当前位置:首页 » 算力简介 » ug怎么算冲裁力

ug怎么算冲裁力

发布时间: 2021-11-03 07:10:26

⑴ ug 可以模拟计算拉力强度吗

UG高级仿真中受力分析,需要学习UG下的高级仿真模块的有限元分析,按照你的零件数据填写,生成解算。

⑵ UG计算公式有多少种

[分享] 关于锻造展宽的计算公式探讨公式, 展宽, 锻造, 探讨公式, 展宽, 锻造, 探讨 关于锻造展宽的计算公式探讨
问题的由来

镦粗和拔长是自由锻造最基本的工序,各种锻件中的绝大部分都是以拔长工序为主完成最终成形的。

将圆形截面的坯料拔长锻或矩形截面的长条类锻件也是自由锻造中的常见工序,如何根据锻件最终要求的矩形截面尺寸来选择拔长初始坯料直径是至关重要的工程实际问题。

如果原料直径选择偏小,可能导致最终锻出的矩形截面尺寸达不到要求,这样一来,在无法采取镦粗修复的情况下就要全面报废;如原料直径选择过大,又可能会把本该一火锻成的锻件需经多次加热、锻造才能完成,势必造成极大的资源浪费,使生产成本提高。

长期以来,这个问题一直困扰着在锻压生产一线工作的工程技术人员。在2005年的5月间,一位从金属塑性成形专业(即锻压专业)大学本科毕业後已经工作了10 年的某锻造厂厂长仍亲自来和本文作者探讨此类问题,并为在校所学锻造成形理论的苍白无力而慨叹。

计算公式的研讨历史

为了根据锻件矩形截面的几何尺寸(B、H)求得拔长初始坯料直径(D)的计算公式,首先应该研究圆形截面坯料在平砧间拔长过程中的变形规律,很多前辈学者都为此付出了努力。

理论研究表明,影响拔长锻造展宽的因素很多,完全可以基於经典的数学和力学理论,导出具有一定通用性的、可以定量使用的截面变换计算公式是很困难的,因而,为了满足解决工程实际问题的需要,仍然不得不使用经验公式。

近30年来,在我国几种有影响的专业技术期刊上,发表过很多介绍有关经验公式的文章。在此不再一一列举,下文将先来分析这些公式的使用效果如何。

现行计算公式的使用效果

坯料在拔长过程中会发生展宽和伸长,这两种变形不仅使拔长後的坯料截面面积减小,也可以使截面形状按预定要求进行变换。目前理论书籍中最为流行的截面变换经验计算公式如表1。 表1 拔长过程坯料截面变换经验计算公式
数十年的生产实践表明,公式3-1和3-2是完全实用可靠的,它已经得到了业内人士的普遍认可,几乎成为每一位在锻造生产一线工作的技术人员和中、高级锻造技工必备的基本常识。

但公式3-3却是不能尽如人意的,可以举例试用一下:

如要拔长锻造一个矩形截面尺寸为B1=100mm,H1=50mm的长条扁钢锻件,试求拔长初始的圆钢坯料直径D1应是多少?则: 如要锻造另一个稍薄的同类锻件,B2=100mm,H2=48mm,该使用多大的圆钢来拔长呢?则: 那麽,现在可以对比这两个范例。两锻件的截面厚宽比H/B之差仅为0.02,但计算出的拔长初始坯料直径却相差29.2mm。如以D1为基础直径,则相对差异为26%;若以D2为基础直径,相对差异竟达35.4%。

这种计算结果显然对工程实践失去了指导意义,是不能被公式使用者所接受的。也正因如此,才出现了前文所提及的各种各样、不同版本的计算公式。

笔者推荐的计算公式

在几何学中,正方图形只是矩形、即扁方图形的一个特例(H=B),而在拔长过程中,截面从圆形到正方形的变换却是已有成熟规律可循的,即公式3-1。

认真观察图1可以发现,拔长後能够锻出的最大正方形截面恰恰就是初始坯料截面圆的内接正方形,即,这正好在公式3-1的计算幅度之内,二者是吻合的。
图1 圆和内接正方形图中,用金属材料剖面符号表示的上、下、左、右四块面积相同的弓形到哪 去了呢?其实,它们是在拔长过程中,经不断的90°翻转送进和砧块在坯料两向的等量压下中,以伸长变形的方式消失了。

