力正交分解怎么算
㈠ 力的正交分解
高中物理力学的一种求解方法。
将一个力沿着互相垂直的方向(x轴、y轴)进行分解的方法
]利用正交分解法求合力步骤:第一步,立正交 x、y坐标,这是最重要的一步,x、y坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x与y的方向一定是相互垂直而正交。
第二步,将题目所给定跟要求的各矢量沿x、y方向分解,求出各分量,凡跟x、y轴方向一致的为正;凡与x、y轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。
第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。这是此法的核心一步。
第四步,根据各x、y轴的分量,求出该矢量的大小,一定要表明方向,这是最终的一步。
在高中物理学习中,正确应用正交分解法能够使一些复杂的问题简单化,并有效的降低解题难度.力的正交分解法在整个动力学中都有着非常重要的作用,那么同学们如何运用力的正交法解题呢 [编辑本段]正交分解法的目的和原则把力沿着两个经选定的互相垂直的方向分解叫力的正交分解法,在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算.在力的正交分解法中,分解的目的是为了求合力,尤其适用于物体受多个力的情况,物体受到F1,F2,F3…,求合力F时,可把各力沿相互垂直的x轴,y轴分解,则在x轴方向各力的分力分别为 F1x,F2x,F3x…,在y轴方向各力的分力分别为F1y,F2y,F3y….那么在x轴方向的合力Fx = F1x+ F2x+ F3x+ … ,在y轴方向的合力Fy= F2y+ F3y+ F3y+….合力,设合力与x轴的夹角为θ,则.在运用正交分解法解题时,关键是如何确定直角坐标系,在静力学中,以少分解力和容易分解力为原则;在动力学中,以加速方向和垂直加速度方向为坐标轴建立坐标,这样使牛顿第二定律表达式为:F=ma [编辑本段]运用正交分解法典型例题例1.物体放在粗糙的水平地面上,物体重50N,受到斜向上方向与水平面成300角的力F作用,F = 50N,物体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和地面的支持力分别是多少
解析:对F进行分解时,首先把F按效果分解成竖直向上的分力和水平向右的分力, 对物体进行受力分析如图2所示.F的效果可以由分解的水平方向分力Fx和竖直方向的分力Fy来代替.则:
由于物体处于静止状态时所受合力为零,则在竖直方向有:
则在水平方向上有:
例2.如图3所示,一物体放在倾角为θ的光滑斜面上,求使物体下滑的力和使物体压紧斜面的力.
解析:使物体下滑的力和使物体压紧斜面的力都是由重力引起的,把重力分解成两个互相垂直的两个力,如图4所示,其中F1 为使物体下滑的力,F2为物体压紧斜面的力,则:
点评:F1和F2是重力的分力,与重力可以互相替代,但不能共存.
如图5所示,拉力F作用在重为G的物体上,使它沿水平地面匀速前进,若物体与地面的动摩擦因素为μ,当拉力最小时和地面的夹角θ为多大
解析:选取物体为研究对象,它受到重力G,拉力F,支持力N和滑动摩擦力f的作用,根据平衡条件有:
解得:
设,则,代入上式可得:
当时,,此时F取最小值.
拉力取最小值时,拉力与地面的夹角
点评:这是一个和数学最值知识相结合典型例题,同学们可以通过本题体会和总结用数学知识解决物理问题的方法,逐步建立数学物理模型.
例3:大小均为F的三个力共同作用在O点,如图6所示,F1,F2与F3之间的夹角均为600,求合力.
解析:此题用正交分解法既准确又简便,以O点为原点,F1为x轴建立直角坐标;
(1)分别把各个力分解到两个坐标轴上,如图7所示:
(2)然后分别求出 x轴和y轴上的合力
(3)求出Fx和Fy的合力既是所求的三个力的合力如图8所示.
,则合力与F1的夹角为600
点评:用正交分解法求共点力的合力的运算通常较为简便,因此同学们要在今后学习中经常应用.
㈡ 求高中物理关于力的正交分解的解题方法及其思路!
