ltc电源设计
A. 用LTC3703做一个从100V降压到15V/3A的开关型电源,电路图怎么设计元器件大小是多少
按照它的文档电路做就可以了。
分压电阻、限流电阻按照你的需要选择。
B. 低压差线性稳压器设计原理与应用的目录
前言
第一章低压差线性稳压器概述
第一节低压差线性稳压器的术语
第二节线性稳压器的原理及内部保护电路
一、线性稳压器的原理
二、线性稳压器的内部保护电路
第三节线性稳压器典型产品的原理及典型应用
一、三端固定式稳压器的原理及典型应用
二、三端可调式稳压器的原理及典型应用
第四节低压差线性稳压器的原理
一、PNP型低压差线性稳压器(LDO)的原理
二、准低压差线性稳压器(QLDO)的原理
三、超低压差线性稳压器(VLDO)的原理
第五节低压差线性稳压器的主要特点及产品分类
一、低压差线性稳压器的主要特点
二、低压差线性稳压器的产品分类
三、低压差线性稳压器与其他稳压器的性能比较
第六节低压差线性稳压器的应用领域及典型用法
一、低压差线性稳压器的应用领域
二、低压差线性稳压器的几种典型用法
第七节低压差线性稳压器的选择方法及使用注意事项
一、低压差线性稳压器的选择方法
二、低压差线性稳压器的使用注意事项
第八节低压差线性稳压器典型产品的主要技术指标
第二章低压差线性稳压器设计软件使用方法及设计实例
第一节低压差线性稳压器设计软件的分类
第二节LDO-It设计软件的工具栏及使用方法
一、LDO-It设计软件的工具栏
二、LDO-It设计软件的使用方法
第三节LDO-It设计软件的应用实例
第四节利用WEBENCH软件在线选择低压差线性稳压器的方法
第三章低压差线性稳压器的原理与应用
第一节LM1117型准低压差线性稳压器
一、LN1117型准低压差线性稳压器的原理
二、LM1117型准低压差线性稳压器的应用
第二节SPX1117型准低压差线性稳压器
一、SPX1117型准低压差线性稳压器的原理
二、SPX1117型准低压差线性稳压器的应用
第三节LP2950/2951型低压差线性稳压器
一、LP2950/2951型低压差线性稳压器的原理
二、LP2951型低压差线性稳压器的应用
第四节LM2990/2991型负压输出式低压差线性稳压器
一、LM2990/2991型低压差线性稳压器的原理
二、LM2990型低压差线性稳压器的应用
三、LM2991型低压差线性稳压器的应用
第五节MIC68200型具有排序与跟踪功能的低压差线性稳压器
一、MIC68200型低压差线性稳压器的原理
二、MIC68200型低压差线性稳压器的应用
第六节其他低压差线性稳压器的典型应用及使用技巧
一、LM2937型低压差线性稳压器的典型应用
二、MIC2941A型低压差线性稳压器的典型应用及使用技巧
三、NCV8675型低压差线性稳压器的典型应用
四、NCP1086型低压差线性稳压器的使用技巧
第四章超低压差线性稳压器的原理与应用
第一节TC10XX/20XX系列高精度超低压差线性稳压器
一、TC10XX/20XX系列超低压差线性稳压器的性能特点
二、TC10XX/20XX系列超低压差线性稳压器的原理与应用
三、使用注意事项
第二节MCP17XX/18XX系列高精度超低压差线性稳压器
一、MCP17XX/18XX系列超低压差线性稳压器的性能特点
二、MCP1700/1702超低压差线性稳压器的原理与应用
三、MCP1725/1726/1727/1827/1827S超低压差线性稳压器的原理与应用
第三节SP62XX系列超低压差线性稳压器
一、SP62XX系列超低压差线性稳压器的性能特点
二、SP6200/6201型超低压差线性稳压器的原理与应用
三、SP6203/6205型超低压差线性稳压器的原理与应用
第四节TPS73XX系列具有延时复位功能的超低压差线性稳压器
