当前位置:首页 » 算力简介 » 全球智能芯片最高算力

全球智能芯片最高算力

发布时间: 2022-05-06 11:31:18

A. 280TOPS算力爆表!北京车展最强国产自动驾驶平台是它

▲左右分别为黑芝麻CEO单记章、COO刘卫红

黑芝麻CEO单记章此前是全球视觉芯片领军企业OmniVision创始团队成员,在硅谷芯片行业打拼了20多年,在图像处理芯片和软件算法上具有丰富的经验和技术积累。

CTO齐峥是英特尔奔腾二代芯片主要设计成员、CSO曾代兵是中兴微电子总工程师,COO刘卫红则曾是博世中国ADAS主力部门——底盘与控制系统事业部的中国区总裁。

正因为有超强的研发团队,让黑芝麻这家初创公司可以在3年时间内做出ADAS芯片华山一号A500并量产上市,在今年推出华山二号A1000芯片,发布FAD自动驾驶平台。

今年以来,新车如果没有配备L1/L2级自动驾驶,都“不好意思卖”,自动驾驶的普及程度正在快速提高,而更高等级的L3级甚至L4级自动驾驶也已经到了量产前夜,行业内对自动驾驶芯片和计算平台解决方案需求呈爆发性增长态势。仅自动驾驶芯片的市场规模,都有望达到万亿美元级别,成为半导体行业最大单一市场。

因此,FAD此时进入自动驾驶市场可谓正当其时。

今年8月,一汽智能网联开发院与黑芝麻达成技术合作协议。一汽智能网联开发院将启动基于华山二号A1000的智能驾驶平台的开发,以满足后续量产车型需求。双方将共同推动人工智能技术在汽车工业领域的应用,加速国产智能驾驶芯片的产业化落地。

另外,黑芝麻也已经签约多个FAD定点车型,预计明年就将有搭载FAD自动驾驶平台的车型上市。此外,国内外也已经有多家企业开始测试FAD自动驾驶平台,测试车辆已经上路。

黑芝麻在自动驾驶芯片和域控制器中取得的巨大成功,让行业研究机构开始重视这家刚成立4年有余创业公司。今年4月,硅谷最强智库之一的CBInsights发布中国芯片设计企业榜单,黑芝麻在车载芯片领域上榜,成为中国芯片设计企业65强之一。

今年7月,黑芝麻华山二号A1000芯片也亮相世界人工智能大会,与平头哥、依图、寒武纪等高端人工智能芯片同台亮相。

可以说,黑芝麻经过四年多的发展,已经成为全球领先的自动驾驶芯片设计公司,甚至已经有能力和芯片行业的老大哥们一较高下。同时,黑芝麻的快速进步,也推动着国内自动驾驶芯片设计再上新台阶。

在与两位创始人的交谈中,他们还透露了一个彩蛋,明年黑芝麻将发布性能更强的芯片,届时搭载这一芯片的FAD自动驾驶平台最高算力有望突破1000TOPS,其算力已经可以进行完全自动驾驶。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

B. 阿里第一颗自研芯片正式问世,为何被誉为全球最强AI

9月25日,在2019云栖大会上,阿里巴巴集团首席技术官、阿里云智能总裁张建锋宣布,平头哥发布全球最高性能AI推理芯片含光800。含光800是阿里巴巴第一颗自研芯片,其称是全球性能最强的AI芯片,主要用于云端视觉处理场景。

C. 阿里第一颗芯片问世,为何第一个AI芯片就登顶全球

含光一出,不服来干!

阿里将芯片命名为平头哥,一种生活在非洲的蜜罐,号称全球胆子最肥的动物。其性格“不服就干”也成了阿里芯片的代名词。

含光是我国传说中上古三大神剑之一,该剑含而不露,光而不耀,光听名字就能想象到此剑强劲的威力。而含光就是平头哥旗下的小弟,将来还会有更多芯片产品。含光800的出现,真正体现了平头哥的特色:短、平、快。再加上上古神剑,天下无敌,听这名字就相当的霸气。