依此类推,如果在每次翻转後采用两向不等的压下,逐渐消除两向不等的弓形部分,自然就会把初始的圆形截面变换成两向长度不等的矩形。

按照这种设想,使用多次重复作图、逐渐逼近的方法,可得到与既往都不相同的计算公式: 对推荐公式的讨论

公式4-1是一个二元初等函数,按一定的赋值方法,汇出其二维图像。

函数的图像是连续的。这表明此计算公式的数学表达式符合“初等函数在其定义域内应该处处连续”的基本法则,满足了“必要与充分”的要求。

用此公式对表1所列各种技术文献举出的实例和作者本人在多年生产实践中记录下的数据,共74组进行了验算,计算结果表明:

此公式对锤上锻造和小型水压机上的自由锻造完全适用。参照这个计算结果选用拔长坯料的初始直径是安全的,不会发生因最终锻出的矩形截面尺寸达不到要求而使锻件整体报废的事故。

如果锤上锻造时采用顺砧拔长(拔长送进方向与砧块长度方向一致)和使用特殊工具(开板)等工艺措施,计算结果可能还较大,偏於保守。

在大型水压机上锻造宽厚板的生产实例很少,可以参照的数据有限。验算表明,用此公式的计算结果偏小,误差在10%左右。此误差也小於用公式3-3的计算结果。

但应指出,宽厚板锻造要先对钢锭镦粗後再拔长,拔长的初始坯料并不是规整的圆柱体,而是多棱钢锭倒棱镦粗後带有鼓肚的异形体,拔长初始坯料直径D是怎样测定的?是否和本文中所谈的D含义相同?对此,在有关文献中并无表述。

3. 对此公式进行最基本的数学演算,可以求得计算拔长展宽的公式: 由此公式可以看出,拔长的最大展宽应该出现在厚度很小(H→0)的情况下,如设H=0,则: 这个纯数学结论是否可供工程实践中参考?有待进一步的验证和斟酌。

此处也特别提醒,和单向压下的轧制变形不同,锻造拔长是对坯料进行两向压下变形後完成的,因而它的展宽是有限的。不管锻件厚度H怎样小,它也必须是一段能够构成矩形的直线,这是进行验证的前提。

结论和寄语

在生产实践中,锻造温度、拔长时的压下量和送进量、坯料的材质及截面形状、锻锤或水压机的吨位及砧块尺寸、甚至砧块的磨损程度和翻转送的操作方法,都会影响拔长锻造的展宽量,即B=f(x1, x2, ……, xn)。

严格地讲,研究这种复杂的工艺过程,应该在大量实验的基础上使用现代数学的概率统计、回归分析等方法,但本文推荐的公式并不是这样求得的,它仍然只是一个经验公式。随着计算机技术的飞速发展,相信必将会有更多与金属塑性成形有关的软件被开发出来,用於工程实际问题中的计算和定量分析,尽量减少或不再使用传统的“经验公式”。 (end)收藏 分享 0 0 0 支持 反对

