮帮忙!在线等!
我不知道你为什么不行,但我可以告诉你另一个方法。
右击网络管理器(就是面板上的那两台小电脑),选编辑连接,打开网络连接后选DSL选项卡,点添加,然后在跳出的对话框中输入你宽带的用户名和密码就行了确定后,单击网络管理器,选择DSL connection1,就能adsl宽带上网了。
❹ 服务器双网卡:设置eth0入向的流量从eth0出,eth1入向的流量从eth1出,linux路由策略如何写
路由,是确定访问路径的。
当eth0和eth1不在同一网段的时候
eth0访问eth1就和你说的一样。但是eth0访问eth0是不经过eth1的
这个时候服务器设置了路由,相当于路由器功能。。
需要做转发设置。默认是不转发的。(总结就是服务器默认不能当路由器来用)
打这么多字这个累
❺ 运营商背后的套路,4G 无限流量真的是无限吗
是无限,只不过用到一定的流量后就限速
❻ 在区块链中以太坊(eth)目前有哪些问题
在区块链中以太坊(eth)目前有哪些问题?
以太坊区块链目前暴露出三大问题,长时间以来其创始人Vitalik
Buterin一直无力解读。第一是以太坊区块链整体很低的性能和TPS;第二是资源不隔离,CryptoKitties虚拟猫咪的事件,一度占据了整个以太坊
20%
的流量,直接造成以太坊网络用户无法展开及时的交易,就是资源不隔离最大的痛点;第三个问题在于以太坊治理结构的体现,区块链作为去中心化的分布式账本,以太坊过去以来,创始人团队主导了其网络发展,过于中心化的治理模式,让目前的以太坊出现了ETH、ETC、ETF等分叉,以太坊社区目前进入四分五裂的治理状态。而以太坊网络目前出现的各种弊病,在「aelf」创始人与CEO马昊伯看来,这是无法接受的。于是,「aelf」定位,就是为对标以太坊的下一代去中心化底层计算平台,重点解决目前以太坊存在的性能不足、资源不隔离、治理结构三方面的问题而诞生的。
❼ linux 内核软中断 是在中断状态吗
先说说环境
1.硬件:DELL R410
2.网卡:板载1000M BCM5709
2.OS: RHEL 5.5 x86_64
3.KERNEL: 2.6.18-194.el5
所出现的问题
1.网卡毫无征兆的down掉,而且没有任何log信息
2.当流量增大时,不到理论上限的1/3时机器出现网络延迟严重,伴随大量的丢包
3.机器的cpu软中断不均衡,只有1个cpu处理软中断,并且该cpu的软中断周期性的达到100%
4.内外网网卡做nat丢包数据量不一致,差别很大,不在同一个数量级
想必第一个问题,大部分使用bcm网卡,rhel 5.3以后得机器都会遇到这种情况,网上的资料比较的多,我也不多啰嗦了,直接升级网卡驱动就可以解决了。第二,三,四其实是同一个问题都是由于网卡中断过多,cpu处理不过来(准确的说,cpu分配不均衡,导致只有一个cpu处理,处理不过来),引起丢包,那么为什么两个网卡丢包的数量级不一样呢,下面从原理上进行解释,既然是做nat多出口,那么就有大量的路由信息,是一个网络应用,当一个数据包请求nat时,数据包先被网卡驱动的数据接收,网卡收到数据时,触发中断。在中断执行例程中,把skb挂入输入队列,并触发软中断。稍后的某个时刻,当软中断执行时,再从该队列中把skb取下来,投递给上层协议。
如果在这个过程当中cpu没有及时处理完这个队列导致网卡的buffer满了,网卡将直接丢弃该数据包。这里牵涉到2个队列,一个是tx,一个是rx,它的队列的大小默认都是255,可以通过ethtool -g eth0(你指定的网卡),为了防止丢包,当时我通过ethtool -G eth0 rx xxx 把它调大了,但是调大以后,还是杯水车薪啊,通过ethtool -S eth0 |grep rx_fw_discards,发现数值还是不停的在增长,也就是说还在不停的丢包,cpu处理不过来,这时候找到网上有人在利用lvs时也遇到这个问题,cpu软中断分配不均衡,只有一个cpu处理软中断的问题,网上的资料五花八门,有建议使用修改设备中断方式。即通过修改设置中断/proc/irq/${网卡中断号}/smp_affinit这时候,我也修改过,没有什么实质的效果,
从官方的bug报告,https://bugzilla.redhat.com/show_bug.cgi?id=520888,其中提到rhel5.6已经修复了这个bug,这其中也提到目前我们的版本可以升级内核到kernel-2.6.18-194.3.1.el5可以解决这个问题。