三、为企业输出普惠算力,好东西让更多企业使用。

阿里产品铁三角:AI+芯片+云计算,从技术和硬件都没有问题,阿里是服务企业起家的,未来这些应用的目标还是广大企业用户。依靠阿里巴巴“让天下没有难做生意”的愿景,将会打造全新的商业模式——平头哥模式,为企业提供性价比更高的普惠算力,让更多企业都能享受科技带来的价值。

D. 最高280 TOPS算力,黑芝麻科技发布华山二号,PK特斯拉FSD

芯片作为智能汽车的核心「大脑」,成为诸多车企、Tier 1、自动驾驶企业重点布局的领域。
围绕着自动驾驶最为关键的计算单元,国内诞生了诸多自动驾驶芯片创新公司,在该领域的绝大部分市场份额依然被国外厂商控制的当下,他们正在争取成为「国产自动驾驶芯片之光」。
成立于 2016 年的黑芝麻智能科技便是这一名号的有力争夺者。
继 2019 年 8 月底发布旗下首款车规级自动驾驶芯片华山一号(HS-1)A500 后,黑芝麻又在这个 6 月推出了相较于前代在性能上实现跃迁的全新系列产品——华山二号(HS-2),两个系列产品的推出相隔仅 300 余天,整体研发效率可见一斑。
1、国产算力最高自动驾驶芯片的自我修养
华山二号系列自动驾驶芯片目前有两个型号的产品,包括:
应用于?L3/L4?级自动驾驶的华山二号 A1000?;针对?ADAS/L2.5?自动驾驶的华山二号 A1000L。
简单理解就是,A1000 是高性能版本,而 A1000L 则在性能上进行了裁剪。
这样的产品型号设置也让华山二号系列芯片能在不同的自动驾驶应用场景中进行集成。
相较于 A500 芯片,A1000?在算力上提升了近?8 倍,达到了?40 - 70TOPS,相应的功耗为?8W,能效比超过?6TOPS/W,这个数据指标目前在全球处于领先地位。
华山二号 A1000 之所以能有如此出色的能效表现,很大程度是因为这块芯片是基于黑芝麻自研的多层异构性的?TOA 架构打造的。
这个架构将黑芝麻核心的图像传感技术、图像视频压缩编码技术、计算机视觉处理技术以及深度学习技术有机地结合在了一起。
此外,这款芯片中内置的黑芝麻自研的高性能图像处理核心?NeuralIQ ISP?以及神经网络加速引擎?DynamAI DL?也为其能效跃升提供了诸多助力。
需要注意的是,这里的算力数值之所以是浮动的,是因为计算方式的不同。
如果只计算 A1000 的卷积阵列算力,A1000 大致是 40TOPS,如果加上芯片上的 CPU 和 GPU 的算力,其总算力将达到?70TOPS。
在其他参数和特性方面,A1000 内置了 8 颗 CPU 核心,包含 DSP 数字信号处理和硬件加速器,支持市面上主流的自动驾驶传感器接入,包括激光雷达、毫米波雷达、4K 摄像头、GPS 等等。
另外,为了满足车路协同、车云协同的要求,这款芯片不仅集成了 PCIE 高速接口,还有车规级千兆以太网接口。
A1000 从设计开始就朝着车规级的目标迈进,它符合芯片 AEC-Q100 可靠性和耐久性 Grade 2 标准,芯片整体达到了 ISO 26262 功能安全 ASIL-B 级别,芯片内部还有满足 ASIL-D 级别的安全岛,整个芯片系统的功能安全等级为?ASIL-D。
从这些特性来看,A1000 是一款非常标准的车规级芯片,完全可以满足在车载终端各种环境的使用要求。
A1000 芯片已于今年 4 月完成流片,采用的是台积电的 16nm FinFET 制程工艺。
今年 6 月,黑芝麻的研发团队已经对这款芯片的所有模块进行了性能测试,完全调试通过,接下来就是与客户进行联合测试,为最后的大规模量产做准备。
据悉,搭载这款芯片的首款车型将在?2021 年底量产。
随着 A1000 和 A1000L 的推出,黑芝麻的自动驾驶芯片产品路线图也更加清晰。
在华山二号之后,这家公司计划在 2021 年的某个时点推出华山三号,主要面向的是 L4/L5 级自动驾驶平台,芯片算力将超越 200TOPS,同时会采用更先进的 7nm 制程工艺。