一、TPS73XX系列超低压差线性稳压器的性能特点
二、TPS73XX系列超低压差线性稳压器的原理
三、TPS73XX系列超低压差线性稳压器的典型应用
第五节MAX483X系列具有软启动功能的超低压差线性稳压器
一、MAX483XX系列超低压差线性稳压器的原理
二、MAX483XX系列超低压差线性稳压器的典型应用
第六节HT71XX/72XX系列高输入电压的超低压差线性稳压器
一、HT71XX/72XX系列超低压差线性稳压器的原理
二、HT71XX系列超低压差线性稳压器的应用技巧
第七节其他超低压差线性稳压器的原理与应用
一、MAX1735型超低压差线性稳压器的原理与应用
二、MAX5005型超低压差线性稳压器的原理与应用
三、LP38851型超低压差线性稳压器的应用
第五章多路输出式超低压差线性稳压器的原理与应用
第一节双路输出式超低压差线性稳压器
一、TC1301/1302系列双路输出式VLDO的原理
二、TC1301/1302系列双路输出式VLDO的典型应用
第二节三路输出式超低压差线性稳压器
一、MIC2215型三路输出式VLDO的原理
二、MIC2215型三路输出式VLDO的典型应用
第三节一次性可编程四路输出式超低压差线性稳压器
一、AS1352型可编程四路输出式VLDO的原理
二、AS1352型可编程四路输出式VLDO的典型应用
第四节带串行接口的可编程五路输出式超低压差线性稳压器
一、MAX1798/1799型带串行接口的五路输出式VLDO的原理
二、MAX1798/1799在CDMA数字移动电话中的应用
三、MAX1799的评估板及专用工具软件
第五节其他多路输出式低压差、超低压差线性稳压器的原理与应用
一、LM2935型双路输出式LDO的原理与应用
二、CAT6221型双路输出式VLDO的原理与应用
三、LP2966型双路输出式VLDO的原理与应用
四、R5320X系列三路输出式VLDO的原理与应用
第六章大电流输出式低压差线性稳压器的原理与应用
第一节1.5A低压差、超低压差线性稳压器
一、MSK5101型1.5A大电流LDO的原理与应用
二、LTC3026型升压变换式1.5A大电流VLDO的原理与应用
第二节3A低压差、超低压差线性稳压器
一、LP38501-ADJ/38503-ADJ型3A大电流VLDO的原理与应用
二、SPX1582型3A大电流LDO的原理与应用
第三节适用于USB系统的3A低压差线性稳压器
一、MIC29311型3A大电流LDO的原理
二、MIC29311型3A大电流LDO的典型应用
第四节5A低压差线性稳压器
一、LMS1585A型5A大电流LD0的典型应用
二、DF1084型5A大电流LDO的典型应用
三、SPX1585型5A大电流LDO的典型应用
第五节7.5A/8A低压差线性稳压器
一、MIC2971X/2975X系列7.5A大电流LDO的原理与应用
二、SPX1584型8A大电流LDO的典型应用
第七章特种低压差线性稳压器的原理与应用
第一节高压输入式低压差线性稳压器
一、MAX8718/8719型28v高压输入式LDO的原理与应用
二、LT3012/3014型80V高压输入式LDO的原理与应用
第二节具有峰值电流输出能力的低压差线性稳压器
一、MIC5216型具有峰值输出能力的LD0的原理与应用
二、峰值电流输出的应用实例
第三节单路输出式低压差和超低压差线性稳压控制器
一、LT1123型低压差线性稳压控制器的原理与应用
二、MIC5156型超低压差线性稳压控制器的原理与应用
第四节多路输出式超低压差线性稳压控制器
一、MAX8563/8564型超低压差线性稳压控制器的原理
二、MAX8563/8564型超低压差线性稳压控制器的典型应用
第五节带DC/DC变换器的复合式低压差和超低压差线性稳压器