⑶ 怎样用UG分析力的大小

首先建立一个三维模型,点开始-选择设计仿真-进入仿真模块-提示建立仿真,选择解算器(特别注意勾选解算选项),具体搜论坛(仿真),看看视频

⑷ UG6.0怎么搞力学分析

高级仿真的功能。 由高级仿真使用的文件。 高级仿真入门 使用高级仿真的基本工作流程。 创建 FEM 和仿真文件。 用在仿真导航器中的文件。 在高级仿真中有限元分析工作的流程。 1.1 综 述 UG NX4 高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工 程师与分析师的需要。高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能 评估解法。图 1-1 所示为一连杆分析实例。 图 1-1 连杆分析实例 高级仿真提供对许多业界标准解算器的无缝 、透明支持,这样的解算器包括 NX Nastran、MSC Nastran、ANSYS 和 ABAQUS。例如,如果结构仿真中创建网格或解法,则 指定将要用于解算模型的解算器和要执行的分析类型。本软件使用该解算器的术语或“语 言”及分析类型来展示所有网格划分、边界条件和解法选项。另外,还可以求解模型并直 接在高级仿真中查看结果,不必首先导出解算器文件或导入结果。 高级仿真提供基本设计仿真中需要的所有功能, 并支持高级分析流程的众多其他功能。 高级仿真的数据结构很有特色,例如具有独立的仿真文件和 FEM 文件,这有利 于在分布式工作环境中开发有限元(FE)模型。这些数据结构还允许分析师轻松 地共享 FE 数据去执行多种类型分析。 2 UG NX4 高级仿真培训教程 高级仿真提供世界级的网格划分功能。本软件旨在使用经济的单元计数来产生高 质量网格。结构仿真支持完整的单元类型(1D、2D 和 3D)。另外,结构级仿真 使分析师能够控制特定网格公差。例如,这些公差控制着软件如何对复杂几何体 (例如圆角)划分网格。 高级仿真包括许多几何体简化工具,使分析师能够根据其分析需要来量身定制 CAD 几何体。例如,分析师可以使用这些工具提高其网格的整体质量,方法是消 除有问题的几何体(例如微小的边)。 高级仿真中专门包含有新的 NX 传热解算器和 NX 流体解算器。 NX 传热解算器是一种完全集成的有限差分解算器。它允许热工程师预测承受 热载荷系统中的热流和温度。 NX 流体解算器是一种计算流体动力学(CFD)解算器。它允许分析师执行稳 态、不可压缩的流分析,并对系统中的流体运动预测流率和压力梯度,也可 以使用 NX 传热和 NX 流体一起执行耦合传热/流体分析。 1.2 仿真文件结构 当向前通过高级仿真工作流时,将利用 4 个分离并关联的文件去存储信息。要在高级 仿真中高效地工作,需要了解哪些数据存储在哪个文件中,以及在创建那些数据时哪个文 件必须是激活的工作部件。这 4 个文件平行于仿真过程,如图 1-2 所示。 图 1-2 仿真文件结构 正被分析的原设计部件 一个有.prt 扩展名的部件文件。例如,一个可以被命名为 plate.prt 的部件。 部件文件含有主模型部件或一装配,及一个未修改的部件几何体。 如果用一个由其他人设计的模型启动,可能没有修改它的权艰。在分析过程时期,通 常主模型部件文件是不被修改的。 设计部件文件的理想化复制 当一个理想化部件文件被建立时,默认有一.prt 扩展名,fem#_i 是对部件名的附加。 例如,如果原部件是 plate.prt,一个理想化部件被命名为 plate_fem1_i.prt。 一个理想化部件是原设计部件的一个相关复制,可以修改它。 理想化工具让用户利用理想化部件对主模型的设计特征做改变。不修改主模型部件, 第1章 高级仿真入门 3 而按需要在理想化部件上执行几何体理想化。例如,可以移去和抑制特征,如在分析中被 忽略的小的几何细节。 对同一原设计部件文件的不同类型分析可以使用多个理想化文件。 有限元模型(FEM)文件 当建立一 FEM 文件时默认有一个.fem 扩展名,_fem#是对部件名的附加。例如,如果 原部件是 plate.prt,一个 FEM 文件被命名为 plate_fem1.fem。 一个有限元模型文件含有网格(节点与单元)、物理特性和材料。 一旦建立了网格,可以利用简化工具移去可以影响网格总质量设计中的人为对象,如 细长条面、小边缘和峡部条件。简化工具允许相应一特定有限元分析在充分捕捉设计意图 的细节级上网格化几何体。 几何体提取发生在存储于 FEM 中的多边形几何体上, 而不是在理想化的或主模型的部 件中。 多个 FEM 文件可以引用同一理想化部件,可以对不同类型构建不同的 FEM 文件。 仿真文件 当建立一仿真文件时,默认一个仿真文件有一.sim 扩展名,_sim#是对部件名的附加。 例如,如果原部件是 plate.prt,一个仿真文件被命名为 plate_sim1.sim。 仿真文件含有所有仿真数据,如解答、解算设置、载荷、约束、单元相关的数据、物 理特性和压制,可以对文件建立许多关联到同一 FEM 的仿真文件。 当执行多个分析类型时,4 个分离的文件提供灵活性。如果允许更新,4 个文件是关 连的。 1.3 高级仿真工作流程 在开始一个分析前,应该对试图求解的问题有一彻底了解。应该知道将利用哪个求解 器,正在执行什么类型的分析和需要什么类型的解决方案。下列简要摘录了在结构仿真中 通用的工作流程。 (1)在 NX 中,打开一部件文件。 (2)启动高级仿真应用。为 FEM 和仿真文件规定默认求解器(设置环境,或语言)。 注意:也可以选择先建立 FEM 文件,然后再建立仿真文件。