怪兽算力nvidia
⑴ 看英伟达新出的A100计算能力很强,现在市面上有没有基于NVIDIA A100构建的AI系统
英伟达的DGX A100单台算力就能够高达5 Peta Flops,拥有超高的计算密度、性能和灵活性,确实很适合做人工智能等开发,上海世纪互联的GPU服务好像就是首款基于A100所构建的AI系统,可以去了解一下
⑵ 为什么NVIDIA近几代游戏显卡的双精度浮点运算能力缩水
这是这几代架构本身的问题,并不是蓄意而为之;
在去年年中时,NV就已经设计好了GK210,并已经成功流片,GK210相比GK110,最大的变化就是寄存器文件、一级缓存容量都翻了一番,分别来到512KB、128KB,寄存器文件、一级缓存增大后,可以明显改进流处理器阵列内的数据吞吐能力,工作更高效,尤其适合高性能计算,这显然是一次针对性的重新设计;
在此时已经有多台高性能计算机已经搭载了GK210的高性能计算卡,在Maxwell已经成功流片时再一次改进GK110,NVIDIA前两年还在提的每瓦特双精度性能比的概念现在变成了“混合精度”,不再刻意强调双精度了;
Maxwell核心的Tesla卡并不会出现,取而代之的是Kepler依然横行于Tesla计算卡市场,而Pascal也许会对双精度能力再次进行阉割。
至于GTX TITAN Z在CUDA7中降低了双精度能力,GTX TITAN Z是完整的两颗GK110核心,在选择了风冷散热之后,不得不将卡的厚度扩充至三层,并且频率降低到了705MHz,boost876MHz,此时多余的DP unit已经成为了拖累GTX TITAN Z的功耗因素之一,并且作为一张游戏卡,GTX TITAN Z并没有配备ECC显存,这是专业计算非常大的漏洞,因此最终NVIDIA选择关闭了GTX TITAN Z的双精度能力。
Kepler改用双精度单元独立式设计, CUDA 核中的FP unit(浮点单元)具备单精度计算能力,对双精度浮点计算仅开放支持,并不具备实质的双精度浮点能力,必须要在CUDA旁添加双精度浮点单元(DP unit)辅助CUDA核进行双精度浮点计算,才能让CUDA核具备双精度浮点能力;
而GTX TITAN是个例外,为了符合其的跨界身份,并没有选择完全降低DP unit的频率,NVIDIA在驱动中提供了Titan双精度的手动开关,开启时DP unit和CUDA运行在相同频率,具有1/3DP能力,关闭时DP unit运行在CUDA 1/8频率,保持和Kepler游戏卡相同的1/24 DP能力,使Titan达到游戏卡相同的功耗温度水平;
所以这几代游戏卡双精度能力的降低和Maxwell双精度能力的孱弱是设计架构的理念与方向所造成的,并不是故意为了提高Tesla卡的出货量,Tesla面对的是专业领域,游戏卡并不具备ECC显存的功能,专业领域的用户也本身并不会考虑游戏卡。
⑶ 英伟达发布史上最强计算平台,黄教主:自动驾驶不再担心算力问题
原本应该在今年 3 月份于加州圣何塞举办的英伟达 GTC 2020 大会,因为全球性新冠病毒肺炎的爆发而不得不推迟举行。
比原计划晚了将近 2 个月,英伟达 GTC 2020 终于在 5 月 14 日回归。
不过这一次开发者们没办法在线下集会,只能通过线上直播观看「皮衣教主」黄仁勋的主题演讲。老黄此次是在他硅谷的家中完成了这场别开生面的「Kitchen Keynote」。
虽然是厨房举行,英伟达依然爆出「核弹」,发布了全新一代的 GPU 架构 Ampere(安培)。
在自动驾驶方向上,英伟达通过两块 Orin SoC 和两块基于安培架构的 GPU 组合,实现了前所未有的?2000 TOPS?算力的 Robotaxi 计算平台,整体功耗为?800W。
有业界观点认为,实现 L2 自动驾驶需要的计算力小于 10 TOPS,L3 需要的计算力为 30 - 60 TOPS,L4 需要的计算力大于 100 TOPS,L5 需要的计算力至少为 1000 TOPS。