一、LTC3448型复合式低压差线性稳压器的原理与应用
二、TC1304型复合式超低压差线性稳压器的原理与应用
第六节带超低压差线性稳压器的可编程锂离子电池充电器
一、带vIDO的可编程锂离子电池充电器的原理
二、带VLDO的可编程锂离子电池充电器的典型应用
第七节LM2984/2984C型基于LDO的微处理器电源系统
一、LM2984/2984C型微处理器电源系统的原理
二、LM2984/2984C型微处理器电源系统的典型应用
第八章低压差线性稳压器的电路设计
第一节低压差线性稳压器的设计要点
一、低压差线性稳压器的基本类型
二、低压差线性稳压器电路设计要点
三、低压差线性稳压器的布局
四、低压差线性稳压器及散热器的装配技术
第二节低压差线性稳压器关键外围元器件的选择
一、输入电容器、输出电容器及旁路电容器的选择
二、外部取样电阻及电流检测电阻的选择
三、外部功率MOSFET的选择
四、低压差线性稳压器封装形式的选择
第三节低压差线性稳压器常见故障分析
一、低压差线性稳压器常见故障一览表
二、低压差线性稳压器常见故障分析
第四节提高低压差线性稳压器输出电压精度的方法
一、影响LDO输出电压精度的主要因素
二、提高LDO输出电压精度的方法
第五节减小浪涌电流及改善瞬态响应的方法
一、减小LDO浪涌电流的方法
二、改善LDO瞬态响应的方法
三、LDO瞬态响应的测试方法
第六节可编程低压差线性稳压器的电路设计
一、数字电位器的原理
二、可编程低压差线性稳压器的电路设计
第九章低压差线性稳压器的使用技巧
第一节提高低压差线性稳压器输入电压的方法
第二节利用外部双极型晶体管扩展LDO负载电流的方法
一、MAX8863型超低压差线性稳压器的原理与应用
二、利用晶体管扩展MAX8863负载电流的方法
第三节利用外部场效应晶体管扩展LDO负载电流的方法
一、MIC5158型低压差线性稳压控制器的基本应用
二、利用场效应晶体管扩展MIC5158负载电流的方法
第四节低压差线性稳压器的并联使用方法
第五节能从零伏起调的低压差线性稳压器应用电路
一、可调式低压差线性稳压器的典型应用电路
二、能实现低压差线性稳压器从零伏起调的两种方法
第六节由低压差线性稳压器构成恒流源的方法
一、由低压差线性稳压器构成的简易恒流源
二、由超低压差线性稳压控制器构成的恒流源
第十章低压差线性稳压器的应用实例
第一节低压差线性稳压器在计算机电源中的应用
一、对计算机电源的设计要求
二、5V/3.3V低压差电源变换器的设计方案
三、获取其他输出电压标称值的简便方法
四、多路输出式低压差线性稳压器的设计方案
第二节低压差线性稳压器在便携式电子产品中的应用
一、对便携式电子产品电源的设计要求
二、减小低压差线性稳压器互相干扰的方法
第三节低压差线性稳压器在精密数控基准电压源中的应用
一、MAX5130A的原理
二、精密数控基准电压源的电路设计
第十一章低压差线性稳压器的散热器设计
第一节散热器的基本工作原理与安装方法
一、LD0的工作寿命与最高结温的关系
二、散热器的基本工作原理
三、塑料封装式LDO的散热器安装方法
第二节平板式散热器的设计
一、平板式散热器的设计方法
二、印制板式散热器的设计方法
第三节成品散热器的热参数与热参数计算
一、成品散热器的热参数
二、成品散热器的热参数计算
第四节大电流输出式LDO的散热器设计
一、大电流输出式LDO的散热曲线图
二、大电流输出式LDO的散热器设计示例
第五节在风冷条件下的散热器设计
一、在风冷条件下的散热器选择
二、散热器的特性曲线
三、利用功率分配电阻来减小散热器尺寸的方法
第六节不同封装的LDO散热器设计实例
第七节多片LDO并联使用散热器的设计实例
第八节设计散热器的常用工具软件
一、设计线性稳压器散热器的通用工具软件
二、设计低压差线性稳压器散热器的专用工具软件