红帽子官方修复报告中的说明如下:http://rhn.redhat.com/errata/RHSA-2010-0398.html,我们升级了这个内核算是解决单核处理软中断的问题,升级后各个cpu已经能够平均的分配这个软中断,也不丢包了,那么为什么cpu处理不过来这个软中断呢,数据量并不是特别的大啊,上层应用接到这个数据包后,通过路由协议,找到某个出口给nat出去,找nat出口是需要查找路由表,查询路由表是一件很耗时的工作,而每一个不同源地址,不同目的地址的数据包都得重新查找一次路由表,导致cpu处理不过来,为了提高路由查询的效率。Linux内核引用了路由缓存,用于减少对路由表的查询。Linux的路由缓存是被设计来与协议无关的独立子系统,查看路由缓存可以通过命令route -Cn,由于路由缓存当中是采用hash算法进行才找,它的查找速度非常之快,既然是cache就有超时这一概念。系统默认为10分钟,可以通过这个文件进行查看和修改/proc/sys/net/ipv4/route/secret_interval。而当路由缓存当中未找到或者已经超时的路由信息才开始查找路由表,查询到的结果保存在路由缓存中。如果路由表越大,那么查询的时间就越长,一个新的连接进来后或者是老连接cache超时后,占用大量的cpu查询时间,导致cpu周期性的软中断出现100%,而两个网卡丢包的情况来看不均衡也是因为用户的数据包是经过其中一个网卡进来后查询路由表耗时过长,cpu处理不过来,导致那块网卡的队列满了,丢包严重。当然在路由表变动不大的情况下可以加大cache的时间,修改上述内容后,从我监测的情况来看,扛流量能力得到了大大的提升。
❽ 服务器流量流出很大请教怎么回事
不是木马,是设置问题,下面是流量的控制方法 一、Linux 流量控制过程分二种: 1、队列控制 即 QOS, 瓶颈处的发送队列的规则控制,常见的有 SFQ PRIO 2、流量控制 即带宽控制 , 队列的排队整形, 一般为 TBF HTB 二、Linux 流量控制算法分二种: 1、无类算法 用于树叶级无分支的队列,例如:SFQ 2、分类算法 用于多分支的队列,例如:PRIO TBF HTB 三、具体实现: 1. 在网卡上建立 以SFQ算法的限流 #tc qdisc add dev eth0 root handle 1: sfq SFQ 参数有 perturb( 重新调整算法间隔 ) quantum 基本上不需要手工调整 : handle 1: 规定算法编号 .. 可以不用设置由系统指定 .. #tc qdisc sh dev eth0 显示算法 #tc qd del dev eth0 root 删除 注 : 默认 eht0 支持 TOS 2. 在网卡建立以 TBF算法的限流 #tc qd add dev eth1 root handle 1: tbf rate 256kbit burst 10000 latency 50ms 速率 256kbit 突发传输 10k 最大延迟 50ms #tc -s qd sh dev eth1 统计 #tc qd del dev eth1 root 删除 3. 在网卡建立 PRIO #tc qdisc add dev eth0 root handle 1: prio # 此命令立即创建了类 : 1:1, 1:2, 1:3 ( 缺省三个子类 ) #tc qdisc add dev eth0 parent 1:1 handle 10: sfq #tc qdisc add dev eth0 parent 1:2 handle 20: tbf rate 20kbit buffer 1600 limit 3000 注 : 此为 TBF 限速的另一写法 , 前文有讲解 . #tc qdisc add dev eth0 parent 1:3 handle 30: sfq 4. WEB 服务器的流量控制为 5Mbps,SMTP 流量控制在 3Mbps 上 . 而且二者一共不得超过 6Mbps, 互相之间允许借用带宽 #tc qdisc add dev eth0 root handle 1:0 cbq bandwidth 100Mbit avpkt 1000 cell 8 #tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth 100Mbit rate 6Mbit weight 0.6Mbit prio 8 allot 1514 cell 8 maxburst 20 avpkt 1000 bounded 这部分按惯例设置了根为 1:0, 并且绑定了类 1:1. 也就是说整个带宽不能超过 6Mbps. #tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth 100Mbit rate 5Mbit weight 0.5Mbit prio 5 allot 1514 cell 8 maxburst 20 avpkt 1000 #tc class add dev eth0 parent 1:1 classid 1:4 cbq bandwidth 100Mbit rate 3Mbit weight 0.3Mbit prio 5 allot 1514 cell 8 maxburst 20 avpkt 1000 建立了 2 个类 . 注意我们如何根据带宽来调整 weight 参数的 . 两个类都没有配置成"bounded", 但它们都连 接到了类 1:1 上 , 而 1:1 设置了"bounded". 所以两个类的总带宽不会超过 6Mbps. 