现在的英伟达自动驾驶计算平台已经建立起了从?10TOPS/5W,200TOPS/45W?到?2000 TOPS/800W?的完整产品线,分别对应前视模块、L2+ADAS?以及?Robotaxi?的各级应用。
从产品线看,英伟达?Drive AGX?将全面对标 Mobileye?EyeQ?系列,希望成为量产供应链中的关键厂商。
1、全新 GPU 架构:Ampere(安培)
2 个月的等待是值得的,本次 GTC 上,黄仁勋重磅发布了英伟达全新一代 GPU 架构 Ampere(安培)以及基于这一架构的首款 GPU NVIDIA A100。
A100 在整体性能上相比于前代基于 Volta 架构的产品有 20 倍的提升,这颗 GPU 将主要用于数据分析、专业计算以及图形处理。
在安培架构之前,英伟达已经研发了多代 GPU 架构,它们都是以科学发展史上的伟人来命名的。
比如 Tesla(特斯拉)、Fermi(费米)、Kepler(开普勒)、Maxwell(麦克斯维尔)、Pascal(帕斯卡)、Volta(伏特)以及 Turing(图灵)。
这些核心架构的升级正是推动英伟达各类 GPU 产品整体性能提升的关键。
针对基于安培架构的首款 GPU A100,黄仁勋细数了它的五大核心特点:
集成了超过 540 亿个晶体管,是全球规模最大的 7nm 处理器;引入第三代张量运算指令 Tensor Core 核心,这一代 Tensor Core 更加灵活、速度更快,同时更易于使用;采用了结构化稀疏加速技术,性能得以大幅提升;支持单一 A100 GPU 被分割为多达 7 块独立的 GPU,而且每一块 GPU 都有自己的资源,为不同规模的工作提供不同的计算力;集成了第三代 NVLink 技术,使 GPU 之间高速连接速度翻倍,多颗 A100 可组成一个巨型 GPU,性能可扩展。
这些优势累加起来,最终让 A100 相较于前代基于 Volta 架构的 GPU 在训练性能上提升了?6 倍,在推理性能上提升了?7 倍。
最重要的是,A100 现在就可以向用户供货,采用的是台积电的 7nm 工艺制程生产。
阿里云、网络云、腾讯云这些国内企业正在计划提供基于 A100 GPU 的服务。
2、Orin+安培架构 GPU:实现 2000TOPS 算力
随着英伟达全新 GPU 架构安培的推出,英伟达的自动驾驶平台(NVIDIA Drive)也迎来了一次性能的飞跃。
大家知道,英伟达此前已经推出了多代 Drive AGX 自动驾驶平台以及 SoC,包括?Drive AGX Xavier、Drive AGX Pegasus?以及?Drive AGX Orin。
其中,Drive AGX Xavier 平台包含了两颗 Xavier SoC,算力可以达到 30TOPS,功耗为 30W。
最近上市的小鹏 P7 上就量产搭载了这一计算平台,用于实现一系列 L2 级自动辅助驾驶功能。
Drive AGX Pegasus 平台则包括了两颗 Xavier SoC 和两颗基于图灵架构的 GPU,算力能做到 320TOPS,功耗为 500W。
目前有文远知行这样的自动驾驶公司在使用这一计算平台。
在 2019 年 12 月的 GTC 中国大会上,英伟达又发布了最新一代的自动驾驶计算 SoC Orin。
这颗芯片由 170 亿个晶体管组成,集成了英伟达新一代 GPU 架构和 Arm Hercules CPU 内核以及全新深度学习和计算机视觉加速器,最高每秒可运行 200 万亿次计算。
相较于上一代 Xavier 的性能,提升了 7 倍。
如今,英伟达进一步将自动驾驶计算平台的算力往前推进,通过将两颗 Orin SoC 和两块基于安培架构的 GPU 集成起来,达到惊人的 2000TOPS 算力。
相较于 Drive AGX Pegasus 的性能又提升了 6 倍多,相应地,其功耗为 800W。
