深度学习算力评测
⑴ 深度学习显卡怎么看CUDA compute capability
该项目的计算力,GTX1080TI算力6.1/3.7,约K80的1.64倍
目前深度学习比较热门的卡:RTX2080TI,RTX2070(多路),GTX1080TI目前退市不容易买到多张。(二手另说)
*CUDA平台的深度学习,显卡主要看:单精度浮点运算,显存,Tensor Core(图灵架构与伏特架构才有,RTX系列与TITAN V)
*Tesla主要稳定性与一些特殊功能上,双精度(目前这个深度学习用的少),跑单精度与半精度浮点运算优势不大,价格昂贵(想要超过GTX1080TI算力,需要Tesla V100,一张几万)
⑵ 什么是人工智能的深度学习
深度学习是一种算法革命,带来了人工智能的快速发展和应用,解决了视频、图像、声音、语言和文本的处理,在一定程度上达到了人类辨识或认知对象物体的水平。
深度学习只是机器学习的一个子领域,是受到大脑的结构和功能所启发的人工神经网络的一种算法。深度学习只是需要非常大的神经网络上训练更多的数据,需要更强大的计算机和算力。
如果我们构建更大的神经网络(更多的隐含层10-100,甚至更多的)并训练喂给模型越来越多的数据时,深度学习的性能会不断提高。这与其他传统机器学习算法通常不同,深度学习技术在性能上将达到了一个新的高度。
希望人工智能可以再次改变世界!
⑶ 深度学习做人脸识别,和传统方式比有啥好处
深度学习的算法可以对人的表情和声音特质进行分析判断,多模态的分析模式。
⑷ 数据平台上的计算能力:哪些GPU更适合深度
NVIDIA GPU,AMD GPU还是Intel Xeon Phi?
用NVIDIA的标准库很容易搭建起CUDA的深度学习库,而AMD的OpenCL的标准库没这么强大。而且CUDA的GPU计算或通用GPU社区很大,而OpenCL的社区较小。从CUDA社区找到好的开源办法和可靠的编程建议更方便。NVIDIA从深度学习的起步时就开始投入,回报颇丰。虽然别的公司现在也对深度学习投入资金和精力,但起步较晚,落后较多。如果在深度学习上采用NVIDIA-CUDA之外的其他软硬件,会走弯路。
Intel的Xeon Phi上支持标准C代码,而且要在Xeon Phi上加速,也很容易修改这些代码。这个功能听起来有意思。但实际上只支持很少一部分C代码,并不实用。即使支持,执行起来也很慢。Tim曾用过500颗Xeon Phi的集群,遇到一个接一个的坑,比如Xeon Phi MKL和Python Numpy不兼容,所以没法做单元测试。因为Intel Xeon Phi编译器无法正确地对模板进行代码精简,比如对switch语句,很大一部分代码需要重构。因为Xeon Phi编译器不支持一些C++11功能,所以要修改程序的C接口。既麻烦,又花时间,让人抓狂。执行也很慢。当tensor大小连续变化时,不知道是bug,还是线程调度影响了性能。举个例子,如果全连接层(FC)或剔除层(Dropout)的大小不一样,Xeon Phi比CPU慢。
预算内的最快GPU
用于深度学习的GPU的高速取决于什么?是CUDA核?时钟速度?还是RAM大小?这些都不是。影响深度学习性能的最重要的因素是显存带宽。GPU的显存带宽经过优化,而牺牲了访问时间(延迟)。CPU恰恰相反,所用内存较小的计算速度快,比如几个数的乘法(3*6*9);所用内存较大的计算慢,比如矩阵乘法(A*B*C)。GPU凭借其显存带宽,擅长解决需要大内存的问题。
所以,购买快速GPU的时候,先看看带宽。
⑸ 计算能力:哪些GPU更适合深度学习和数据库
深度学习需要具备三个因素,1,算法 2,GPU机器 3,数据库。GPU选择的话,由于一般的深度学习都不需要单精度,所以性价比最高的GPU是GTX系列,比如TItan x,titan x是现在深度学习用的最多的卡。需要了解更多,可以私信我。
⑹ 深度学习是哪年流行起来的,难吗
虽然产业内外均能感受到近年来人工智能火热的浪潮,但是其实人工智能技术并不是近几年才出现。从上世纪五六十年代开始,人工智能算法以及技术就曾一度出现过火热,随着时间发展也不断地演进和进化,并经历了由热转衰的过程。
最近几年内,人工智能已让我们每个人感受到其非常火热、持续发展的状态。因此,我们认为,这一轮人工智能的快速发展得益于多年来的IT技术飞速发展,从而为人工智能带来了算力、算距,以便对人工智能算法提供支撑。
企业对于人工智能技术的研发以及各种人工智能应用不断落地,直接推动了整体人工智能产业的飞速发展。整体人工智能的核心产业的产业规模已经接近1000亿元,可以说是规模巨大的行业之一了。而且从未来的发展趋势来看,预计今年,整体市场规模就会达到1600亿元,所以增长速度还是非常迅速的。如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的 AlphaGo 学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。
那么什么是深度学习呢?
