当前位置:首页 » 算力简介 » 用jonswap怎么算波浪力

用jonswap怎么算波浪力

发布时间: 2021-07-24 19:40:59

Ⅰ 海浪的海浪谱

海浪可视作由无限多个振幅不同、频率不同、方向不同、相位杂乱的组成波组成。这些组成波便构成海浪谱。此谱描述海浪能量相对于个组成波的分布,故又名“能量谱”。它用于描述海浪内部能量相对于频率和方向的分布。为研究海浪的重要概念。通常假定海浪由许多随机的正弧波叠加而成。不同频率的组成波具有不同的振幅,从而具有不同的能量。设有圆频率ω的函数S(ω),在ω至(ω+ω)的间隔内,海浪各组成波的能量与S(ω)ω成比例,则S(ω)表示这些组成波的能量大小,它代表能量对频率的分布,故称为海浪的频谱或能谱。同样,设有一个包含组成波的圆频率ω和波向θ的函数S(ω,θ),且在ω至(ω+ω)和θ至(θ+ω)的间隔内,各组成波的能量和S(ω,θ)ωθ成比例,则S(ω,θ)代表能量对ω和θ的分布,称为海浪的方向谱。将组成波的圆频率换为波数,可得到波数谱;将ω换为2π(频率为周期的倒),得到以表示的频谱S()数。以上各种谱统称为海浪谱。
海浪谱不仅表明海浪内部由哪些组成波构成,还能给出海浪的外部特征。比如,理论上可由谱计算各种特征波高和平均周期,利用这些特征量连同波高与周期的概率密度分布,可推算海浪外观上由哪些高低长短不同的波所构成。若已知海浪的谱,海浪的内外结构都可得到描述,因此谱是非常有用的概念。事实上,海浪的研究(包括许多应用问题),大多和谱有关。频谱
在海浪谱中,风浪频谱得到最广泛的研究,因为它的应用最广,也最易于得到。但尚无基于严格理论的风浪频谱。通常p为5~7,q为2~4,在正量A和B之内。除了数值常数外,还包含风要素(如风速、风时和风区)或浪要素(如特征波高和周期)作为参量,故谱的形状随风的状态或对应的浪的状态而变化。上述两项的乘积代表的谱,在ω=0处为0,在0附近的值很小,ω增加时,它骤然增大至一个峰值,然后随频率的增大而迅速减小,在ω→∞时趋于0。这表明谱的频率范围在理论上虽为0~∞,但其显著部分却集中在谱峰附近。海面上存在的许多波,其显著部分的周期范围很小,恰和理论结果相对应。随着风速的增大,谱曲线下面的面积(从而风浪的总能量或波高)增大,峰沿低频率方向推移,表明风浪显著部分的周期增大。
从波面的记录估计谱,是获得海浪频谱的主要途径。习惯上将谱的估计方法分为相关函数法和快速傅氏变换算法两种。在电子计算机上计算时,后者比前者更节约时间。20世纪70年代,开始引用最大熵等方法。依此可自不多的资料估计出分辨率较高的谱,它适用于非平稳的海浪状态。
在海浪研究中已提出的频谱很多常采用的皮尔孙-莫斯科维奇谱,是60年代中期提出的,是在对充分成长的风浪记录进行谱估计和曲线的拟合时得到的,已为多数观测所证实。
60年代末,按照“北海联合海浪计划”(JONSWAP),对海浪进行了系统的观测,提出了一种频谱,其中包括分别反映能量水平、峰的频率尺度和谱形在内的5个参量。这种谱表示风浪处于成长的状态,它具有非常尖而高的峰。对Jonswap谱分析的结果表明,风浪的能量主要通过谱的中间频率部分传递,然后借波与波之间的非线性相互作用,再分别向谱的高频和低频部分传递。反映这种能量交换的谱,具有稳定的形式。利用此特性,可将谱随风的变化转换为其中的参量随风的变化,从而提供另一种海浪计算或预报的方法。
有一种半经验的方法,它假定海浪的某些外观特征反映其内部结构,由观测到的波高和周期间的关系,可导出海浪谱。早在50年代初提出的纽曼谱和工程中常使用的布雷奇奈德尔谱,都属此类,前者p=6,q=2;后者p=5,q=4。有些苏联作者采用具有前述形式的频谱,然后由观测资料确定其中的常数和参量。
中国学者于50年代末至60年代中期,尝试自风浪能量的摄取和消耗出发推导出谱,其中包括用风要素作为参量,从而描述谱相对于风时和风区的成长。由这些谱计算波高和周期等要素比较方便,但推导中涉及的能量计算,仍是半经验性的。
方向谱
方向谱的研究,除理论上的意义外,还可用于大面积海浪的预报,波浪的绕射和折射,水工建筑物的作用力和振动,船体、浮标和其他浮体对海浪的反应,以及泥沙运动等问题的研究。但由于观测上和资料处理上的困难,海浪方向谱的研究远少于频谱。
通常将方向谱取为S(ω,θ)=S(ω)·G(ω,θ),其中S(ω)为频谱,G(ω,θ)为体现能量相对于方向分布的一个函数,θ为海浪主方向(一般取为平均风向)和组成波的波向之间的夹角。G(ω,θ)必须通过观测得到,其中最简单的形式为cos。通常取2~4,愈大,能量愈集中于主波向附近。对于浅水波来说,比较大。
为了测量方向谱,可用几个与海水接触的测头组成仪器阵列,记录的项目可以是波面高度,也可以是水质点的速度、加速度、压力或作用力。为经济起见,通常将尽可能少的测头摆成合理的几何图形,以得到最大的分辨率。还可用尺寸远小于海浪波长并跟随波面运动的自由浮标,记录波面的高度和两个方向的波面斜率和曲率,也可以利用压力、水质点速度或波浪作用力的记录。此外,航空遥感和卫星遥感也可以确定方向谱。
如何求得海浪谱,主要方法有二:一是利用观测得到的波高、周期的推导,得出半理论、半经验形式的海浪谱;二是利用某一固定点测得的波面随时间变化的这段记录,来推算相关函数,然后求谱。也有通过建立能量平衡方程式来求谱。目前得到的谱,主要是建立在观测数据的基础上求出的。但由于目前尚缺乏精确的风和海浪的观测资料,故已提出的一些谱,彼此相差较大。海浪谱的分析研究是很重要的,根据海浪谱,可以较合理地设计防坡堤及海面对雷达的反射部分,利用海浪谱,可以算出波高、周期等海浪要素。目前,有的国家根据海浪谱设计出自动控制系统,来以校正军舰上武器发射偏差。

