当前位置:首页 » 算力简介 » 去中心化作线性回归

去中心化作线性回归

发布时间: 2021-09-04 10:24:34

① 请问,SPSS中不包括常数项的线性回归与包括常数项的线性回归相比为什么系数会不一样

去常数项的是标准化的回归系数
所谓标准化的意思是 因为可能存在各自变量的计量单位不同,所以如果直接根据非标准化的回归系数无法看出到底哪个自变量对因变量的影响大。
而去常数项后的标准化系数可以直接根据系数的绝对值大小来比较哪个自变量的影响大。
但是如果要列回归方程时,应该使用带有常数项的回归系数
如果只是比较影响的大小,需要看标准化的回归系数
两者就是这个区别

② 问一个统计学的问题

1. 对于这个问题,最好的方法莫过于:聚类分析。
聚类分析是根据样本间的距离进行分类,分类的标准很多:有的按照阀值,有的按照已经规定好的分的类数;可以说该问题就是一个聚类分析的典型应用;在统
计教材中介绍聚类分析的例题就是这种问题。
2. 除此之外,还可以将这个问题堪称寻找“异常点”的问题。统计学是有系统的理论来研究个体“变异”。这种点即为“离群点”,对它需要判断是否是“异常点”,这里有几种常用的判别方法(但要注意,对它的判定往往要结合实际问题的需要进行的,统计学上对异常点的态度非常谨慎,不能随便去掉它):看标准化残存、学生化残存;影响函数;Cook距离;WK统计量。
3. 提问中的解决方法本质上是考虑观察值跟数学期望的比值,如果过大那就说明这个点可能存在问题(这里设置了一个“阀值”作为挑选标准)。从线性回归的角度来看,数学期望就是最小二乘法下最好的常数估计,因此是线性回归的最简单情况。△X就是“残差”,△X/X类似于将它中心化,因为△X/X的数学期望是0,并且不受单位量纲的影响。此外,还有2中提到的方法。具体参见线性回归理论中回归诊断部分。
然而,最正统的方法同时也是目前最好的方法还是:聚类分析。

③ 如何做SPSS的调节效应

显变量的调节效应分析方法:分为四种情况讨论。当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按 M的取值分组,做 Y对 X的回归。若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。

④ SPSS回归分析中的数据转换问题

就是平方根转换,在compute里面去做,很方便的
我替别人做这类的数据分析蛮多的

⑤ 硕士论文 一元线性回归是不是没说服力

老师同意就有说服力。

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?
老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!
学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。

首先要确定课题,是调研类的还是什么?
一般毕业论文大体框架结构都差不多:摘要,目录,第一章绪论(文献综述,现状什么的),第二章是方法或者比较共性的问题,第三章和第四章一般是全篇的重点,论述自己的内容;第五章是措施之类的。
可以去万方、维普、CNKI网上下载一些类似课题的文章看看:)祝顺利祝成功!

1、论文题目:要求准确、简练、醒目、新颖。
2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)
3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。
4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。
5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。
6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

⑥ 数据降维特征值为负需要舍去数据嘛

经过这几天面试后,我发现数据降维这一块在工业界用的很多或者说必不可少,因此,这方面需要重点关注。今天,我将数据降维总结于此,包括他人成果,这里对他们的内容表示感谢。

Method
对数据降维作用有多个角度的理解。吴恩达在他的视频中说,降维是用于数据压缩,降低噪声,防止运行太慢内存太小;当降到2或3维可以可视化操作,便于数据分析;不要将降维用于防止过拟合,容易去掉和标签有关的重要特征。但是数据为何需要压缩,除了占用内存以外还有没有别的原因——“维度灾难”问题:维度越高,你的数据在每个特征维度上的分布就越稀疏,这对机器学习算法基本都是灾难性的。最后导致的可能是每个样本都有自己的特征,无法形成区别是正例还是负例的统一特征。还有另外一个情况当特征多于样本量时,一些分类算法(SVM)是失效的,这与分类算法原理有关。

数据降维方法:


线性降维方法:
主成分分析(PCA)和判别分析方法(LDA)
关于PCA的理解:
1、PCA可以理解为高维数据投影到低维,并使得投影误差最小。是一种无监督将为方法。
2、还可以理解为对坐标旋转和平移(对应着坐标变换和去中心化),从而使得n维空间能在n-1维分析,同时去掉方差小的特征(方差小,不确定度小,信息量小)
3、PCA的推导
4、PCA与SVD的联系
(从矩阵分解角度理解PCA)
5、PCA降维的应用
6、PCA 的缺点:
(1)pca是线性降维方法,有时候数据之间的非线性关系是很重要的,这时候我们用pca会得到很差的结果。所有接下来我们引入核方法的pca。
(2)主成分分析法只在样本点服从高斯分布的时候比较有效。
(3) 存在不平衡数据的降维可以采用代价敏感PCA(CSPCA)
(4)特征根的大小决定了我们感兴趣信息的多少。即小特征根往往代表了噪声,但实际上,向小一点的特征根方向投影也有可能包括我们感兴趣的数据;
(5)特征向量的方向是互相正交(orthogonal)的,这种正交性使得PCA容易受到Outlier的影响
(6)难于解释结果。例如在建立线性回归模型(Linear Regression Model)分析因变量