华山三号的?200TOPS?算力,将追平英伟达 Orin 芯片的算力。
去年 8 月和华山一号 A500 芯片一同发布的,还有黑芝麻自研的 FAD(Full Autonomous Driving)自动驾驶计算平台。
这个平台演化至今,在 A1000 和 A1000L 芯片的基础上,有了更强的可扩展性,也有了更广泛的应用场景。
针对低级别的 ADAS 场景,客户可以基于 HS-2 A1000L 芯片搭建一个算力为 16TOPS、功耗为 5W 的计算平台。
而针对高级别的 L4 自动驾驶,客户可以将 4 块 HS-2 A1000 芯片并联起来,实现高达 280TOPS 算力的计算平台。
当然,根据不同客户需求,这些芯片的组合方式是可变换的。
与其他大多数自动驾驶芯片厂商一样,黑芝麻也在可扩展、灵活变换的计算平台层面投入了更多研发精力,为的是更大程度上去满足客户对计算平台的需求。
反过来,这样的做法也让黑芝麻这样的芯片厂商有了接触更多潜在客户的机会。
根据黑芝麻智能科技的规划,今年 7 月将向客户提供基于 A1000 的核心开发板。
到今年 9 月,他们还将推出应用于 L3 自动驾驶的域控制器(DCU),其中集成了两颗 A1000 芯片,算力可达 140TOPS。
2、黑芝麻自动驾驶芯片产品「圣经」
借着华山二号系列芯片的发布,黑芝麻智能科技创始人兼 CEO 单记章也阐述了公司 2020 年的「AI 三次方」产品发展战略,具体包括「看得懂、看得清和看得远」。
这一战略是基于目前市面上对自动驾驶域控制器和计算平台的诸多要求提出的,这些要求包括安全性、可靠性、易用性、开放性、可升级以及延续性等。
其中,看得懂直接指向的是?AI 技术能力,要求黑芝麻的芯片产品能够理解外界所有的信息,可以进行判断和决策。
而看得懂的基础是看得清,这指的是黑芝麻芯片产品的图像处理能力,需要具备准确接收外界信息的能力。
这里尤其以摄像头传感器为代表,其信息量最大、数据量也最多,当然传感器融合也不可或缺。
看得远则指的是车辆不仅要感知周边环境,还要了解更大范围的环境信息,这就涉及到了车路协同、车云协同这样的互联技术,所以我们看到黑芝麻的芯片产品非常注重对互联技术的支持。
作为一家自动驾驶芯片研发商,这一战略将成为黑芝麻后续芯片产品研发的「圣经」。
3、定位 Tier 2,绑定 Tier 1,服务 OEM
现阶段,发展智能汽车已经成为了国家意志,在政策如此支持的情况下,智能汽车的市场爆发期指日可待。
根据艾瑞咨询的报告数据显示,到 2025 年全球将会有 6662 万辆智能汽车的存量,中国市场的智能汽车保守预计在 1600 万辆左右。
如此规模庞大的智能汽车增量市场,将为那些打造智能汽车「大脑」的芯片供应商培育出无限的产品落地机会。
作为其中一员,黑芝麻智能科技也将融入到这股潮流之中,很有机会成长为潮流的引领者。
作为一家自动驾驶芯片研发商,黑芝麻智能科技将自己定位为?Tier 2,未来将绑定 Tier 1 合作伙伴,进而为车企提供产品和服务。
当然,黑芝麻不仅能提供车载芯片,未来还将为客户提供自动驾驶传感器和算法的解决方案,还有工具链、操作平台等产品。
凭借着此前发布的华山一号 A500 芯片,黑芝麻智能科技已经与中国一汽和中科创达两家达成了深入的合作伙伴关系,将在自动驾驶芯片、视觉感知算法等领域展开了诸多项目合作。
另外,全球顶级供应商博世也与黑芝麻建立起了战略合作关系。
目前,黑芝麻的华山一号 A500 芯片已经开启了量产,其与国内头部车企关于 L2+ 和 L3 级别自动驾驶的项目也正在展开。
如此快速的落地进程,未来可期。
有意思的是,黑芝麻此番发布华山二号系列芯片,包括中国一汽集团的副总经理王国强、上汽集团总工程师祖似杰、蔚来汽车 CEO 李斌以及博世中国区总裁陈玉东在内的多位行业大佬都为其云站台。
这背后意味着什么?给我们留下了很大的想象空间。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