Ⅱ 什么是海浪方向谱

方向谱的研究,除理论上的意义外,还可用于大面积海浪的预报,波浪的绕射和折射,水工建筑物的作用力和振动,船体、浮标和其他浮体对海浪的反应,以及泥沙运动等问题的研究。但由于观测上和资料处理上的困难,海浪方向谱的研究远少于频谱。

通常将方向谱取为S(ω,θ)=S(ω)·G(ω,θ),其中S(ω)为频谱,G(ω,θ)为体现能量相对于方向分布的一个函数,θ为海浪主方向(一般取为平均风向)和组成波的波向之间的夹角。G(ω,θ)必须通过观测得到,其中最简单的形式为cos。通常取2~4,愈大,能量愈集中于主波向附近。对于浅水波来说,比较大。

为了测量方向谱,可用几个与海水接触的测头组成仪器阵列,记录的项目可以是波面高度,也可以是水质点的速度、加速度、压力或作用力。为经济起见,通常将尽可能少的测头摆成合理的几何图形,以得到最大的分辨率。还可用尺寸远小于海浪波长并跟随波面运动的自由浮标,记录波面的高度和两个方向的波面斜率和曲率,也可以利用压力、水质点速度或波浪作用力的记录。此外,航空遥感和卫星遥感也可以确定方向谱。

