算法数据算力构成
『壹』 算力算法数据的概念
算力就是计算机进行矩阵或数学运算的能力,每秒能够计算多少次矩阵运算。
它可以根据用户行为数据进行计算给予用户更多的便捷,从而让用户感知到它更了解自己
『贰』 巧妇难为无米之炊,算力、算法和数据到底哪个更重要
“巧妇难为无米之炊”,这句话隐含的信息量并不小,正好可以用于对比人工智能。巧妇的“巧”就是算法,食材就是数据,而锅碗瓢盆和炉灶就是算力。
如果没有食材,就算你有炉灶和锅碗瓢盆,也没办法做出饭,而有了食材,没有炉灶和锅碗瓢盆也做不出饭菜,有了食材,有了锅碗瓢盆,没有巧妇,也同样做不出一桌丰盛的饭菜。
数字化归根结底:
是靠数据驱动的,如果没有高质量的大数据,那就是巧妇难为无米之炊。因此,做好大数据工作是推进数字化变革的前提性、基础性工作。但非数字原生企业相比数字原生企业,大数据工作的复杂性和困难度要大的多。
何老师表示,做好大数据工作,要有知难而上的坚强决心。此外,他基于对华为等企业实践的认真了解研究,结合自身对企业战略执行的长期深刻体悟,还在演讲中给出了切实的决策思路和行动建议。
据悉,《数字企业》之所以能成为数字化转型、数字化变革的代表性演讲,很大程度上是因为既具备企业家的高度、又具备思想家的深度、还具备实践家的力度。
『叁』 算法的基本要素有哪些
算法通常由两种基本要素组成分别是对数据对象的运算和操作;算法的控制结构,即运算或操作间的顺序。
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
『肆』 巧妇难为无米之炊,算力、算法和数据到底哪个更重要
虽然不能这么绝对的判断一定谁比谁重要,但在实际应用中很多时候的确是数据更加重要。有几方面的原因:
在很多问题中,算法的“好坏”在没有大量有效数据的支撑下是没有意义的。换句话说,很多算法得到的结果的质量完全取决于其和真实数据的拟合程度。如果没有足够的数据支撑、检验,设计算法几乎等于闭门造车。
很多算法会有一堆可调参数。这些参数的选择并没有什么标准可依,无非是扔给大量数据,看参数的变化会带来什么样的结果的变化。大量、有效的数据成为优化这类算法的唯一可行方法。
更极端的例子是,算法本身很简单,程序的完善全靠数据训练。比如神经网络。
对于很多成熟的算法,优化算法的增量改善通常远小于增大输入数据(这是个经济性的考虑)。
比如问题中举例的 Google。在它之前的搜索引擎已经把基于网页内容的索引算法做得很好了,要想有更大的改善需要换思路。PageRank 算法的采用大大增加了输入的数据量,而且链接数据本身对于网页排名相当关键(当然他们也做了大量算法的优化)。
相关介绍:
数据(data)是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的的原始素材。
数据可以是连续的值,比如声音、图像,称为模拟数据,也可以是离散的,如符号、文字,称为数字数据。在计算机系统中,数据以二进制信息单元0、1的形式表示。
『伍』 什么才是制约自动驾驶发展的最大问题
“大爆炸”将至:什么才是制约自动驾驶发展的最大问题?
自动驾驶时代的V2X场景
除了无线通讯设备外,道路本身的平坦程度、车道线的可识别程度等都是一辆自动驾驶汽车能否安全行驶的关键。如果说在城市中心区域的主干道,这些问题尚且容易解决的话,在次干道、支路甚至于郊区和乡村公路,想要达到自动驾驶、甚至于无人驾驶的条件绝非易事。
在这些看得见的成本之外,“看不见的成本”在无形中制约者自动驾驶的发展。从一辆自动驾驶车辆走下生产线到走上城市道路,现行的交通法律显然远远不能满足需要。
今年7月6日,在网络AI开发者大会的现场直播中,李彦宏乘坐的网络研发自动驾驶车辆在“众目睽睽”之下违规,实线变道并且未打转向灯。之后,北京交管部门给网络开了自动驾驶第一张罚单。
对于网络而言,获得这张罚单还说得过去,毕竟车是自己的,系统是自己研发的,驾驶座上的人也是网络智能汽车事业部总经理顾维灏。但是如果是交付给用户的车辆,这张罚单应该开给谁呢?是交付车辆的汽车主机厂,还是研发整个自动驾驶系统的开发商,亦或是没有驾驶行为却拥有车辆的用户?