深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。
⑺ 现在跑机器学习(深度学习)有必要话几十万买设备吗可以云计算吗
几千块钱的显卡就足够了
这个问题其实还是根据你实际任务的价值来定,如果你的项目经费有几百万,你评估使用技术能高效率很高的话,那么几十万的设备还是划算的,
但是如果你只是学习,或者是做比较浅的应用的话,那就不建议你考虑这么贵的设备了
云计算也是一个错的方式,未来很多计算可能会以云计算付费的形式来完成,现在很多云平台已经出售了深度学习算力,你可以关注一下,总之你现在没必要花几十万来买设备
⑻ 自己的电脑可以跑深度学习吗
自己的电脑可以跑深度学习,但是对电脑还是要有点要求的,毕竟跑代码,以及深度学习很费时间的。
⑼ 如何评价 MXNet 被 Amazon AWS 选为官方深度学习平台
能够让AWS放弃自己造的轮子,并且明确的表示会支持一个主要由开源社区开发的系统,其实非常不容易。对于AWS来说,最关心的是用户体验,然后是买资源赚钱。这里最保险的是支持所有流行的DL框架。但AWS能够强调说未来会大力投入MXNet,主要是对框架的发展前景,和小伙伴们工作的肯定。(例如我今早得知Amazon CTO发blog了,第一反应是CTO是谁,怎么没听说过?)
MXNet最早就是几个人抱着纯粹对技术和开发的热情做起来的兴趣项目,既没有指望靠它毕业,也没想着用它赚钱。能够一步一步慢慢的扩大,我觉得最重要的是每个小伙伴对这个事情的投入,和抱着降低深度学习门槛的使命。也是让大家只需要关心“数据量和运算量”,而不是如何有效实现利用硬件;只需要“数学公式写好,根本就不想知道你支持哪些layer,分别是干什么的”,不用管自动求导如何训练;只需要“把手上的数据交出去给云即可,然后花钱租算力”,而不是云上如何管理如何优化。
⑽ 人工智能前景好么深度学习优势什么
虽然产业内外均能感受到近年来人工智能火热的浪潮,但是其实人工智能技术并不是近几年才出现。从上世纪五六十年代开始,人工智能算法以及技术就曾一度出现过火热,随着时间发展也不断地演进和进化,并经历了由热转衰的过程。
最近几年内,人工智能已让我们每个人感受到其非常火热、持续发展的状态。因此,我们认为,这一轮人工智能的快速发展得益于多年来的IT技术飞速发展,从而为人工智能带来了算力、算距,以便对人工智能算法提供支撑。
最近几年内,企业对于人工智能技术的研发以及各种人工智能应用不断落地,直接推动了整体人工智能产业的飞速发展。整体人工智能的核心产业的产业规模已经接近1000亿元,可以说是规模巨大的行业之一了。而且从未来的发展趋势来看,预计今年,整体市场规模就会达到1600亿元,所以增长速度还是非常迅速的。
深度学习的优点?
为了进行某种模式的识别,通常的做法首先是以某种方式,提取这个模式中的特征。这个特征的提取方式有时候是人工设计或指定的,有时候是在给定相对较多数据的前提下,由计算机自己总结出来的。深度学习提出了一种让计算机自动学习出模式特征的方法,并将特征学习融入到了建立模型的过程中,从而减少了人为设计特征造成的不完备性。而目前以深度学习为核心的某些机器学习应用,在满足特定条件的应用场景下,已经达到了超越现有算法的识别或分类性能。
如果对人工智能和深度学习有兴趣,可以去看看中 公 教 育和中 科 院联合的AI 深度学习 课程,都是中科院专 家亲 自授 课