如何求得海浪谱,主要方法有二:一是利用观测得到的波高、周期的推导,得出半理论、半经验形式的海浪谱;二是利用某一固定点测得的波面随时间变化的这段记录,来推算相关函数,然后求谱。也有通过建立能量平衡方程式来求谱。目前得到的谱,主要是建立在观测数据的基础上求出的。但由于目前尚缺乏精确的风和海浪的观测资料,故已提出的一些谱,彼此相差较大。海浪谱的分析研究是很重要的,根据海浪谱,可以较合理地设计防坡堤及海面对雷达的反射部分,利用海浪谱,可以算出波高、周期等海浪要素。目前,有的国家根据海浪谱设计出自动控制系统,来校正军舰上武器发射偏差。

Ⅲ 海浪要素的海浪

海洋中的波浪是海水运动形式之一,它的产生是外力、重力与海水表面张力共同作用的结果。引起海水波动的外力因素很多,如风、大气压力的变化、天体的引潮力、海底地震以及人为引起的船体运动等。由这些因素引起的海水波动,其周期可在极宽的范围内变化,如潮波的周期为半天至1天,海啸的周期为几十分钟,风浪的周期为几秒钟,而海水表面张力波的周期则不足1s 。
虽然海浪的剖面形状复杂,但人们常把它理想化为如图所示的规则剖面,并以各种波浪要素来表征其特性。

Ⅳ 请问海岸的波浪和远海中的波浪有什么不同

海浪是发生在海洋中的一种波动现象。我们这里指的海浪是由风产生的波动,其周期为0.5至25秒,波长为几十厘米到几百米,一般波高为几厘米到20米,在罕见的情况下波高可达30米以上。

近岸浪——由外海的风浪或涌浪传到海岸附近,受地形作用而改变波动性质的海浪。

海面上的波浪在深海处传播的速度总是比浅海处的传播速度快,越是近海岸,海水越浅,波浪的速度越慢。
若用虚线AB表示海岸附近深水域与淡水域的分界线,那么在深水域中,海浪在第1、2、3……、11秒走过的距离较大(因为速度快),因此,线条之间的间隔大;在浅水域中,同样花费1秒钟时间,海浪经过的距离短,表现为线条之间的间隔小。因此,在分界线处发生了海浪的波长和传播方向的改变,海浪的传播方向变得渐渐垂直于海岸线了。由于越靠近海岸的海水越浅,因此,海浪的速度也渐渐慢下来,这就使它的传播方向越来越垂直于海岸线。当我们站在海岸面向大海时,由于看到的海浪都是以垂直于海岸线的方向一排排袭来,我们就感到海浪是迎你而来的。

在远离海岸的大海深处,海浪的行进方向取决于海风与海流的方向,并不一定朝观察者迎面而来。

Ⅳ 什么是海浪谱

海面上的波浪在深海处传播的速度总是比浅海处的传播速度快,越是近海岸,海水越浅,波浪的速度越慢。若用虚线AB表示海岸附近深水域与淡水域的分界线,那么在深水域中,海浪在第1、2、3……11秒走过的距离较大(因为速度快),因此,线条之间的间隔大;在浅水域中,同样花费1秒钟时间,海浪经过的距离短,表现为线条之间的间隔小。因此,在分界线处发生了海浪的波长和传播方向的改变,海浪的传播方向变得渐渐垂直于海岸线了。由于越靠近海岸的海水越浅,因此,海浪的速度也渐渐慢下来,这就使它的传播方向越来越垂直于海岸线。当我们站在海岸面向大海时,由于看到的海浪都是以垂直于海岸线的方向一排排袭来,我们就感到海浪是迎你而来的。