(3)建立一解决方案。选择求解器(如 NX Nastran)、分析类型(如 Structural)和 解决方案类型(如 Linear Statics)。 (4) 如果需要, 理想化部件几何体。 一旦使理想化部件激活,可以移去不需要的细节, 如孔或圆角,分隔几何体准备实体网格划分或建立中面。 (5)使 FEM 文件激活,网格划分几何体。首先利用系统默认自动地网格化几何体。 在许多情况下系统默认提供一好的高质量的网格,可无须修改使用。 4 UG NX4 高级仿真培训教程 (6)检查网格质量。如果需要,可以用进一步理想化部件几何体细化网格,此外在 FEM 中可以利用简化工具,消除当网格划分模型时由 CAD 几何体可能引起的不希望结果 的问题。 (7)应用一材料到网格。 (8)当对网格满意时,使仿真文件激活、作用载荷与约束到模型。 (9)求解模型。 (10)在后处理中考察结果。 1.4 仿真导航器 仿真导航器(Simulation Navigator)提供在一树状结构中,一个观察和操纵一 CAE 分 析的不同文件和组元的图形方法。每一个文件和组元被显示为在树中的一分离节点,如 图 1-3 所示。 在仿真导航器中提供了直接存取直通快捷菜单。可以在仿真导航器中直接执行大多数 操作,代替使用图标或命令。例如,建立一新的求解定义,可以把载荷和约束从一容器拖 到仿真导航器的另一个中。 图 1-3 仿真导航器 第1章 高级仿真入门 5 1.4.1 在 仿 真 导 航 器 中 的 节 点仿真导航器的顶部面板列出显示文件的内容。如图 1-4 所示为在一个顶级仿真文件内 的容器例子。选中复选框可以控制项目的显示。 图 1-4 仿真导航器中的各种节点 表 1-1 所示的是仿真导航器中各种节点的高级综述。表 1-1 仿真导航器节点描述 图 标 节 点 名 节 点 描 述 含有所有仿真数据,如专门求解器、解决方案、 解决方案设置、 仿真 仿真对象、 载荷、 约束和压制。 可以有多个仿真文件与一单个 FEM 文件关联 含有所有网格数据、物理特性、材料数据和多边形几何体。FEM FEM 文件总是相关到理想化。 可以关联多个 FEM 文件到一单个理想化 部件 理想化部件 主模型部件 含有理想化部件,当建立一 FEM 时由软件自动建立 当主模型部件是工作部件时,在主模型部件节点上右击建立一新 的 FEM 或显示已有的理想化部件 含有多边形几何体( 多边形体、表面和边缘)。一旦网格化有限 多边形几何体 元模型,任何进一步几何体提取发生在多边形几何体上,而不是 在理想化或主模型部件上 6 UG NX4 高级仿真培训教程 续表 图 标 节 点 名 含有所有零维(0D)网格 含有所有一维(1D)网格 含有所有二维(2D)网格 含有所有三维(3D)网格 含有解算器和解决方案专有的对象,如自动调温器、表格或流动 表面 含有指定到当前仿真文件的载荷。在一解决方案容器内,载荷容 器(Load Container)含有指定到给件子工况的载荷 含有指定到当前仿真文件的约束。在一解决方案容器内, 约束容 器(Constraint Container)含有指定到解决方案的约束 含有解决方案对象、载荷、约束和对解决方案的子工况 含有一解决方案内每一个子工况解决方案的 实体,如载荷、约束 和仿真对象 含有从一求解得来的任一结果。在后置处理器中, 可以打开结果 结果 节点,并利用在仿真导航器内的可见复选框去控制各种结果组的 显示 节 点 描 述 0D 网格 1D 网格 2D 网格 3D 网格 仿真对象容器 载荷容器 约束容器 解决方案 子工况步 1.4.2 仿 真 文 件 视 图仿真文件视图是一个特殊浏览器窗口,存在于仿真导航器中。该窗口: 显示所有已加载的部件, 以及这些部件到主模型部件层次关系中的所有 FEM 和仿 真文件。 允许轻松更改显示的部件,方法是双击要显示的部件。 如果某一实体正在显示,图标则显示为彩色,且名称会高亮显示。 如果某一实体不在显示,图标则变灰。 允许在任何设计或理想化部件上创建新的 FEM 和仿真文件,而不必首先显示 部件。 仿真文件视图如图 1-5 所示。 第1章 高级仿真入门 7 图 1-5 仿真文件视图 1.5 练 习 在本练习中利用一三维实体网格,分析一个连接杆部件,了解高级仿真工作流程,并 学习: 打开部件及建立 FEM 和仿真文件。 在网格化前理想化几何体。 网格化部件。 为网格定义一材料。 作用载荷和约束到部件。 求解模型。 观察分析结果。 第 1 步 打开部件,启动高级仿真 在 NX 中,打开 rod.prt 部件,如图 1-6 所示。 启动 Advanced Simulation 应用。 选择 Start→All Applications→Advanced Simulation。 在资源条上,单击 Simulation Navigator 图标 。 单击销(pin)图标 保持仿真导航器打开。 在仿真导航器中,右击 rod.prt 并选择 New FEM and Simulation。 如图 1-7 所示, New FEM and Simulation 对话框列出 3 个已自动建立的新文件。 Default 8 UG NX4 高级仿真培训教程 Language 下 NX NASTRAN 为求解器,Analysis Type 选择 Structural。 图 1-6 rod.prt 图 1-7 New FEM and Simulation 对话框 单击 New FEM and Simulation 对话框中的 OK 按钮。 出现 Create Solution 对话框,如图 1-8 所示,默认 Solver 是 NX NASTRAN。 