参考文献
C. LTC概述与核心精要
销售关乎企业生死,可是很多企业的销售流程体系是散乱无序、效率低下;没能洞察市场寻找更多商机,项目线索不够多,即便有了项目线索也因为没能尽早有效跟踪培育线索而失去项目机会;难以快速响应客户需求;面向客户界面混乱,销售人员基本是单兵作战,难以形成战斗力,很多销售人员销售经验能力又不足,直接导致的结果就是:市场中标概率小、中标了交付也存在各种各样风险与问题、回款缓慢甚至最后成为“烂尾工程”应收帐款巨大.......这时候,就很有必要梳理并重造流程,并且基于流程,进行销售能力提升,构建出有执行力、有创造力、有活力的狼性营销组织。
华为LTC销售流程变革项目就是一个典型的案例,其经验值得各企业参考。其基本方法是,梳理并再造销售流程,并且把合适的销售方法、销售理念等嵌入到流程当中,同时还会组织很多场销售能力赋能培训,并提供相应的工具和模板,使得企业获得的不仅是“生硬而冷冰冰”的新销售流程,而是整个销售体系升级(包括流程、销售方法、销售工具、销售模板、人员软能力等等),努力达到这样的目标:构建出优秀的销售组织能力,未来企业项目的成功与否不再严重依赖销售个人能力及其偶然性,而是用组织能力、制度去保障提升销售成功率。新员工入职,只要经过新的销售体系培训,并按照销售流程去进行项目运作,那么可达到资深老销售的水平,确保一定的项目成功率。(不再像过去,如果资深老销售离职,就会严重影响业绩,从而实现“铁打的营盘流水的兵”,销售组织体系和流程足够成熟,人员流动对业绩冲击变小)。
许浩明老师有幸被华为抽调加入了LTC变革项目华为团队方案组与埃森哲咨询团队深度合作,一起完成了华为LTC项目的方案设计与推行,因此,在这里做些分享,希望对其他企业有一定启发,少走一些弯路.......
为什么华为要下决心花费几十亿来做LTC变革项目呢?因为华为已感觉到LTC项目启动之前的流程支离破碎,没有跨部门的结构化流程,没有统一端到端拉通,效率不高,项目运作质量差,制约华为发展......,通过早些年的研发IPD变革项目,华为产品研发有了长足发展,可是销售线明显感觉跟不上业务发展需要,因此决心对销售流程“动大手术”,就像要成为武林高手,需打通任督二脉一样,华为希望,努力打通企业的任督二脉:研发(IPD)和销售(LTC)两条主流程(脉络),以促进和支撑业务快速发展,成为顶尖高手。
可是,LTC项目涉及了公司的正在运行中所有销售业务(项目启动之时销售收入已超3000亿),困难程度可想而知,有人比喻说,LTC变革项目就像是高速公路上给奔跑着的跑车换轮胎。确实是很有挑战的,因为不能影响公司业务呀,怎么办?所以当时变革项目我们就要谨慎地分阶段进行,第一阶段是:问题调研(面向全球各一线发问卷调查,当面访谈一部分一线,再结合从一线回来的专家的意见,归类总结出面临的、急需解决的问题);第二阶段是方案规划设计阶段。埃森哲与华为进行梳理,输出切实可行的细化方案(这个过程,华为专家和埃森哲不断地探讨,不断地聆听一线的反馈意见,不断地优化,无数个轮回碰撞,争吵,最终才形成一个阶段性方案);第三阶段是IT开发阶段(流程的落地,需要IT系统来承载,让所有的关键任务活动都在IT系统里跑起来,最后LTC的IT就是只要有网络,只需在IE等浏览器输入网址即可访问使用);第四阶段是找代表处进行试点,然后再优化流程;第五阶段是找各不同区域的典型代表处来试点,然后继续优化流程;第六阶段是小面积推行,然后继续优化流程;第七阶段就是流程成熟,可大面积推广;第八阶段是不断收集问题反馈进行流程优化,发布给全球各区域使用。