在远离海岸的大海深处,海浪的行进方向取决于海风与海流的方向,并不一定朝观察者迎面而来。

海浪可视作由无限多个振幅不同、频率不同、方向不同、相位杂乱的组成波组成。这些组成波便构成海浪谱。此谱描述海浪能量相对于各组成波的分布,故又名“能量谱”。它用于描述海浪内部能量相对于频率和方向的分布,为研究海浪的重要概念。通常假定海浪由许多随机的正弧波叠加而成。不同频率的组成波具有不同的振幅,从而具有不同的能量。设有圆频率ω的函数S(ω),在ω至(ω+ω)的间隔内,海浪各组成波的能量与S(ω)ω成比例,则S(ω)表示这些组成波的能量大小,它代表能量对频率的分布,故称为海浪的频谱或能谱。同样,设有一个包含组成波的圆频率ω和波向θ的函数S(ω,θ),且在ω至(ω+ω)和θ至(θ+ω)的间隔内,各组成波的能量和S(ω,θ)ωθ成比例,则S(ω,θ)代表能量对ω和θ的分布,称为海浪的方向谱。

海浪谱不仅表明海浪内部由哪些组成波构成,还能给出海浪的外部特征。比如,理论上可由谱计算各种特征波高和平均周期,利用这些特征量连同波高与周期的概率密度分布,可推算海浪外观上由哪些高低长短不同的波所构成。若已知海浪的谱,海浪的内外结构都可得到描述,因此谱是非常有用的概念。事实上,海浪的研究(包括许多应用问题)大多和谱有关。

Ⅵ 海浪的能量有多大

在美国西太平洋沿岸的哥伦比亚河入海口,耸立着一座高高的灯塔,旁边还有一座小屋,灯塔看守人就住在里面。

1894年12月的一天,看守人忽然听见屋顶上响声如雷,他本能地抬起头来,还没来得及弄清是怎么回事,只见一个黑黝黝的怪物,劈里啪啦地穿透屋顶后砸到地上。

面对这自天而降的“不速之客”,看守人吓呆了,过了好一会,才战战兢兢地挪步走到怪物面前。他简直不相信自己的眼睛:那怪物竟是一块大石头!后来人们称得其重量为64千克。

这是个人迹罕至的地方,有哪个大力士会搞这样的恶作剧呢?

第二天,看守人请来了专家,经过一番调查和鉴定,专家得出了结论:这大力士是海浪。这块大石头是被海浪抛到40米高的半空,再砸到看守人的屋顶上的。

海浪!看守人实在难以接受这个结论。要知道,他长年与海浪厮守相处,虽然也看到过不少惊涛骇浪,也见识过浪尖抛石的场面,可这毕竟是块64千克的石头啊,海浪能将它抛到十几层楼房的高度吗?

专家告诉他,这是可能的。虽然海浪的高度并不算很高,到目前为止,根据仪器记录到的海浪高度还未超过20米,但巨浪冲击海岸激起的浪花常可高达60米~70米。斯里兰卡海岸上一个60米高处的灯塔就曾被海浪打碎过。

海浪的威力也往往大得出乎人的想象。如法国的契波格海港,曾经有一个浪头打来,居然把一块3.5吨重的巨物像掷铅球似的扔过了6米高的防波墙。

还有,在荷兰阿姆斯特丹,一块26吨重的混凝土块竟被波浪从海中举起,再稳稳地放到7米高的防波堤上去;苏格兰威克那地区,1872年曾有一个巨浪将1370吨的庞然大物移动15米之远;西班牙巴里布附近的海边,在1894年的一次狂风巨浪后,人们发现一块起码有1700吨重的巨石翻了个个儿……

专家还说,一些测试材料表明,海浪拍岸时的冲击力每平方米会达到20~30吨,大的甚至可达60吨。具有这样冲击力的海浪,可以把13吨重的巨石抛到20米高的空中。把那块60多千克的黑色石头抛上40米高,对它来说,真算得上是轻而易举的区区小事了。

人们自然会想到,对海浪这个放荡不羁而又力盖群雄的大力士,能否约束一下,使它变害为利,为人类服务呢?

有人想到了可利用它来发电。海浪发电有着巨大的潜力。人们经过计算,发现10平方千米的海面上产生的波浪能,大约就相当于一个新安江水电站的电能,或相当于90万吨煤炭的热能。而且,海浪这样的能源不仅不用花钱,还有无污染的优点。

对海浪的能量抱的希望最大、研究得最为热心的大约要算日本的科学家了。因为日本是几乎没有矿产资源的国家,它的能源全靠进口,但它又是个有着3000多个大小岛屿的岛国,海岸线长达13万千米,这样辽阔的海面所拥有的波浪能,每年可达10亿千瓦。乖乖,这相当于目前日本每年用电量的25倍呢!