单击 Create Solution 对话框中的 OK 按钮。 Simulation Navigator 显示 Simulation 和 FEM 文件,如图 1-9 所示。 图 1-8 Create Solution 对话框 图 1-9 仿真导航器 第 2 步 理想化几何体 对此练习,某些设计特征可以从部件移去,因为它们对分析是不重要的。 在 Simulation Navigator 中, 如果Simulation File View 是被折叠, 单击 Simulation File 第1章 高级仿真入门 9 View 条打开它。 双击 rod_fem1_i。 提示:也可以选择文件名,右击并选择 Make Displayed Part。理想化的部件现在在仿真导航器中被激活。 在 Advanced Simulation 工具栏中,单击 Idealize Geometry 图标 随 Idealize 对话框打开,选择部件。 选中 Holes 复选框。 。 注意:设置直径到 10,两个螺栓孔被亮显,因为每一个直径小于或等于 10 mm。 单击 OK 按钮。 孔从理想化部件被移去,如图 1-10 所示。 图 1-10 理想化部件 单击 Save 图标 ,存储激活的文件。 第 3 步 划分部件网格 为了划分部件网格,首先需要使 FEM 文件激活。 在 Simulation File View 中,双击 rod_fem1。 FEM 文件被激活并列在仿真导航器的顶部 。 在 Advanced Simulation 工具栏上,单击 3DTetrahedral Mesh 图标 网格。 随 3D Mesh 对话框打开,选择实体。 从 Type 列表选择 CTETRA(10)单元。 。 提示:也可以从仿真导航器中右击 rod_fem1 并选择 New Mesh→3D Tetrahedral,建立 注意:CTETRA(10)和 CTETRA(4)是 NASTRAN 单元类型。 在 Overall Element Size 框中加入 4.0。 单击 OK 按钮建立网格,如图 1-11 所示。 如图 1-12 所示,3D 网格被列在 Simulation Navigator 中。 10 UG NX4 高级仿真培训教程 图 1-11 网格化部件 图 1-12 网格节点 单击 Save 图标 ,存储 FEM 文件。 。 第 4 步 为网格定义一材料 在 Advanced Simulation 工具栏上,单击 Material Properties 图标 提示:也可以选择 Tools→ Material Properties。 在 Materials 对话框中,单击 Library 图标 。 在 Search Criteria 对话框中,单击 OK 按钮。 在 Search Result 对话框中,选择名为 Steel 的材料,然后单击 OK 按钮。 材料特性被加载到 Materials 对话框中。作用材料到网格。 使在 Materials 对话框中的 STEEL 被亮显。 在 Simulation Navigator 中,单击(选择)3d_mesh(1)选择网格。 在对话框中,单击 OK 按钮。 库材料被连接到网格。利用 Simulation Navigator,检查材料是否已被作用到网格。 在 Simulation Navigator 对话框中,右击 3d_mesh(1)和选择 Edit Attributes。 在 Element Attributes 对话框中,检查 STEEL 被列出为作用到网格的材料。 单击 Cancel 按钮。 存储文件。 第 5 步 作用一轴承载荷 在 Simulation File View 窗口中,双击 rod_sim1。在仿真导航器中使 Simulation 文 件激活。 关断网格显示,因而方便曲面选择。 在 Simulation Navigator 中不选中 3d_mesh(1)复选框,如图 1-13 所示。 在 Advanced Simulation 工具栏上,单击 Load Type 图标 Bearing 图标 。 中的箭头,然后单击 第1章 高级仿真入门 11 图 1-13 关断 3D 网格显示 注意:也可以利用 Simulation Navigator,在激活的解决方案(Solution 1)中,右击 Loads,并选择 New Load→ Bearing 去建立载荷。 轴承载荷要求规定一柱形表面(或圆形边缘),和一规定最大载荷方向的矢量。 首先,选择几何体——轴承载荷将作用的柱面。 打开 Create Bearing 对话框,选择在部件右端的柱面,如图 1-14 所示。 图 1-14 选择载荷作用表面 在 Force 文本框中输入 1000。 注意:区域角(Region Angle)设置到 180。这意味着载荷将作用到柱面超过 180°。其次,选择要定义的最大载荷的矢量方向。 单击 Inferred Vector 图标 中的箭头,并单击– Axis 图标 YC 。 单击 OK 按钮。 载荷建立并显示在图形中,如图 1-15 所示。 在载荷上显示的箭头是一 bit,利用 BC Edit Display 对话框改变边界条件的外貌。 在 Simulation Navigator 中右击 Solution (1) 下的 Bearing 1) ( 载荷, 然后选择 Style。 在 BC Edit Display 对话框中,微微移动 Scale 滑块向左减少箭头尺寸,然后单击 OK 按钮。 箭头尺寸改变,如图 1-16 所示。 