E. 零跑汽车发布自动驾驶芯片:算力4.2TOPS 支持L3级自动驾驶

国家发改委产业发展司机械装备处处长吴卫

未来,中国制造的汽车将是全球新技术融合最多、创新融合最多的,也必将领跑全球汽车工业。

同时,汽车芯片领域的竞争也异常激烈。相比于消费电子产品的芯片,汽车芯片对安全性、稳定性的要求更高,是芯片行业共同面对的难题,这也是中国芯片公司的机会。

结语:自研技术让零跑更具竞争力

零跑汽车是中国造车新势力企业中第一个自主研发汽车自动驾驶芯片的,搭载这款芯片的量产车零跑C11下月就将发布。零跑汽车在自动驾驶领域的飞速进步,也得到了用户的认可。

统计数据显示,零跑汽车两款量产车型从今年7月以来销量逐步攀升,9月销量破千,10月销量有望突破1600辆,大量的自研技术让零跑这一造车新势力具备了更强的竞争力。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

F. 自研芯片,算力远超英伟达谷歌的芯片巨头是哪一个

必须是华为,华为现在正在自研芯片,采取的是最新的技术,目前的成功品在运算速度上已经超过同期其他芯片产品了。

G. 华为不造汽车,但自动驾驶汽车人工智能芯片这片阵地必须拿下

[汽车之家新鲜技术解读]华为成立于1987年,是一家制造通讯设备起家的中国企业。经过30多年的积累,华为已经发展成为全球最大的5G设备供应商。随着人工智能芯片市场的快速增长,华为借助中科寒武纪的芯片IP,成功在2017年推出了全球首款搭载人工智能加速单元的手机处理器芯片——麒麟970。该芯片的成功让华为进一步坚信人工智能技术的发展潜力,加速了其自研人工智能处理器的步伐。而自动驾驶系统的域控制器正是人工智能芯片大派用场的地方。究竟华为的人工智能芯片性能有多强?它又是如何赋能自动驾驶汽车的呢?今天我们一起来看一看。

●编辑总结:

华为在行业中的影响力毋容置疑,从技术到产品都走在世界的前列。树大招风,华为近年来就一直受到美国的制裁。如果现状长期持续的话,对于本文聚焦的华为人工智能芯片影响不小。如何解困是摆在华为面前的一道难题,从目前的一些信息来看,华为在英国建设芯片工厂、开发RISC-V架构处理器、培育HMS云服务生态等举措都是其突围关键,我们也将持续关注事态的进一步发展情况。(图/文/汽车之家常庆林)

H. 21tops算力相当于什么显卡

英伟达的一个Jetson Xavier NX就是21tops算力。
11月7日,英伟达宣布推出全球尺寸最小的边缘AI超级计算机Jetson Xavier NX,主要面向机器人和边缘嵌入式计算设备。这款新品拥有比信用卡还小的外形,节能型Jetson Xavier NX模块在运行AI工作负载时,可提供最高21 TOPS的服务器级性能,售价399美元,即将在2020年3月开始出货。英伟达推出更具竞争力的边缘AI芯片产品,让AI初创公司们面临更大的竞争压力。