1964年,日本制成了世界上第一盏用海浪发电的航标灯,开了利用海浪能量的先河。虽然这台装置发出的电能仅60瓦,只够一盏灯使用,但它证明了用海浪发电是完全可行的。

Ⅶ 海浪规律

各地波浪的玫瑰图(包含波高和波向频率分布的信息)可以参见海洋图集。
其他波浪要素的系统观测不多,其中频率可以根据风的信息由海浪谱计算得到,而对于重力波,只要知道水深,有了频率以后,波长、波速、波数等都可以算出来

Ⅷ 海浪怎样发电

一提到大海,人们立刻就会想到汹涌澎湃、波涛起伏,确实大海从来就不曾平静过,无风时微波荡漾,有风时巨浪翻滚,这正是海洋的“习性”。那奔腾咆哮的海浪猛烈拍打着岸边的岩石,发出响雷般的轰鸣声,激溅起高高的浪花,这正是海浪在显示它那无穷的力量。尽管海浪的高度一般超不过20米,可是当它冲击海岸时,却能激起高达六七十米的浪花。这浪花犹如利剑,它曾将斯里兰卡海岸上一座屹立在60米高处的灯塔一举击碎。

海浪称得上是一位“大力士”,它创造的记录令人叹为观止:拍打岸边的激浪曾把法国契波格海港的3吨半重物抛过60米的高墙;在苏格兰的威克地方,巨大的海浪将1350吨的庞然大物移动了10米;在荷兰的阿姆斯特丹,一块20吨重的海中混凝土被海浪举起了7米多高,然后又抛到距海面1.5米的防波堤上;1952年,一艘美国轮船在意大利西部的海面上被海浪劈为了两半,残船被冲得无影无踪。

据测试,海浪对海岸的冲击力可达每平方米20~30吨,在特殊情况下甚至达到60吨。科学家们决定利用海浪能发电,为人类造福。

我国的黄海和东海的年平均波高为1.5米,南海的年平均波高为1米,年平均波周期为6秒左右。专家预算,我国领海的海浪能总量达1.7亿千瓦;全世界的海浪能总量高达25亿千瓦,如此能量,令人惊叹不已。

1964年,日本造出了世界上第一个海浪发电装置——航标灯。虽然这台发电机的发电能力只有60瓦,只够一盏航标灯使用,但它却开创了人类利用海浪来发电的新纪元。

利用海浪发电,不仅不消耗任何燃料和资源,也不产生任何污染,是一种“干净”的发电技术。还有它不占用任何土地,只要是有海浪的地方就能发电。对于那些无法架设电线的沿海小岛,海浪发电是最适用不过的。

目前,利用海浪发电的方法主要有三种:一、利用海浪的上下运动所产生的空气流或水流,使气(水)轮机转动,以带动发电机发电;二、利用海浪装置的前后摆动或转动以产生空气流或水流,使气(水)轮机转动,带动发电机发电;三、将低大波浪变为小体积的高压水,然后再把高压水引入某一高位水池积蓄起来,使其产生高压水头,以冲动水轮发电机组进行发电。

浮标式波浪发电装置就是利用海浪的上下运动所产生的空气流来发电的装置。这种发电装置有一个空气管,管内的水面(相当于一个活塞)是相对静止的,而水面可以上下运动。因为海浪的起伏波动而使浮标作上下运动,这样浮标体内的空气活塞室里的空气就被水面这个“活塞”所压缩和扩张,使空气从空气活塞室里冲出来,从而推动气轮发电机组发电。

日本还研制一种锥形浮体式海浪发电装置,也是浮标式发电装置,但它是利用共振原理来发电。这种发电装置的浮体,其固有频率与海浪上下运动的频率相等,因而出现共振,正是利用这种共振来发电。浮体的下端为锥体,锥体的顶端有一个能作正向和逆向转动的螺旋桨。当浮体与海水作相对运动时,便驱使螺旋桨转动而带动发电机发电。