正交分解法:是把力沿着两个选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量的运算。
力的正交分解法步骤如下:
(1)正确选定直角坐标系。通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际情况来确定,原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴分解的力尽可能少。
(2)分别将各个力投影到坐标轴上。分别求x轴和y轴上各力的投影合力Fx和Fy,其中:
Fx=F1x+F2x+F3x+……;Fy=F1y+F2y+F3y+……
注意:如果F合=0,可推出Fx=0,Fy=0,这是处理多个作用下物体平衡物体的好办法,以后会常常用到。
对物体进行受力分析是解决力学问题的基础,是研究力学的重要方法,受力分析的程序是:
1.根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。
2.把研究对象从周围的环境中隔离出来,按照先场力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。
3.对物体受力分析时,应注意一下几点:
(1)不要把研究对象所受的力与它对其它物体的作用力相混淆。
(2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。
(3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。
㈢ 什么是力的正交分解法,怎么用啊
力的分解遵循平行四边形和三角形定律。
就是说,如果有个2个力和这2个力的合力(总计3个力)
这三个力肯定能组成一个三角形,闭合的。 你可以在草稿纸上画一画。
根据这个原理,一个力的分解方法有无数种。(因为假设有2个力的合力是这个力,那么已知的条件只有1个力,即三角形的一条边,因此另外2条边可以随便改动的,只要保证一条边的起点和另一条边的终点分别已知力的起点终点接上就可以了。)
既然方法有无数种,那么怎么来具体做题呢?这需要依靠题目的意思来分解。就像你说的这一题:
(1)首先画出一个大小为150N的竖直向下的力(草稿纸上可以画3厘米长,1厘米对应50N)
(2)然后在这个力的起点垂直往右画一条射线,注意从这个力的起点垂直往右画。
(3)最后过这个力的终点作直线,使这条直线与你在第2步所花的射线有交点,并且在纸上勾勒出了一个三角形,还要让以150N的力终点为顶点的角是30度。也就是说让你做出这么一条满足以上条件的直线来。
这时候你的纸上出现了一个三角形,水平向东的那条边就是你要求的F1,斜着与竖直方向成30度的那条边就是F2
因为你做图的时候规定了1cm对应50N,所以你只要根据三角形内部的关系求出那两条边的长度(你高一了,直角三角形里面的东西还不会?),然后乘以50就是力的大小了。这2个力的方向与你在纸上画的完全一致。
其实这道题并没有考你正交分解法。这题只是属于力的分解的问题。
正交分解法的题目多数要求计算一个力或几个力的大小。并且找到了套路就十分死板。
正交分解法的题目,
第一步是明确对象,受力分析(列举你分析对象所受到的力)。
第2步建立一个合理的直角坐标系,坐标系的原点最好是题目中大多数力的交点。并且建立时遵循让尽可能多的力的方向与坐标轴重合。
第三步就是将每个力分解到你所建立的直角坐标系的x,y方向上来。
如果是惯性系中的平衡,那么只要x方向上和y方向上受力都等于0就可以列式计算了;
如果是非惯性系中的平衡,那么只要加上一个惯性力f=ma(有方向的!),然后x方向上和y方向上受力都等于0就可以列式计算了。!!