英伟达边缘AI芯片已经有四个系列
今天发布的Jetson Xavier NX最大的亮点在于,与Jetson Nano尺寸相同(70X45mm)的情况下,能够在功耗10W的模式下提供最高14TOPS,在功耗15W模式下最高21 TOPS的性能。另外,Jetson Xavier NX能够并行运行多个神经网络,也能同时处理来自多个高分辨率传感器的数据。
Jetson Xavier NX模块具体的规格如下:
GPU:配备384个 NVIDIA CUDA core和48 个Tensor core的 NVIDIA Volta,外加2个NVDLA
CPU:6-core Carmel Arm 64位CPU, 6MB L2 + 4MB L3
视频:2x 4K30 编码和2x 4K60解码
摄像头:最多6个 CSI摄像头(通过虚拟通道最多36个),12路(3x4或6x2) MIPI CSI-2
内存:8GB 128位LPDDR4x;51.2GB/秒
连接:千兆以太网
OS支持:基于Ubuntu的 Linux
模块尺寸:70x45mm
Jetson Xavier NX面向的是对性能需求高,但受到尺寸、重量、功耗以及预算限制的嵌入式边缘计算设备,比如小型商用机器人、无人机、智能高分辨率传感器(用于工厂物流和生产线)、光学检测、网络录像机,便携式医疗设备以及其他工业物联网(IoT)系统。
为了满足这些场景,除了硬件外,软件支持也非常重要。英伟达表示,对于已经开始打造嵌入式计算机的公司,Jetson Xavier NX与所有Jetson系列产品一样都可以在相同的CUDA-X AI软件架构上运行。同时,作为NVIDIA软件架构方法的一部分,Jetson Xavier NX由NVIDIA JetPack SDK提供支持。
NVIDIA JetPack SDK是一个完整的AI软件堆栈,可以运行复杂的AI网络,并用于深度学习的加速库以及计算机视觉、计算机图形、多媒体等。

Jetson Xavier NX的上一款产品是在今年3月的GTC发布,英伟达创始人兼 CEO 黄仁勋宣布推出售价仅99美元的Jetson Nano。根据官方的说法,借助CUDA-X,Jetson Nano可以提供472 GFLOPS的AI性能,功率低至5W。这款售价不高,能够运行所有AI模型的边缘计算平台发布后获得了极大的关注。
Jetson Nano的上一款产品在去年发布。去年九月的日本GTC,黄仁勋公布了AGX阵容,包括Drive Xavier和新推出的Drive Pegasus,还有Jetson AGX Xavier。Jetson AGX Xavier的大规模计算性能可以处理机器人至关重要的测距、定位、测绘、视觉和感知以及路径规划。
Jetson家族更早的产品Jetson TX2在2017年推出,提供两种运行模态:一种是MAX Q,这种模态下能效比能达到最高,是TX1的2倍,功耗在7.5W以下;另一种是MAX P,性能可以做到最高,能效比同样可以做到前一代的2倍,功耗则在15W以下。

虽然推出的时间不同,但他们都具有一个区别于其他边缘SoC的特点,并行运行多个神经网络。
边缘端实力增强,初创公司面临更大生存压力
英伟达在云端AI芯片市场获益颇丰,其中非常重要的原因就是擅长并行计算的GPU能够在在数据中心的各种模型中训练时体现出性能优势。虽然凭借云端AI芯片成为了众多AI芯片初创公司想要超越的目标,但英伟达也有自己的困扰。首先,为AI优化和设计的高性能GPU价格昂贵,让不少开发者望而却步。

其次,随着AI算法的逐步成熟,云端AI训练芯片市场的增速将会放缓,英伟达想要保持业绩的增长以及在AI市场的领导力,就需要向边缘AI市场拓展,同时,用云端加边缘一体化的解决方案吸引更多客户。
从面向终端和边缘设备的Jetson系列芯片的布局来看,英伟达早已明白自己该怎么做。如今,Jetson系列芯片算力从0.5TFlops到32TOPS,应用覆盖小型嵌入式设备、智能汽车、工业设备等多种应用。今天高性能小尺寸Jetson Xavier NX发布,让Jetson家族能够提供性能和功耗更加多样的边缘芯片,这背后就是为了满足AIoT市场多样化的市场需求。
不过,更应该看到的是,英伟达如今不仅能够提供云端和终端AI芯片硬件,其成功背后还有强大的软件生态的支撑。据雷锋网了解,Jetson系列已经吸引了40万的开发者,拥有了3000用户。