另外,还有一种固定式海浪发电装置,其构造及工作原理跟浮标式极为相似,所不同的是将空气活塞室固定在海岸,通过中央管道内水面的上下升降来代替浮标的上下运动,以实现空气活塞室内空气的压缩和扩张,以推动气轮发电机组发电。

日本在20世纪70年代末就造出了一艘海浪发电兼消波的“海明”号大型海浪发电船,它能发出100~150千瓦的电能,并具有远离海岸的电力传输装置。这艘海浪发电船长80米,宽12米,总重500吨,船内安装了几台(空)气轮机式海浪发电装置。它经常锚泊在距离海岸3000米的海上,其锚泊海域的水深为40米左右。

90年代初英国在苏格兰的艾莱岛上建造了一座发电能力为75千瓦的海浪发电站,它是继挪威、日本之后利用海浪发电的第三个国家。此外英国爱丁堡大学目前正在研制发电能力为5万千瓦的海浪发电装置,英国人还计划在海岸以外的海面上建造海浪发电站。

挪威科学家提出了更为激动人心的设想:要人为地制造强大的波浪来进行海浪发电。如果这个设想能够实现,人类将会进入一个完完全全的天然能使用时代。我国的科学家也正在朝这一方面努力地研究探索着。

Ⅸ 大家帮着分析一下海浪受哪些力啊

如果简单地,通俗地说,上面的回答就可以了。

如果要从专业角度分析,这涉及流体力学的内容,

根据海域不同,周围的环境不同等影响,

海浪可以存在三种主要状态:

1 平流/层流,一般来说存在于外部条件稳定,周围环境变化不大的地方,比如深海,这时候,海浪主要受重力,周围流体的粘滞力,表面风作用力。

2 紊流,受力与前者基本相同,只不过流体之间的粘滞力比较紊乱。

3 介于上述两者。

Ⅹ 什么叫小水线面船纵摇海浪干扰力矩

干扰力矩,是以光电稳定/跟踪平台为研究对象,通过对光电稳定/跟踪平台中存在的各种干扰力矩的力学特性进行分析和研究,提出一种新的测量稳定平台干扰力矩的方法。
小水线面双体船的排水容积大部分深浸于水中,支柱的水线面积很小,可大大减小兴波阻力,并使海浪的干扰作用明显减弱,从而减少船在波浪中的摇荡运动和波浪拍击,其耐渡性优于普通船型和一般双体船。同时具有双体船的各项优点,即甲板面积大;稳性、操纵性、高速时的快速性均优于普通船型。但其低速时的功率消耗较大,吃水较深,为保证其纵向运动稳定性需加装自动控制水平鳍,增加了技术的复杂性和造价。
浮球形转子的干扰力矩方法。基于静电力相对转子几何中心形成的力矩的计算,推导了半碗六电极悬吊转子装置的静电场基本干扰力矩计算公式。干扰力矩以转子失中度、非球度、转子极轴相对于电极坐标系的偏移、电极电压和电极槽描述。通过仿真,界定了满足一定干扰力矩的各因素的取值范围。

热点内容
btc和eth和USDT是什么 发布:2025-09-14 05:27:57 浏览:926
基于车主权益区块链 发布:2025-09-14 05:25:12 浏览:901
元宇宙ted 发布:2025-09-14 05:23:36 浏览:982
购买数字货币是实价还是限价 发布:2025-09-14 05:23:06 浏览:329
一年以后区块链信息 发布:2025-09-14 05:18:59 浏览:479
元宇宙是不是4维空间 发布:2025-09-14 05:09:01 浏览:876
比特币从哪个国家开始的 发布:2025-09-14 05:08:53 浏览:55
怎样加入比特币矿池 发布:2025-09-14 04:59:10 浏览:984
中概互联属于元宇宙吗 发布:2025-09-14 04:46:53 浏览:581
区块链交易所委托维护 发布:2025-09-14 04:45:16 浏览:508