⑦ 如何用SPSS做中介效应与调节效应

调节变量可以是定性的,也可以是定量的。在做调节效应分析时,通常要将自变量和调节变量做中心化变换。简要模型:Y = aX + bM + cXM + e 。Y 与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c 衡量了调节效应(moderating effect) 的大小。如果c 显著,说明M 的调节效应显著。 2、调节效应的分析方法 显变量的调节效应分析方法:分为四种情况讨论。当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做 Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M 的回归,得测定系数R1 2 。2、做Y对X、M 和XM 的回归得R2 2 ,若R2 2 显著高于R1 2 ,则调节效应显著。或者, 作XM 的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按 M 的取值分组,做 Y 对 X 的回归。若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e 的层次回归分析。 潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。当调节变量是类别变量时,做分组结构 方程分析。做法是,先将两组的结构方程回归系数限制为相等,得到一个χ 2 值和相应的自由度。然后去掉这个限制,重新估计模型,又得到一个χ 2 值和相应的自 由度。前面的χ 2 减去后面的χ 2 得到一个新的χ 2,其自由度就是两个模型的自由度之差。如果χ 2 检验结果是统计显著的,则调节效应显著;当调节变量和自变 量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen 和Hau 提出的无约束的模型。 3.中介变量的定义 自变量X 对因变量Y 的影响,如果X 通过影响变量M 来影响Y,则称M 为中介变量。 Y=cX+e1, M=aX+ e2 , Y= c′X+bM+e3。其中,c 是X 对Y 的总效应,ab 是经过中介变量M 的中介效应,c′是直接效应。当只有一个中介变量时,效应之间有 c=c′+ab,中介效应的大小用c-c′=ab 来衡量。 4、中介效应分析方法 中介效应是间接效应,无论变量是否涉及潜变量,都可以用结构方程模型分析中介效应。步骤为:第一步检验系统c,如果c 不显著,Y 与X 相关不显著,停止中介 效应分析,如果显著进行第二步;第二步一次检验a,b,如果都显著,那么检验c′,c′显著中介效应显著,c′不显著则完全中介效应显著;如果a,b至少 有一个不显著,做Sobel 检验,显著则中介效应显著,不显著则中介效应不显著。Sobel 检验的统计量是z=^a^b/sab ,中 ^a, ^b 分别是 a, b 的估计, sab=^a2sb2 +b2sa2, sa,sb 分别是 ^a, ^b 的标准误。 5. 调节变量与中介变量的比较 调节变量M 中介变量M 研究目的 X 何时影响Y 或何时影响较大 X 如何影响Y 关联概念 调节效应、交互效应 中介效应、间接效应 什么情况下考虑 X 对Y 的影响时强时弱 X 对Y 的影响较强且稳定 典型模型 Y=aM+bM+cXM+e M=aX+e2 Y=c′X+bM+e3 模型中M 的位置 X,M 在Y 前面,M 可以在X 前面 M 在X 之后、Y 之前 M 的功能 影响Y 和X 之间关系的方向(正或负) 和强弱 代表一种机制,X 通过它影响Y M 与X、Y 的关系 M 与X、Y 的相关可以显著或不显著(后者较理想) M 与X、Y 的相关都显著 效应 回归系数c 回归系数乘积ab 效应估计 ^c ^a^b 效应检验 c 是否等于零 ab 是否等于零 检验策略 做层次回归分析,检验偏回归系数c 的显著性(t 检验);或者检验测定系数的变化(F 检验) 做依次检验,必要时做 Sobel 检验 6. 中介效应与调节效应的SPSS 操作方法 处理数据的方法 第一做描述性统计,包括M SD 和内部一致性信度a(用分析里的scale 里的 realibility analsys) 第二将所有变量做相关,包括统计学变量和假设的X,Y,M 第三做回归分析。(在回归中选线性回归linear) 要先将自变量和M 中心化,即减去各自的平均数 1、现将M(调节变量或者中介变量)、Y 因变量,以及与自变量、因变量、M 调节变量其中任何一个变量相关的人口学变量输入indpendent 2、再按next 将X 自变量输入(中介变量到此为止) 3、要做调节变量分析,还要将X与M 的乘机在next 里输入作进一步回归。检验主要看F 是否显著

⑧ p2p是什么意思

P2P是英文peertopeerlending(或peer-to-peer)的缩写,意即个人对个人(伙伴对伙伴)。又称点对点网络借款,是一种将小额资金聚集起来借贷给有资金需求人群的一种民间小额借贷模式。属于互联网金融(ITFIN)产品的一种。属于民间小额借贷,借助互联网、移动互联网技术的网络信贷平台及相关理财行为、金融服务。
2019年9月4日,互联网金融风险专项整治工作领导小组、网贷风险专项整治工作领导小组联合发布《关于加强P2P网贷领域征信体系建设的通知》,支持在营P2P网贷机构接入征信系统。
本条内容来源于:中国法律出版社《中华人民共和国金融法典:应用版》

⑨ 如何做SPSS的调节效应

做SPSS的调节效应方法:

  1. 用回归,回归也有两种方法来检验调节效应,看下面的两个方程,y是因变量,x是自变量,m是调节变量,mx是调节变量和自变量的交互项,系数是a b c c'。检验两个方程的R方该变量,如果该变量显著,说明调节作用显著,也可以直接检验c'的显著性,如果显著也可以说明调节作用。

热点内容
乌克兰比特币 发布:2025-07-16 06:20:50 浏览:799
金融里面的区块链 发布:2025-07-16 06:11:23 浏览:530
币圈贪婪和恐惧 发布:2025-07-16 06:10:28 浏览:340
比特币核心交易 发布:2025-07-16 06:07:34 浏览:845
三点钟区块链共享咖啡馆 发布:2025-07-16 05:34:09 浏览:394
多因素推动eth交易费用 发布:2025-07-16 05:28:56 浏览:863
数字货币应用模型如何建立 发布:2025-07-16 05:23:30 浏览:886
什么ETH矿机静音效果好 发布:2025-07-16 04:54:52 浏览:886
币圈共振现象 发布:2025-07-16 04:54:44 浏览:3
有人叫我帮买比特币 发布:2025-07-16 04:15:30 浏览:526