这对于AI芯片的初创公司而言显然不是一个好消息,由于云端AI芯片更加依赖生态,芯片的设计难度也更大,所以大部分AI芯片的初创公司都选择在边缘端市场,并且大都主要提供AI加速器。AI芯片初创公司们希望凭借独特的架构设计以及领先的性能指标的芯片获得市场的认可。
然而,开发者在进行AI算法迁移的时候往往需要使用AI芯片公司提供的编译器等工具,这不仅会增加软件开发者的使用门槛,还可能达不到预期的效果。因此,初创公司的AI芯片大部分都没有得到非常有价值的应用。
这就意味着,AI芯片初创公司们在产品设完成并流片之后,如何找到合适的市场以及模式进行商业化变得非常关键,特别是在资本寒冬以及AI芯片进入落地战的当下。
显然,AI芯片初创公司们面临着更加严峻的生存挑战,一方面,无论是英伟达还是英特尔,他们在云端和边缘端都已经有竞争力很强的产品,在边缘端,凭借软件生态以及渠道的优势,巨头们的芯片更容易获得客户,甚至连擅长软件的Google都推出了面向边缘市场的Google Edge TPU。另一方面,AI芯片初创公司想要推出有竞争力的产品就必须不断迭代和投入,这就需要资金的持续支持,但融资环境以及更加激烈的市场竞争又增加了融资的难度。
正如雷锋网在今年3月份的文章中指出的,AI芯片的战火已经蔓延至边缘端,Jetson Xavier NX的推出不仅是英伟达边缘端AI芯片布局的完善和实力的进一步增强,更是边缘端芯片市场竞争更加激烈的标志。
AI芯片市场更加激烈的竞争有助于推动AI的向前发展,但对于实力较弱的AI芯片初创公司而言,随着芯片巨头们更有竞争力产品的推出,以及像英伟达这样的公司更愿意称自己为系统公司,而非单纯的芯片公司,这让AI芯片初创公司面临着更加严峻的生存挑战。

I. 王平:高等级自动驾驶芯片技术发展现状如何丨汽车产经

2021年12月16日,由中国汽车工程学会和中国智能网联汽车产业联盟联合主办的2021第三届国际汽车智能共享出行大会在广州花都开幕。寒武纪行歌执行总裁、前麦肯锡董事合伙人王平以《高等级自动驾驶芯片技术现状和趋势》为题发表了演讲。

王平

王平指出,自动驾驶芯片发展遇到的挑战需要芯片企业和企业一起来克服。“不仅仅是一个单车的算力,它还要跟云端、路侧和车上其他的终端来进行协同。”

以下为演讲实录:

非常谢谢主办方的邀请,能够代表自动驾驶芯片企业做这样一个交流。

人工智能推动汽车智能化可以表现在三个方面:智能座舱、智能驾驶、车路云协同。

今天早上包括李克强院士也分享了非常精彩的观点,寒武纪行歌致力于在自动驾驶和母公司寒武纪一起在智能汽车和“车路云”协同方面做出贡献。智能汽车对于算力提出了越来越高的要求。最新发布的一些车子,比如一体机和智己,他们已经把算力放到了100tops以上,现在特别是智能电动汽车放了很多传感器、摄像头、激光雷达,那么这样导致数据量大幅提升;另一方面,自动驾驶的算法也是更加复杂,客观上也要求更高算力的芯片。

那我们看到了一个行业的趋势,我们是这样看的,我们认为有两个大特点:大算力、通用性。过去L1和L2时代,数据量是比较小的,算法也是相对比较简单的。那在这个阶段可能以Mobile2为主的主流厂商是提供一揽子的黑盒子方案给OEM。这种场景下,OEM不能做OTA的升级。往前走进入L2+L3甚至L4时代,刚才提到了上周DIANA在德国拿到了L3高速下的许可,开始第一例进入L3的时代,汽车数据的数量更加复杂,更加需要大算力的芯片。

同时由于OTA的加速普及,像特斯拉包括国内新势力的汽车企业都已经在推进OTA,硬件预埋,软件和算法可以在后续不断地去更新,可以不断地去升级我们的软件。在这个阶段,以英伟达为代表的国际厂商推出了通用的大算力芯片,所谓的通用性就是各个主机厂和算法公司在此基础上可以进行自主算法升级。所以自动驾驶主控芯片有两大发展趋势:大算力、通用性。

那么要做大算力和通用性的自动驾驶芯片其实是非常不容易的,我们认为有四大方面的挑战:

第一,芯片的系统架构非常复杂。200T以上大算力的芯片要求非常高,需要支持超大的带宽,这样的结构相对来讲是更加复杂的,国家在这方面的人才储备也是不够的。

第二,通用的AI软件战。我们这个算法是要不断地去升级和完善的,只有通用的AI软件站才能支持不同的算法和不同的主体,OEM和算法公司对它进行升级。

第三,大尺寸芯片工程的挑战,大算力芯片的尺寸更多,对于后端封装设计、电源和热设计、量产成本控制压力很大。因为它良率的挑战是非常大的。比如200tops这样大尺寸的芯片需要7nm先进的工艺,国内来说还没有7nm先进的车规级工艺。