按一颗 Orin SoC 200TOPS 算力来计算,一块基于安培架构的 GPU 的算力达到了 800TOPS。
正因为高算力,这个平台能够处理全自动驾驶出租车运行所需的更高分辨率传感器输入和更先进的自动驾驶深度神经网络。
对于高阶自动驾驶技术的发展而言,英伟达正在依靠 Orin SoC 和安培 GPU 架构在计算平台方面引领整个行业。
当然,作为一个软件定义的平台,英伟达 Drive AGX 具备很好的可扩展性。
特别是随着安培 GPU 架构的推出,该平台已经可以实现从入门级 ADAS 解决方案到 L5 级自动驾驶出租车系统的全方位覆盖。
比如英伟达的 Orin 处理器系列中,有一款低成本的产品可以提供 10TOPS 的算力,功耗仅为 5W,可用作车辆前视 ADAS 的计算平台。
换句话说,采用英伟达 Drive AGX 平台的开发者在单一平台上仅基于一种架构便能开发出适应不同细分市场的自动驾驶系统,省去了单独开发多个子系统(ADAS、L2+ 等系统)的高昂成本。
不过,想采用 Orin 处理器的厂商还得等一段时间,因为这款芯片会从 2021 年开始提供样品,到?2022 年下半年才会投入生产并开始供货。
3、英伟达自动驾驶「朋友圈」再扩大
本届 GTC 上,英伟达的自动驾驶「朋友圈」继续扩大。
中国自动驾驶公司小马智行(Pony.ai)、美国电动车创业公司?Canoo?和法拉第未来(Faraday Future)加入到英伟达的自动驾驶生态圈,将采用英伟达的 Drive AGX 计算平台以及相应的配套软件。
小马智行将会基于 Drive AGX Pegasus 计算平台打造全新一代 Robotaxi 车型。
此前,小马智行已经拿到了丰田的 4 亿美金投资,不知道其全新一代 Robotaxi 会不会基于丰田旗下车型打造。
美国的电动汽车初创公司 Canoo 推出了一款专门用于共享出行服务的电动迷你巴士,计划在 2021 年下半年投入生产。
为了实现辅助驾驶的系列功能,这款车型会搭载英伟达 Drive AGX Xavier 计算平台。前不久,Canoo 还和现代汽车达成合作,要携手开发电动汽车平台。
作为全球新造车圈内比较特殊存在的法拉第未来,这一次也加入到了英伟达的自动驾驶生态圈。
FF 首款量产车 FF91 上的自动驾驶系统将基于 Drive AGX Xavier 计算平台打造,全车搭载了多达 36 颗各类传感器。
法拉第未来官方称 FF91 有望在今年年底开始交付,不知道届时会不会再一次跳票。
作为 GPU 领域绝对霸主的英伟达,在高算力的数据中心 GPU 以及高性能、可扩展的自动驾驶计算平台的加持下,已经建起了一个完整的集数据收集、模型训练、仿真测试、远程控制和实车应用的软件定义的自动驾驶平台,实现了端到端的完整闭环。
同时,其自动驾驶生态圈也在不断扩大,包括汽车制造商、一级供应商、传感器供应商、Robotaxi 研发公司和软件初创公司在内的数百家自动驾驶产业链上的企业已经在基于英伟达的计算硬件和配套软件开发、测试和应用自动驾驶车辆。
未来,在整个自动驾驶产业里,以计算芯片为核心优势,英伟达的触角将更加深入,有机会成为产业链条上不可或缺的供应商。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
⑷ NVIDIA SLI有什么用,如何开SLI
NVIDIA SLI的作用:
NVIDIA的SLI就是NVIDIA的双显卡技术,和AMD的双显卡交火技术类似。
开SLI需要:
SLI必须要有两块独立显卡,而且型号必须一致,这样两块显卡才能够同时工作,其性能也非常强悍,不过价格和成本也很高,而且对电源的要求也比较高,没有600W额定功率搞不定。要开启SLI,最关键的是主板必须支持这个功能。否则无法开启。
⑸ 请问如何计算NVIDIA TX2的计算能力
sisoftware 类似软件测峰值计算能力