别忘了 , 同一个 CBQ 下面的子 类的主号码都必须与 CBQ 自己的号码相一致 ! #tc qdisc add dev eth0 parent 1:3 handle 30: sfq #tc qdisc add dev eth0 parent 1:4 handle 40: sfq 缺省情况下 , 两个类都有一个 FIFO 队列规定 . 但是我们把它换成 SFQ 队列 , 以保证每个数据流都公平对待 . #tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip sport 80 0xffff flowid 1:3 #tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip sport 25 0xffff flowid 1:4 6. 过滤器过滤示例 #tc filter add dev eth0 protocol ip parent 10: prio 1 u32 match ip dport 22 0xffff flowid 10:1 在 10: 节点添加一个过滤规则 , 优先权 1: 凡是去往 22 口 ( 精确匹配 ) 的 IP 数据包 , 发送到频道 10:1.. #tc filter add dev eth0 protocol ip parent 10: prio 1 u32 match ip sport 80 0xffff flowid 10:1 在 10: 节点添加一个过滤规则 , 优先权 1: 凡是来自 80 口 ( 精确匹配 ) 的 IP 数据包 , 发送到频道 10:1.. #tc filter add dev eth0 protocol ip parent 10: prio 2 flowid 10:2 在 eth0 上的 10: 节点添加一个过滤规则 , 它的优先权是 2: 凡是上二句未匹配的 IP 数据包 , 发送到频道 10:2.. #tc filter add dev eth0 parent 10:0 protocol ip prio 1 u32 match ip dst 4.3.2.1/32 flowid 10:1 去往 4.3.2.1 的包发送到频道 10:1 其它参数同上例 #tc filter add dev eth0 parent 10:0 protocol ip prio 1 u32 match ip src 1.2.3.4/32 flowid 10:1 来自 1.2.3.4 的包发到频道 10:1 #tc filter add dev eth0 protocol ip parent 10: prio 2 flowid 10:2 凡上二句未匹配的包送往 10:2 #tc filter add dev eth0 parent 10:0 protocol ip prio 1 u32 match ip src 4.3.2.1/32 match ip sport 80 0xffff flowid 10:1 可连续使用 match, 匹配来自 1.2.3.4 的 80 口的数据包
❾ ETH接口是什么
ETH接口指的是接口,是目前应用最广泛的局域网通讯方式,同时也是一种协议。而以太网接口就是网络数据连接的端口。
以太网的每个版本都有电缆的最大长度限制(即无须放大的长度),这个范围内的信号可以正常传播,超过这个范围信号将无法传播。
为了允许建设更大的网络,可以用中继器把多条电缆连接起来。中继器是一个物理层设备,它能接收、放大并在两个方向上重发信号。
(9)eth0流量不停的增长扩展阅读
几种常见的以太网接口类型。
1、SC光纤接口
SC光纤接口在100Base-TX以太网时代就已经得到了应用,因此当时称为100Base-FX(F是光纤单词fiber的缩写),不过当时由于性能并不比双绞线突出但是成本却较高,因此没有得到普及,现在业界大力推广千兆网络,SC光纤接口则重新受到重视。
2、RJ-45接口
这种接口就是我们现在最常见的网络设备接口,俗称“水晶头”,专业术语为RJ-45连接器,属于双绞线以太网接口类型。RJ-45插头只能沿固定方向插入,设有一个塑料弹片与RJ-45插槽卡住以防止脱落。
3、FDDI接口
FDDI是目前成熟的LAN技术中传输速率最高的一种,具有定时令牌协议的特性,支持多种拓扑结构,传输媒体为光纤。光纤分布式数据接口(FDDI)是由美国国家标准化组织(ANSI)制定的在光缆上发送数字信号的一组协议。
参考资料来源:网络-以太网接口
❿ linux 双网卡绑定 流量怎么走
linux的双网卡bond,共有7种模式,可参阅网络文章。
第一种模式:mod=0 ,即:(balance-rr)Round-robin
policy(平衡抡循环策略)
特点:传输数据包顺序是依次传输(即:第1个包走eth0,下一个包就走eth1….一直循环下去,直到最后一个传输完毕),此模式提供负载平衡和容错能力;但是我们知道如果一个连接或者会话的数据包从不同的接口发出的话,中途再经过不同的链路,在客户端很有可能会出现数据包无序到达的问题,而无序到达的数据包需要重新要求被发送,这样网络的吞吐量就会下降
