当前位置:首页 » 算力简介 » 大算力MCU

大算力MCU

发布时间: 2022-04-30 11:57:16

Ⅰ 黑芝麻智能的华山系列芯片有哪些特点

黑芝麻智能科技是行业领先的车规级自动驾驶计算芯片和平台研发企业,成立于2016年。自成立以来,黑芝麻智能专注于大算力计算芯片与平台等技术领域的高科技研发,能够提供完整的自动驾驶、车路协同解决方案,包括基于车规级设计、学习型图像处理、低功耗精准感知的自动驾驶感知计算芯片和自动驾驶计算平台,支撑自动驾驶产业链相关产品方案的快速产业化落地。黑芝麻智能从核心IP为切入点,打造国产性能最强自动驾驶计算芯片。基于两大核心自研IP——NeuralIQISP 图像信号处理器及高性能深度神经网络算法平台DynamAI NN引擎,黑芝麻智能已发布多款芯片产品:2019年8月,黑芝麻智能第一颗车规级智能驾驶芯片华山一号A500在国内首发,算力达5-10TOPS;2020年6月,第二代芯片华山二号A1000发布,算力达58-116TOPS,是国内第一款可以支持L2+自动驾驶的国产芯片;2021年4月,国产车规大算力芯片再升级,黑芝麻智能发布华山二号A1000 Pro。A1000 Pro于同年7月流片成功,算力达到惊人的106-196TOPS,单颗芯片可以支持高级别自动驾驶功能,从泊车、城市内部到高速场景的无缝衔接。华山二号A1000自动驾驶芯片:国内首款基于成熟车规功能安全体系打造——通过了ISO26262功能安全产品ASIL B Ready认证、满足最高安全等级ASIL D的功能安全流程认证、满足汽车行业最高安全级别ASIL D要求、已量产的高性能自动驾驶芯片华山二号A1000L自动驾驶感知芯片:目前国内第一个同时符合汽车功能安全和汽车可靠性权威认证的L2.5等级自动驾驶感知芯片——专用的高性能图像传感、实时计算机视觉、神经网络处理器、符合ISO26262 ASIL-B汽车功能安全和AEC-Q100 Grade2汽车可靠性完整的L2.5级别自动驾驶解决方案华山二号A1000 Pro国内算力最高的自动驾驶计算芯片:国内目前唯一能够满足ISO 26262 ASIL D级别的功能安全要求的大算力芯片——采用业界创新先进封装工艺集成多个核心,解决16nm工艺支持超大规模深度学习引擎难题,基于内部多核心建立高速通信通路,大幅提高数据传输效率,支持黑芝麻智能最新的FAD Platform,适配多种标准协议和操作系统,提供软件全生命周期的管理,在A1000Pro系统中,任务可以在多个子系统之间动态迁移华山二号A2000国内首个250T大算力芯片:顶尖7纳米工艺、国产自主知识产权核心IP、满足ASILD级别的安全认证标准’

Ⅱ 280TOPS算力爆表!北京车展最强国产自动驾驶平台是它

▲左右分别为黑芝麻CEO单记章、COO刘卫红

黑芝麻CEO单记章此前是全球视觉芯片领军企业OmniVision创始团队成员,在硅谷芯片行业打拼了20多年,在图像处理芯片和软件算法上具有丰富的经验和技术积累。

CTO齐峥是英特尔奔腾二代芯片主要设计成员、CSO曾代兵是中兴微电子总工程师,COO刘卫红则曾是博世中国ADAS主力部门——底盘与控制系统事业部的中国区总裁。

正因为有超强的研发团队,让黑芝麻这家初创公司可以在3年时间内做出ADAS芯片华山一号A500并量产上市,在今年推出华山二号A1000芯片,发布FAD自动驾驶平台。

今年以来,新车如果没有配备L1/L2级自动驾驶,都“不好意思卖”,自动驾驶的普及程度正在快速提高,而更高等级的L3级甚至L4级自动驾驶也已经到了量产前夜,行业内对自动驾驶芯片和计算平台解决方案需求呈爆发性增长态势。仅自动驾驶芯片的市场规模,都有望达到万亿美元级别,成为半导体行业最大单一市场。

因此,FAD此时进入自动驾驶市场可谓正当其时。

今年8月,一汽智能网联开发院与黑芝麻达成技术合作协议。一汽智能网联开发院将启动基于华山二号A1000的智能驾驶平台的开发,以满足后续量产车型需求。双方将共同推动人工智能技术在汽车工业领域的应用,加速国产智能驾驶芯片的产业化落地。

另外,黑芝麻也已经签约多个FAD定点车型,预计明年就将有搭载FAD自动驾驶平台的车型上市。此外,国内外也已经有多家企业开始测试FAD自动驾驶平台,测试车辆已经上路。

黑芝麻在自动驾驶芯片和域控制器中取得的巨大成功,让行业研究机构开始重视这家刚成立4年有余创业公司。今年4月,硅谷最强智库之一的CBInsights发布中国芯片设计企业榜单,黑芝麻在车载芯片领域上榜,成为中国芯片设计企业65强之一。