㈣ 力的正交分解法
1介绍:高中物理力学的一种求解方法。全称为“力的正交分解” 2定义:将一个力分解为FX和FY两个相互垂直的分力的方法,叫做力的正交分解 从力的矢量性来看,是力F的分矢量;从力的计算来看,力的方向可以用正负号来表示,分量为正值表示分矢量的方向跟规定的正方向相同,分量为负值表示分矢量的方向跟规定的正方向相反.这样,就可以把力的矢量运算转变成代数运算.所以,力的正交分解法是处理力的合成分解问题的最重要的方法,是一种解析法.特别是多力作用于同一物体时。
[编辑本段]利用正交分解法求合力步骤:
第一步,选定研究对象.并以质点的形式对进行表示. 第二步,对选定的研究对象进行受力分析! 第三步,建立直角坐标系.一般来讲在水平面内可以任意建立坐标系,但是在斜面上最好沿物体下滑的方向建立x轴,然后建立Y轴。 第四步,分析加速度方向。必要时也可将加速度进行正交分解,以便于做题。 第五步,表达合外力。 第六步,列出X方向,与Y方向上的牛顿第二定律方程。 第七步,若需其他方程,也要列出需要的方程。然后求解! 第八步,检验是否符合实际情况。(比如力为负的不可取)
正交分解法的目的和原则
把力沿着两个经选定的互相垂直的方向分解叫力的正交分解法,在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算.在力的正交分解法中,分解的目的是为了求合力,尤其适用于物体受多个力的情况,物体受到F1,F2,F3…,求合力F时,可把各力沿相互垂直的x轴,y轴分解,则在x轴方向各力的分力分别为 F1x,F2x,F3x…,在y轴方向各力的分力分别为F1y,F2y,F3y….那么在x轴方向的合力Fx = F1x+ F2x+ F3x+ … ,在y轴方向的合力Fy= F2y+ F3y+ F3y+….合力,设合力与x轴的夹角为θ,则.在运用正交分解法解题时,关键是如何确定直角坐标系,在静力学中,以少分解力和容易分解力为原则;在动力学中,以加速方向和垂直加速度方向为坐标轴建立坐标,这样使牛顿第二定律表达式为:F=ma
运用正交分解法典型例题
例1.物体放在粗糙的水平地面上,物体重50N,受到斜向上方向与水平面成30°角的力F作用,F = 50N,物体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和地面的支持力分别是多少 解析:对F进行分解时,首先把F按效果分解成竖直向上的分力和水平向右的分力, 对物体进行受力分析如图2所示.F的效果可以由分解的水平方向分力Fx和竖直方向的分力Fy来代替.则: 由于物体处于静止状态时所受合力为零,则在竖直方向有: 则在水平方向上有: 例2.如图3所示,一物体放在倾角为θ的光滑斜面上,求使物体下滑的力和使物体压紧斜面的力. 解析:使物体下滑的力和使物体压紧斜面的力都是由重力引起的,把重力分解成两个互相垂直的两个力,如图4所示,其中F1 为使物体下滑的力,F2为物体压紧斜面的力,则: 点评:F1和F2是重力的分力,与重力可以互相替代,但不能共存. 如图5所示,拉力F作用在重为G的物体上,使它沿水平地面匀速前进,若物体与地面的动摩擦因素为μ,当拉力最小时和地面的夹角θ为多大 解析:选取物体为研究对象,它受到重力G,拉力F,支持力N和滑动摩擦力f的作用,根据平衡条件有: 解得: 设,则,代入上式可得: 当时,,此时F取最小值. 拉力取最小值时,拉力与地面的夹角 点评:这是一个和数学最值知识相结合典型例题,同学们可以通过本题体会和总结用数学知识解决物理问题的方法,逐步建立数学物理模型. 例3:大小均为F的三个力共同作用在O点,如图6所示,F1,F2与F3之间的夹角均为60°,求合力. 解析:此题用正交分解法既准确又简便,以O点为原点,F1为x轴建立直角坐标; (1)分别把各个力分解到两个坐标轴上,如图7所示: (2)然后分别求出 x轴和y轴上的合力 (3)求出Fx和Fy的合力既是所求的三个力的合力如图8所示. ,则合力与F1的夹角为60° 点评:用正交分解法求共点力的合力的运算通常较为简便,因此同学们要在今后学习中经常应用.
㈤ 什么是正交分解合成法,如何解
高中物理力学的一种求解方法,一般是在刚上高一是会学到
将一个力沿着互相垂直的方向(x轴、y轴)进行分解的方法
从力的矢量性来看,是力F的分矢量;从力的计算来看,的方向可以用正负号来表示,分量为正值表示分矢量的方向跟规定的正方向相同,分量为负值表示分矢量的方向跟规定的正方向相反.这样,就可以把力的矢量运算转变成代数运算.所以,力的正交分解法是处理力的合成分解问题的最重要的方法,是一种解析法.特别是多力作用于同一物体时,计算起来,非常方便.