第二种模式:mod=1,即: (active-backup)Active-backup
policy(主-备份策略)
特点:只有一个设备处于活动状态,当一个宕掉另一个马上由备份转换为主设备。mac地址是外部可见得,从外面看来,bond的MAC地址是唯一的,以避免switch(交换机)发生混乱。此模式只提供了容错能力;由此可见此算法的优点是可以提供高网络连接的可用性,但是它的资源利用率较低,只有一个接口处于工作状态,在有 N 个网络接口的情况下,资源利用率为1/N
第三种模式:mod=2,即:(balance-xor)XOR policy(平衡策略)
特点:基于指定的传输HASH策略传输数据包。缺省的策略是:(源MAC地址 XOR 目标MAC地址)%
slave数量。其他的传输策略可以通过xmit_hash_policy选项指定,此模式提供负载平衡和容错能力
第四种模式:mod=3,即:broadcast(广播策略)
特点:在每个slave接口上传输每个数据包,此模式提供了容错能力
第五种模式:mod=4,即:(802.3ad)IEEE 802.3ad
Dynamic link aggregation(IEEE802.3ad 动态链接聚合)
特点:创建一个聚合组,它们共享同样的速率和双工设定。根据802.3ad规范将多个slave工作在同一个激活的聚合体下。外出流量的slave选举是基于传输hash策略,该策略可以通过xmit_hash_policy选项从缺省的XOR策略改变到其他策略。需要注意的 是,并不是所有的传输策略都是802.3ad适应的,尤其考虑到在802.3ad标准43.2.4章节提及的包乱序问题。不同的实现可能会有不同的适应 性。
必要条件:
条件1:ethtool支持获取每个slave的速率和双工设定
条件2:switch(交换机)支持IEEE802.3ad
Dynamic link aggregation
条件3:大多数switch(交换机)需要经过特定配置才能支持802.3ad模式
第六种模式:mod=5,即:(balance-tlb)Adaptive
transmit load balancing(适配器传输负载均衡)
特点:不需要任何特别的switch(交换机)支持的通道bonding。在每个slave上根据当前的负载(根据速度计算)分配外出流量。如果正在接受数据的slave出故障了,另一个slave接管失败的slave的MAC地址。
该模式的必要条件:ethtool支持获取每个slave的速率
第七种模式:mod=6,即:(balance-alb)Adaptive
load balancing(适配器适应性负载均衡)
特点:该模式包含了balance-tlb模式,同时加上针对IPV4流量的接收负载均衡(receiveload
balance, rlb),而且不需要任何switch(交换机)的支持。接收负载均衡是通过ARP协商实现的。bonding驱动截获本机发送的ARP应答,并把源硬件地址改写为bond中某个slave的唯一硬件地址,从而使得不同的对端使用不同的硬件地址进行通信。
来自服务器端的接收流量也会被均衡。当本机发送ARP请求时,bonding驱动把对端的IP信息从ARP包中复制并保存下来。当ARP应答从对端到达时,bonding驱动把它的硬件地址提取出来,并发起一个ARP应答给bond中的某个slave。使用ARP协商进行负载均衡的一个问题是:每次广播 ARP请求时都会使用bond的硬件地址,因此对端学习到这个硬件地址后,接收流量将会全部流向当前的slave。这个问题可以通过给所有的对端发送更新(ARP应答)来解决,应答中包含他们独一无二的硬件地址,从而导致流量重新分布。当新的slave加入到bond中时,或者某个未激活的slave重新 激活时,接收流量也要重新分布。接收的负载被顺序地分布(roundrobin)在bond中最高速的slave上当某个链路被重新接上,或者一个新的slave加入到bond中,接收流量在所有当前激活的slave中全部重新分配,通过使用指定的MAC地址给每个 client发起ARP应答。下面介绍的updelay参数必须被设置为某个大于等于switch(交换机)转发延时的值,从而保证发往对端的ARP应答 不会被switch(交换机)阻截。
必要条件:
条件1:ethtool支持获取每个slave的速率;
条件2:底层驱动支持设置某个设备的硬件地址,从而使得总是有个slave(curr_active_slave)使用bond的硬件地址,同时保证每个 bond 中的slave都有一个唯一的硬件地址。如果curr_active_slave出故障,它的硬件地址将会被新选出来的 curr_active_slave接管其实mod=6与mod=0的区别:mod=6,先把eth0流量占满,再占eth1,….ethX;而mod=0的话,会发现2个口的流量都很稳定,基本一样的带宽。而mod=6,会发现第一个口流量很高,第2个口只占了小部分流量