以上几个挑战是我们要和企业一起来克服的,领先的车企开始部署云边车端,云端、车端、边端和终端来协同计算的能力,不仅仅是一个单车的算力,它还要跟云端、路侧和车上其他的终端来进行协同。特斯拉发布了打造全球算力最强的计算中心,来帮助他进行自动驾驶算法的训练。

简单汇报一下寒武纪和行歌在做的一些工作,寒武纪布局了全算力的人工智能芯片,从IP的终端授权给终端的手机等等,给他们授权。边缘端有路侧的芯片、云端加速卡和云端加速器,我们的特点是云边端的全系列覆盖,在云边端采用了统一的架构和指定级,也采用了统一的开发平台。这样的好处是什么呢?当我们需要采用云、边、端协同的时候,我们的软件算法呢,比如在云端训练的算法是可以以高效率很快Deploy到中端。

行歌是寒武纪的子公司,是今年成立的,我们的使命是用AI赋能来实现安全、快乐、低碳的出行。我们的路线图:希望明年推出超过20T的SoC产品(自动驾驶主控芯片),这也是国内第一颗。按照目前的性能要求,这颗芯片将超过英伟达的Orin,是国际最先进的芯片,计划于2022年下半年进行流片,2023年通过整个车规级的认证,在2023年底和2024年大概会上车。2024年会进一步退出超过500T的大算力的SoC芯片,继续走在全国的前列。

刚才我介绍到,2022年会推出的超过200个T的芯片会采用7nm的工艺,会达到车规级的要求,具有独立的安全岛,也借用包括寒武纪已有成熟的软件工具链。最后寒武纪和行歌还将推动云、边、车的协同。基于云端有云端大算力的数据中心的芯片;在路侧也有边缘端的芯片;同时车上基于行歌开发的自动驾驶芯片,这些会形成协同的感知、数据的融合,我们在云端训练的数据和模型可以非常快地发送到车端,实现OTA的升级,由于它们都采用统一平台级的基础软件,采用统一的处理器和指令级。

寒武纪行歌希望在自动驾驶用AI赋能,实现安全、快乐、低碳的出行,谢谢大家!

J. 零跑智能芯片,看上去“不太聪明”

11月13日,零跑汽车为你匹配的AI智能芯片好友"凌芯01"在微博上发来一段自白。

自白以长图的形式展开,并以"生怕你不了解这个好友而彼此尴尬"的共情心,对自己做了详细的介绍。

此前有数据统计,从国内自动驾驶芯片发展的现状来看,国产车载芯片并没有占据市场较大空间,国内车载芯片自主化率还不足10%。这种市场局面无疑对"凌芯01"的未来推广造成了不小的压力。

但是,不管怎么说,零跑造出"凌芯01",也算是开启了中国自主知识产权车规级智能驾驶芯片的"新纪元"。

而至于为什么开启"新纪元"的是零跑,不是销量更好、市值更高、融资更多的蔚来、理想、小鹏他们,已经不重要了。

毕竟,"人类一思考,上帝就发笑"。

(图片来自网络,如有侵权,请联系作者删除)

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

热点内容
区块链取代微信支付宝 发布:2025-07-10 03:17:01 浏览:928
比特币目前总价值 发布:2025-07-10 02:57:52 浏览:113
一个比特币兑换现金多少钱 发布:2025-07-10 02:57:29 浏览:927
比特币矿机电源维修价格 发布:2025-07-10 02:47:47 浏览:203
以太坊geth钱包 发布:2025-07-10 02:32:33 浏览:247
电子合同区块链技术加密 发布:2025-07-10 02:31:44 浏览:623
最全面币圈行情 发布:2025-07-10 02:12:29 浏览:533
比特币暴涨为什么还会爆仓 发布:2025-07-10 02:11:06 浏览:744
区块链带单收费群 发布:2025-07-10 01:48:48 浏览:466
eth0似乎不存在初始化操作将被延迟 发布:2025-07-10 01:39:44 浏览:397