⑹ 感觉nvidia开普勒构架计算能力太弱了 双精度阉割没了都 quadro k5000渲染AE还
开普勒为了提升能耗比,将双精度阉割殆尽,大概只剩下24分之一,费米之前是二分之一。
K5000的双精度只有90GF,而Q4000的双精度是240GF,接近三倍的差距。
Nvidia希望用户多用CUDA做通算,或者选择GK110核心的产品,比如K6000(双精度1700GF),商人使然。
⑺ NVIDIA GeForce GT 610M运行CUDA时的计算能力
GT610m实际是GT520m的超频版,入门级显卡,低端。
着色器数量:48Unified
制造工艺:40nm
光栅单元:4
位宽:64bit
容量:2048M
运算能力为:
像素填充率:1.7GPixel/S
纹理填充率:6.8GTexel/S
显存带宽:12.8GB。
希望帮到你。
⑻ gpu计算能力1.0是什么意思
计算能力是Nvidia公司在发布CUDA(统一计算架构,Compute Unified Device Architecture,一种对GPU进行编程的语言,类似于C语言对CPU进行编程)时提出的一个概念。因为显卡本身是一个浮点计算芯片,可以作为计算卡使用,所以显卡就具有计算能力。不同的显卡具有不同的计算能力,为了以示区分,Nvidia就在不同时期的产品上提出了相应版本的计算能力x.x。计算能力1.0出现在早期的图形卡上,例如,最初的8800 Ultras和许多8000系列卡以及Tesla C/D/S870s卡,与这些显卡相应发布的是CUDA1.0。今天计算能力1.0已经被市场淘汰了。此后还有计算能力1.1,这个出现在许多9000系列图形卡上。计算能力1.2与GT200系列显卡一起出现,而计算能力1.3是从GT200升级到GT200 a/b修订版时提出的。再往后还有计算能力2.0、2.1、3.0等版本。最新发布的版本是计算能力6.1,由最新的帕斯卡架构显卡所支持,同时CUDA版本也更新到CUDA8.0。
对于普通用户无需关心显卡的计算能力,只有GPU编程人员在编写CUDA程序,对GPU的计算进行开发时才关心这个问题。只要知道自己电脑所带的显卡型号就能查询到相应的计算能力,这里贴上官方网址:https://developer.nvidia.com/cuda-gpus。
⑼ 求历代英伟达显卡架构名称
NVIDIA显卡的核心微架构经历了特斯拉(Tesla)、费米(Fermi)、开普勒(Kepler)、麦克斯韦尔(Maxwell)、帕斯卡(Pascal)、图灵(Turing)。
CPU架构是CPU厂商给属于同一系列的CPU产品定的一个规范,主要目的是为了区分不同类型CPU的重要标示。目前市面上的CPU指令集分类主要分有两大阵营,一个是intel、AMD为首的复杂指令集CPU,另一个是以IBM、ARM为首的精简指令集CPU。
NVIDIA显卡架构详情如下:
2000年—收购图形技术先驱3dfx;2001年—进入集成图形市场;2002年—被《财富》杂志评为美国成长最快的公司;2003年—收购MediaQ;2004年—SLI发布,大幅提升了单台PC的图形处理能力;2005年—为索尼游戏机开发处理器;2006年—革命性CUDA架构亮相;
2007年—被《福布斯》评选为年度最佳企业;2008年—Tegra移动处理器问世;2009年—首届GPU技术大会,推出Fermi架构;2010年—助力世界上最快的超级计算机;2011年—收购基带领先者ICERA;2012年—推出基于Kepler架构的GPU;2013年——推出Tegra4系列处理器;
2014年—发布TegraK1SHIELD平板电脑,安卓游戏大火;2015年—深耕深度学习;2016年—驱动AI革命;2017年—Volta架构问世,进一步推动现代AI;2018年—Turing架构问世,重新定义了计算机图形;2019年—AI算力将持续革新各行各业;