12 UG NX4 高级仿真培训教程 图 1-15 建立并显示载荷 图 1-16 修改后的载荷显示 第 6 步 作用第一约束 利用一销住约束,在杆的一端约束大的弯曲面。该约束将仿真此面怎样与另一部件上 的对应面匹配。 一个销住约束定义一旋转轴。一旦选择了一柱面,建立一柱坐标系,R 和 Z 方向将被 固定,Theta(旋转)方向是自由的。 在 Advanced Simulation 工具栏上, 单击 Constraint Type 图标 击 Pinned Constraint 图标 。 中的箭头, 然后单 注意: 也可以利用 Simulation Navigator, 在激活的解决方案 (Solution 1) 中右击 Constraints 并选择 New Constraint→Pinned Constraint。 打开 Create Pinned Constraint 对话框,选择在连接杆底部的大弯曲面,如图 1-17 所示。 单击 OK 按钮。 约束被作用的显示。由约束建立的圆柱坐标系也是可见的,如图 1-18 所示。 图 1-17 选择底部的大弯曲面 图 1-18 建立与显示销住约束 第1章 高级仿真入门 13 第 7 步 作用第二约束 部件已被约束,但绕 Z 轴仍然可自由旋转。现在部件顶部加另一约束,防止一刚体运 动。将利用用户定义的约束,在一个自由度中约束点。 单击 Constraint Type 图标 中的箭头,然后单击 User Defined Constraint 图标 。 。 在 Create User Defined Constraint 对话框中的 DOF1 框中,单击 Fixed 图标 X 平移被固定,所有其他 DOF 保持自由。 放大并选择点:在切槽的顶端处面相遇,如图 1-19 所示。 单击 OK 按钮。 建立约束,如图 1-20 所示。 图 1-19 选择点 图 1-20 建立与显示固定约束 存储文件。 第 8 步 求解模型 现在已定义了网格、材料、载荷和约束,准备求解模型。作为过程的一部分,利用综 合检查,检验模型是否准备完毕。 在 Simulation Navigator 中,右击 Solution 1 并选择 Comprehensive Check,打开 Information 窗口。 考查检查结果。 检查列出的信息和警告。 检查推荐选择 Iterative Solver 选项,它可以改进性能。 检查警告:对销住约束坐标系不同于节点下的坐标系。当作用销住约束时,它利 用一柱坐标系压制在节点下的坐标系。这不会引起任何问题,可以忽略警告。 关闭 Information 窗口。 在 Simulation Navigator 中,右击 Solution 1,并选择 Solution Attributes。 在 Edit Solution 对话框中,选中 Iterative Solver(对 NX Nastran 2.0 和更高版本) 复选框。 单击 OK 按钮。 在 Simulation Navigator 中,右击 Solution 1,并选择 Solve。 14 UG NX4 高级仿真培训教程 提示:也可以在 Advanced Simulation 工具栏上单击 Solve 图标 ,显示 Solve 对话框。注意 Comprehensive Check 要选中。 单击 OK 按钮。 显示 Information 窗口,再次综合检查数据。 如果通过检查,出现 Analysis Job Monitor 对话框,它显示任务正在运行。分析在后台 运行,所以可以继续用 NX 工作,而有限元分析正在被计算。 当任务完成时,关闭 Information 窗口。 在 Analysis Job Monitor 对话框上单击 Cancel 按钮。 现在解算完成,如图 1-21 所示,Results 节点在 Simulation Navigator 中可以见到。 第 9 步 观察分析结果 现在利用后置处理器观察分析结果。 在 Simulation Navigator 中,双击 Results。 提示:也可以单击 Advanced Simulation 工具栏上的 Results 图标 。结果显示在后置处理器窗口中,如图 1-22 所示。 图 1-21 Results 节点 图 1-22 结果显示 显示 Post Control 工具栏,如图 1-23 所示。 图 1-23 Post Control 工具栏 提示: 如果 Post Control 工具栏是不可见的, Application 工具区右击并选择 Post Control。 在第 10 步 在仿真导航器中考察结果 通过简单选择规定需要的类型,可以改变显示的结果类型。注意:默认选择位移类型。 许多结果类型有专门的子类型(数据组元)。在图 1-24 中,Displacement 已经展开以 显示不同数据元。 第1章 高级仿真入门 15 图 1-24 展开的位移节点 在 Simulation Navigator 中,展开 SUBCASE — STATIC LOADS 1 Loads。 展开 Displacement — Nodal。 选中 Y 组元复选框。 显示更新以展示 Y 位移值,如图 1-25 所示。 图 1-25 Y 位移值 第 11 步 退出后置处理器 当完成观察结果时,可以退出后置处理器。 在 Post Control 工具栏上,单击 Finish Post Processing 图标 。 提示:也可以选择 Tools→ Results→ Finish Post Processing。 关闭所有部件文件。