另外,在LTC变革项目里,华为方案组不仅与埃森哲咨询顾问合作讨论梳理并再造销售流程,并且还和其他咨询公司合作,把其他咨询公司合适的销售方法、销售理念(如SPI解决方案销售方法)等嵌入到销售流程当中,同时我们方案组建立或刷新了许许多多华为销售工具与模板,还组织无数场销售能力赋能培训,使得项目组结果不仅是“生硬而冷冰冰”的新销售流程,而是整个销售体系升级(包括流程、销售方法、销售工具、销售模板、人员软能力等等),努力达到这样的目标:构建出优秀的销售组织能力,未来项目的成功与否不再严重依赖销售个人能力及其偶然性,而是用组织能力、制度去保障提升销售成功率。新员工入职,只要经过新的销售体系培训,并按照销售流程去进行项目运作,那么可达到资深老销售的水平,确保一定的项目成功率。(不再像过去,如果资深老销售离职,就会严重影响业绩!从而实现“铁打的营盘流水的兵”,销售组织体系和流程足够成熟,人员流动对业绩冲击变小)。最后,我们LTC项目组的部分输出件如下:
《公司各流程关系总概览图》;《销售流程总概览图V1.1》;《线索管理流程V1.1》;《项目立项流程V1.1》;《线索跟踪培育流程V1.1》;《投标流程V1.1》;《合同评审流程V1.1》;《需求引导流程V1.1》;《合同谈判流程V1.1》;《合同签订流程V1.1》;《合同履行流程V1.1》;《方案设计流程V1.1》;《投标价格申请决策流程V1.1》;《销售项目策划报告模板V1.1》;《痛苦链分析模板V1.1》;《销售项目失败总结模板V1.1》;《销售引导九格构想模型模板V1.1》;《客户决策链分析(客户关系分析)模板V1.1》;《关键人物表模板V1.1》;《产品KeyMessage模板V1.1》;《项目运作checklist模板V1.1》;《洞察客户(客户档案)模板V1.1》;《全球山头项目模板V1.1》;《大客户管理模板V1.1》;《如何与CXO对话培训材料V1.1-学员版》;《谈判的道法术培训材料V1.1-学员版》;《向华为学习狼性营销培训材料V1.1-学员版》;《项目运作与管理培训材料V1.1-学员版》;《品牌营销培训材料V1.1-学员版》;《打造高绩效团队培训材料V1.1-学员版》;《华为执行力为何很强培训材料V1.1-学员版》;《狼性渠道管理培训材料V1.1-学员版》;《塑造卓越的企业文化培训材料V1.1-学员版》;《谁杀死了合同?V1.1-学员版》;《以终为始的目标与计划管理V1.1-学员版》;《战略管理、战略解码与战略执行V1.1-学员版》;《中层管理领导能力提升V1.1-学员版》;《跨部门的沟通与协作V1.1-学员版》;《华为质量管理体系V1.1-学员版》;
这点,值得其他企业参考借鉴,流程再造不仅仅是建立输出一些流程文件,而是升级组织销售能力,唯此,才能达到提高市场竞争力的目的,决不能为了仅仅为了造流程而造流程。
华为在管理变革、管理创新与流程再造方面,如下的一些做法也很值得参考:
1、华为有魄力,舍得投入。与很多企业老板的格局明显是不同的。很多企业老板,认为管理就那么回事,管理道理都懂,遇到管理问题,内部员工自己去讨论讨论,改一改流程和管理方法修修补补即可,觉得请顾问是在浪费钱财。殊不知,因为舍不得请顾问投入,而自己看待自己企业问题往往有局限性,同时也没那个决心和魄力(自己难以下手革自己的命),使得管理总是欠缺些什么,导致错失了发展良机,最终可能碌碌无为或者被市场竞争对手淘汰。
2、华为居安思危地不断“折腾”,不管变革,不断激活组织、激活人性。绝大多数企业,除非万不得已,否则是乐于呆在自己的“舒适区”,缺少危机感,缺少创新性的。
3、华为针对管理变革,定下了一些管理变革原则。有些企业老板想变革,但是往往做不下去,或者做得效果不怎么样,因为变革,意味着权力、利益等的变化,往往是阻力很大的,员工们也七嘴八舌,各有各的道理,所以没有一些变革原则,往往是失败而告终的。
4、变革的目标一定要清晰!不能因为变革而变革,而忘了企业的根本目标!
5、华为不断变革,总结出了变革成功的十六条经验.