利用正交分解法求合力可分以下四步:
第一步,立正交 x、y坐标,这是最重要的一步,x、y坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x与y的方向一定是相互垂直而正交。
第二步,将题目所给定跟要求的各矢量沿x、y方向分解,求出各分量,凡跟x、y轴方向一致的为正;凡与x、y轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。
第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。这是此法的核心一步。
第四步,根据各x、y轴的分量,求出该矢量的大小,一定要表明方向,这是最终的一步
正交分解是针对矢量而言的,比如速度、力等。
正交分解是将需要研究的分析的矢量,根据实际和解题需要将某一个或者某一些相关的矢量逐一都分解到相互垂直方向上的两个分矢量,然后分别对两个方向上的分矢量分别进行矢量加减,得到每个方向上分矢量的合,再根据需要分别计算或者两个方向上的合分矢量和求得最终的合矢量。比如光滑斜面上的物体所受的沿斜面(或者水平或者任意方向)的拉力,垂直斜面的支持力,竖直向下的重力,求解物理状态等相关量时,通常选取平行斜面和垂直斜面为正交分解面对以上各个力进行分解
㈥ 力的解正交分解法怎么求
第一步,立正交 x、y坐标,这是最重要的一步,x、y坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x与y的方向一定是相互垂直而正交。 第二步,将题目所给定跟要求的各矢量沿x、y方向分解,求出各分量,凡跟x、y轴方向一致的为正;凡与x、y轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。 第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。这是此法的核心一步。 第四步,根据各x、y轴的分量,求出该矢量的大小,一定要表明方向,这是最终的一步。 在高中物理学习中,正确应用正交分解法能够使一些复杂的问题简单化,并有效的降低解题难度.力的正交分解法在整个动力学中都有着非常重要的作用,那么同学们如何运用力的正交法解题呢
㈦ 力的正交分解 是什么
把力沿着两个经选定的互相垂直的方向分解叫力的正交分解法,在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算.在力的正交分解法中,分解的目的是为了求合力,尤其适用于物体受多个力的情况,物体受到F1,F2,F3…,求合力F时,可把各力沿相互垂直的x轴,y轴分解,
则在x轴方向各力的分力分别为 F1x,F2x,F3x…,
在y轴方向各力的分力分别为F1y,F2y,F3y….
那么在x轴方向的合力Fx = F1x+ F2x+ F3x+ … ,
在y轴方向的合力Fy= F2y+ F3y+ F3y+….
合力,设合力与x轴的夹角为θ,则要求合力,运用三角函数解出即可.
在运用正交分解法解题时,关键是如何确定直角坐标系。
㈧ 正交分解和合外力 正交分解是怎么解的为什么有时候支持力等于重力减去一个力呢. 合外力是怎么求的
正交分解是将一个力按照平行四边形法则分解成相互垂直的两个力.
当放在水平地面上的物体,同时受到一个竖直向上的小于重力的作用力后,支持力等于重力减去一个力呢.这时三个力在一直线上.
当受力物体可以看成质点时,运用矢量合成的平行四边形法则可以求合外力.方法是将二个合成一个.进行多次即可.,
㈨ 正交分解法怎么计算合力
正交分解就是把一个矢量分解成两个互相垂直的矢量
是将一个力沿着互相垂直的方向(x轴、y轴)进行分解的方法
从力的矢量性来看,是力F的分矢量;
从力的计算来看,的方向可以用正负号来表示,分量为正值表示分矢量的方向跟规定的正方向相同,分量为负值表示分矢量的方向跟规定的正方向相反.这样,就可以把力的矢量运算转变成代数运算.所以,力的正交分解法是处理力的合成分解问题的最重要的方法,是一种解析法.
特别是多力作用于同一物体时,计算起来,非常方便.
利用正交分解法求合力可分以下四步:
(1)以力的作用点为原点,建立合适的直角坐标系;
(2)将各力进行正交分解;
(3)分别求出两个坐标轴上各分量的代数和
(4)正交合成,求出合力的大小和方向.