⑸ 0.6MM厚的45钢钢板,冲个直径为6MM的孔.要多少冲裁力 用UG算出来只要100多N,自己用公式算得近6KN,求破

你想啊,100多个牛才10公斤,会破吗?很明显不对啊

⑹ 如何用UG计算落料模具压力中心

不是分析
质量分析
质心
,不规则落料线的压力中心应该不等同于质心。

⑺ UG里面怎么算重量

用产品的密度去进行计算。

⑻ UG怎样把冲压零件展开,算料的尺寸! 件如图所示!

这个要实际试验,计算出来的尺寸是不准确的,因为各个方向延伸不一致,你可以用制图软件画出来,然后查询下尺寸,

⑼ UG软件能否计算出一个物体的承载力

UG高级仿真中受力分析,需要学习UG下的高级仿真模块的有限元分析,按照你的零件数据填写,生成解算。

⑽ 在ug8.0软件里怎样计算材料的强度

第一步:编辑/实体密度(输入实体密度,即比重,并选择单位)
第二步:分析/测量体/选择计量体(即点击实体即激活)出现对话框,在下拉菜单选择质量,重量即显示。

热点内容
去早教中心上班穿什么好 发布:2025-07-11 11:21:20 浏览:970
长三角应用区块链 发布:2025-07-11 11:20:43 浏览:611
区块链比特币2019年走势 发布:2025-07-11 11:16:51 浏览:955
币圈如何看盘产量 发布:2025-07-11 11:13:44 浏览:956
helen经常在周末和妈妈去购物中心 发布:2025-07-11 10:36:40 浏览:827
为什么OK的USDT这么便宜 发布:2025-07-11 10:30:44 浏览:76
宿务机场去市中心 发布:2025-07-11 10:21:35 浏览:634
国金公链数字货币 发布:2025-07-11 10:08:25 浏览:570
资管市场区块链应用场景 发布:2025-07-11 10:02:36 浏览:225
黑客比特币黑产 发布:2025-07-11 09:47:43 浏览:73