任正非说过,管理就是抓住三件事:客户、流程、绩效,华为未来留给世界只有流程与IT支撑的管理体系,因为每个人都会过世,每种产品都终将被淘汰;企业管理归根结底就是流程的管理,就是让业务在以客户为中心的高效的流程上面跑,因此企业的管理流程重要性不言而喻。既然企业的有效管理需要流程来牵引、承载和落实,那么如何设计高效的以客户为中心的运作流程?持续管理变革应该怎么做?很多企业都希望通过重新再造流程来解决企业问题,来提升市场竞争力,大家的认识都很统一,但最终大部分企业都雷声大雨点小?具体应该怎么落地操作呢?值得思考、交流。
D. 测试CPU主供电、核心电压、问题
主板维修一般不涉及cpu核心供电影响开机的情况也是不会测的。一般会先归结故障原因和类型来排查。cpu核心供电只是供电电路故障维修的一部分。一般检测需要上cpu假负载用万用表测量,如果几个监测点电压符合就说明cpu核心供电具备。另外电源管理芯片有很多型号,一般是在桥或电源附近长条型20脚左右的贴片芯片。
E. 充电电路原理图解释
上图为充电器原理图,下面介绍工作原理。
1.恒流、限压、充电电路。该部分由02、R6、R8、ZD2、R9、R10和R13等元件组成。当接通市电叫,开关变压器T1次级感应出交流电压。经D4、C4整流滤波后提供约12.5V直流电压。一路通过R6、R1l、R14、LED3(FuL饱和指示灯)和R15形成回路,LED3点亮,表示待充状态:另一路电压通过R8限流,ZD2(5V1)稳压,再由并联的R9、R10和R13分压为Q2b极提供偏置,使Q2处于导通预充状态。恒流源机构由Q2与其基极分压电阻和ZD2等元件组成。当装入被充电池时12.5V电压即通过R6限流,经Q2的c—e极对电池恒流充电。这时由于Ul(Ul为软封装IC型号不详)与R6并联。R6两端的电压降使其①脚电位高于③脚,②脚就输出每秒约两个负脉冲。
使LED2(CH充电指示灯)频频闪烁点亮,表示正在正常充电。随着被充电池端电压的逐渐升高,即Q2 e极电位升高,升至设定的限压值(4.25V)时,由于Q2的b极电位不变,使Q2转入截止,充电结束。这时Q2c极悬空,Ul的③脚呈高电位,U1的②脚输出高电平,LED2熄灭。这时电流就通过R6、R11、R14限流对电池涓流充电,并点亮LED3。LED3作待充、饱和、涓流充电三重指示。
2.极性识别电路。此部分由R12和LEDl(TEST红色极性指示灯)构成。保护电路由Q3和R7等元件构成。假设被充电池极性接反了。
LED1就正偏点亮,警告应切换开关K,才能正常充电。如果电池一旦接反,Q3的I)极经R7获得正偏置,Q3导通,Q2的b极电位被下拉短路而截止,阻断了电流输出(否则电池就会被反充而报废),从而保护了电池和充电器两者的安全。
F. 开关电源芯片LTC3810谁用过,怎么把电压设置0~72可调高分求答!!!
我也没用过,这个图可以调到100V,供你对比一下你的电路,但愿能找出原因。
G. LTC1044负电压转换器什么原理,什么用
简易的频率到电压转换器
简易的频率到电压转换器 简易的频率电压转换器,在0到3.4kHz范围内提供1mV/Hz信号输出 如图是一个简易的频率到电压转换器,它使用了开关电容式电压转换器。该电路的输 出电压符合下面的等式,此处K=2.44(对于LTC1044),f为输入频率。 Vout=K×f×R1×C1 当电源电压为+5V时,Vout的最大值接近3.4V。在使用该电路时,应重视电源的稳压和滤 波。按图所示电路的参数值,在0到3.4kHz的范围内输出信号以1mV/Hz变化。你可以通过 选择C2的值来达到较理想的响应时间和脉动。在LTC1044的7脚输入的最大频率约为100k Hz。你也可以用7660等元件替换IC1,但温度稳定性不好,且一定程度上有不同的K值。
H. 怎么设计好电源模块呢
现在设计电源模块,用得最多的是LTC系列的芯片了,芯片PDF上有比较详细的说明。
那主要有几个注意点。1.注意电流,在选器件的时候,一定要注意电流,能吃多大的电流值。这点,在PCB布线的时候,吃大电流的地方,线条要粗。2.模拟地和数字地,一定要将这两块分开,然后在某一点连起来,切不可将模拟地与数字地随便连接起来,这样会有一定的干扰。
3.注意散热,电源模块在工作的时候,会产生较大的热量,所以散热工作一定要做好。
4.关于纹波问题,电容值一定要计算好,可以减小纹波。
另外建议在电源模块前布置一个保护电路,防止意外情况,保护芯片。