今年7月,黑芝麻华山二号A1000芯片也亮相世界人工智能大会,与平头哥、依图、寒武纪等高端人工智能芯片同台亮相。

可以说,黑芝麻经过四年多的发展,已经成为全球领先的自动驾驶芯片设计公司,甚至已经有能力和芯片行业的老大哥们一较高下。同时,黑芝麻的快速进步,也推动着国内自动驾驶芯片设计再上新台阶。

在与两位创始人的交谈中,他们还透露了一个彩蛋,明年黑芝麻将发布性能更强的芯片,届时搭载这一芯片的FAD自动驾驶平台最高算力有望突破1000TOPS,其算力已经可以进行完全自动驾驶。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

Ⅲ R239 语音芯片为什么需要这么大的算力语音芯片需要跑很复杂的应用吗能否举几个例子吗

语音处理技术,前处理(降噪)-ASR-NLP-TTS,均需要算力,趋势看云端的ASR-NLP-TTS会部分往端侧迁移,在本地可以做命令词识别,随意说等各种应用。

Ⅳ 汽车芯片主要供应商有哪些

如图:

汽车上各种各样的功能都需要相应的芯片来支持,比如,汽车发动机和变速箱控制系统、安全气囊、驾驶辅助系统、ABS、胎压控制、多媒体娱乐系统、智能钥匙、自动泊车系统等等。而随着电气化、网联化、智能化在汽车领域的推进,芯片将成为汽车的大脑,占据更为重要的位置,并引领整个汽车产业的升级。

汽车芯片与消费电子使用的芯片不同,不需要追求芯片尺寸的极致精小,而更看重安全性和长效性。汽车芯片大致可以分为功能芯片MCU、功率半导体IGBT和MOSFET、传感器及其他。其中,以MCU来说,虽不是高算力芯片,但在汽车上应用广泛,该芯片的短缺就极大地影响了全球车企的正常运转。

Ⅳ 国产MCU前景如何

复杂应用中32位MCU的能效比更高

MCU是将计算机的CPU、RAM、ROM、定时计数器和多种I/O接口集成在一片芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制的芯片。微控制器一般可以按照其结构特点、指令集、存储器架构以及微控制器应用进行分类。

—— 以上数据参考前瞻产业研究院《中国MCU行业市场前瞻与投资战略规划分析报告》

Ⅵ 有没有在stm32计算能力左右的单片机上运行的

单片机的用途相同,但不是一个档次,STM32是32位单片机,一次处理数据宽度32位,而51只能处理8位 STM32的内部RAM和ROM(flash)都比51大得多,STM32F103有64kRAM,512kROM,STM32F407有256Kram,1M ROM,

Ⅶ 自动驾驶升级/域集中趋势下 东软睿驰的“芯”变化

自动驾驶系统进化,汽车电子电气E/E架构加速向域控架构迁移,驱使着芯片性能和结构快速升级。

域控处理器需要处理大量图片、视频等非结构化数据,同时还需要整合雷达、视频等多路数据。原有单一芯片无法满足诸多接口和算力需求,车载处理器算力呈现指数级提升,具备AI能力的主控SOC芯片成为了主流。

SoC芯片集成了CPU、AI 芯片(GPU/FPGA/ASIC)、深度学习加速单元(NPU)等多个模块,相对于单核处理器,异构多核SoC处理器在算力、性能、成本、功耗、尺寸等方面具备更明显的优势。

当前,在智能汽车领域已经聚齐了各路芯片玩家,英伟达、高通等近年来在汽车主控SOC芯片领域大举布局,分别针对ADAS、自动驾驶以及智能座舱领域推出了系列芯片,率先于传统芯片企业在各领域快速落地;瑞萨电子、恩智浦、德州仪器(TI)等传统汽车芯片企业不甘落后,面向智能驾驶领域积极跟进。

除了外资巨头,在国内还有华为、地平线、黑芝麻、芯驰、芯擎科技等一大批企业已经快速崛起,为自主品牌车企提供了更多选择。

综合来看,主控芯片正朝向异构多核、高集成、低功耗等更高性能的方向迈进,同时也推动了域控制器升级和量产落地,东软睿驰等Tier1企业也在芯片技术的变革之下,与合作伙伴展开更多、更深入的合作,这对电子电气架构发展和软件定义汽车带来了极具意义的影响。

一、来自不同层级市场的芯片需求

一场算力竞赛已经在各大芯片企业之间悄然兴起。

高级别自动驾驶系统需要面对更复杂更广泛的场景,伴随着域内融合和跨域融合,未来芯片不会局限于自动驾驶域的计算任务,还会逐渐跨域升级成整车中央计算平台,对算力的要求呈现指数级增长。

有数据显示,L2级自动驾驶的算力需求不到10TOPS即可,但要实现L3级自动驾驶的算力需求则要求不低于100 TOPS,而如果到L5级自动驾驶,整车的算力还需要翻十几倍。

公开资料来看,大部分芯片企业纷纷瞄准了下一代自动驾驶大算力芯片,并且公布了相应的量产规划。

英伟达已经推出的全新一代自动驾驶芯片Orin单颗芯片算力高达200TOPS,支持L3-L4,资料显示蔚来ET7、上汽R ES33、智己L7都将采用英伟达Orin芯片,量产计划在2022年。今年4月,英伟达还发布了算力高达1000TOPS的Atlan芯片,支持L4-L5,预计在2025年量产。

另一大芯片巨头高通最新推出的Snapdragon Ride平台支持L1-L5自动驾驶,支持多芯片叠加使用,L3以下的辅助驾驶提供30 TOPs算力,面向L4-L5的自动驾驶系统提供700 TOPs的算力,量产时间节点为2022年。

自主品牌中,华为自主研发的HUAWEI MDC 810算力可高达400+TOPs,面向L4-L5级自动驾驶。地平线征程5单颗芯片AI算力为128 TOPS,组成的智能计算平台AI算力覆盖200-1000 TOPS;黑芝麻智能今年全新推出的A1000Pro系列芯片,INT8算力达到106TOPS、INT4算力高达196TOPS。

除了面向L3及以上级别ADAS领域的高算力芯片,未来几年L2-L2+级ADAS市场的爆发,同样蕴藏着巨大的市场空间。

高工智能汽车研究院监测数据显示,今年1-8月国内新车(合资+自主品牌)前装标配搭载L2级辅助驾驶上险量为224.27万辆,同比增长78.42%;在搭载率方面,今年1-8月国内新车前装标配搭载L2级辅助驾驶搭载率为17.03%。

S32G使用路径

通过这类通用域控制器可实现跨域融合,基于面向SOA的架构,在不同域中实现软件复用和功能的迁移,大大增强了平台的可拓展性,可移植性,对电子电气架构的集中化发展意义重大。

一直以来,芯片都处于快速发展变化的状态,而芯片与软件的高耦合,往往需要基于差异化的硬件进行大量的软件定制化,这使得上层应用开发和持续迭代变得异常困难。很显然,相对稳定的通用硬件平台,才是软件架构和上层应用持续稳定和快速繁荣的基础。

正如东软睿驰汽车技术(上海)有限公司总经理曹斌表示,能够把所有传感器集中在一起,并在传感器算法基础之上去迭代和创新,实现持续优化和进化的域控制器,才是智能汽车行业真正需要的。

他指出,这类域控制器需要基于较为完整和稳定的异构芯片作为底层架构,能够支持AI加速和GPU的支持,将满足需求的算力与分布式计算资源整合在一起,并且不断地被上层软件抽象且与底层芯片实现有机解耦,才能真正形成集中化并且可持续迭代升级的域控制器。

当前越来越多核异构SOC芯片的出现,在满足基本功能算力需求的前提下,硬件架构、功能框架和划分将有望形成相对通用化和稳定的状态。

基于这类通用化的硬件架构,实现软硬件分层解耦,逐渐形成了AUTOSAR、AP+CP+中间件的清晰稳定的基础软件架构,上层应用的快速实现与持续的迭代升级才能够实现。

这对软件定义汽车来说,可以说是非常关键性同时也是极具标志性的阶段。

Ⅷ 汽车芯片干嘛用的

汽车芯片可以负责算力和处理、负责功率转换、用于自动驾驶各种雷达。

按照功能划分,汽车芯片大致可以分为三类:第一类负责算力和处理,比如用于自动驾驶感知和融合的AI芯片,用于发动机/底盘/车身控制的传统MCU(电子控制单元);第二类负责功率转换,如IGBT(绝缘栅双极型晶体管)等功率器件。

第三类是传感类芯片,用于自动驾驶各种雷达,以及气囊、胎压检测等等。传统汽车的芯片数量大约在500~600个左右,随着自动驾驶、新能源等功能的增加,现在的芯片数量大约在1000~1200个左右了。而一些以智能为主打的车型,则需要的芯片数量更多。



汽车芯片的重要性:

机动车辆里面的芯片,是行车电脑非常重要的组成部分,芯片出现了故障,或者是缺少芯片,行车电脑将无法运行。行车电脑关系到机动车辆能否正常的运行,机动车辆相关部位传感器收集的数据会传回到行车电脑,由行车电脑控制车辆的相关辅助系统工作。

让机动车辆正常运行,不出现问题。

热点内容
区块链财富第九波 发布:2025-07-12 06:28:23 浏览:964
中国数字货币发展新机遇 发布:2025-07-12 06:28:19 浏览:464
币圈大侠行情分析 发布:2025-07-12 06:27:36 浏览:352
马云怎么说区块链的 发布:2025-07-12 06:18:17 浏览:408
矿池配置页面 发布:2025-07-12 06:18:17 浏览:209
Ni3BTC2 发布:2025-07-12 06:17:41 浏览:911
eth属于非洲吗 发布:2025-07-12 06:11:53 浏览:504
买1万块比特币 发布:2025-07-12 06:08:59 浏览:300
币圈10大未解之谜 发布:2025-07-12 06:07:18 浏览:192
货币怎么转账比特币 发布:2025-07-12 06:06:44 浏览:984