1949年版的《日内瓦道路交通公约》要求驾驶员“应当时刻能够控制其车辆”,而针对鲁莽驾驶的规定则通常要求“有意识地、有目的地操纵车辆”,这一规定在完全自动驾驶时代应当如何适用?
斯坦福大学的法学教授布莱恩特·沃克·史密斯(Bryant Walker Smith)曾撰写过一份文档,提出了在自动驾驶情境下如何调整法律的建议,包括把“驾驶员”这一术语改为包括不具备常规意义上的眼睛或者耳朵的计算机等等。修改法律的困难之处在于,法律能够要求人类规范自己的行为,但现在它无法要求一个人工智能系统去做什么事,除非法律的制定者能够清楚了解这个人工智能系统能做什么事不能做什么事,在纷繁的技术面具下去判定这些责任究竟是属于谁——可以想见的是,随着自动驾驶时代到来,现有的交通法规也将会迎来一场大变革。
『陆』 算法的三种基本结构是
算法有顺序结构、条件分支结构、循环结构三种基本逻辑结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的。
它是任何一个算法都离不开的一种基本算法结构。顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
2、条件结构:
条件结构是指在算法中通过对条件的判断,根据条件是否成立而选择不同流向的算法结构。
条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。
3、循环结构
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:
一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。
(6)算法数据算力构成扩展阅读
共同特点
(1)只有一个入口和出口
(2)结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它,如图中的A,没有一条从入口到出口的路径通过它,就是不符合要求的算法结构。
(3)结构内不存在死循环,即无终止的循环。
『柒』 人工智能需要什么基础
1.基础数学知识:线性代数、概率论、统计学、图论
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库
3.编程语言基础:C/C++、Python、Java
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
5.工具基础知识:opencv、matlab、caffe等
要进入人工智能行业,首先要有一定的数学功底,因为人工智能不同于app开发,网页开发、游戏开发等传统的互联网职位,先看看51cto学院人工智能的课程,会有不少帮助。人工智能是从数学中的“逼近理论”逐步演化而来的,当今人工智能所使用的方法,最开始的时候大部分是数学家为了逼近某些比较难表示的非线性函数而使用的。后来随着计算机性能的提高,计算机工作者,统计学家,开始尝试用这套“逼近理论”解决一些分类问题。逐步发展成为现在的人工智能局面。现在属于人工智能行业发展初期,各种可用的api函数都比较少,所以自己编写算法是必须要会的。
“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
『捌』 什么是算法与数据结构
算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
计算机科学家尼克劳斯-沃思曾著过一本著名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。
数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。
一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。
在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。
选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。
在计算机科学中,数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象(数据元素)以及它们之间的关系和运算等的学科,而且确保经过这些运算后所得到的新结构仍然是原来的结构类型。
“数据结构”作为一门独立的课程在国外是从1968年才开始设立的。 1968年美国唐·欧·克努特教授开创了数据结构的最初体系,他所著的《计算机程序设计技巧》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的著作。“数据结构”在计算机科学中是一门综合性的专业基础课。数据结构是介于数学、计算机硬件和计算机软件三者之间的一门核心课程。数据结构这一门课的内容不仅是一般程序设计(特别是非数值性程序设计)的基础,而且是设计和实现编译程序、操作系统、数据库系统及其他系统程序的重要基础。
计算机是一门研究用计算机进行信息表示和处理的科学。这里面涉及到两个问题:
信息的表示
信息的处理
而信息的表示和组又直接关系到处理信息的程序的效率。随着计算机的普及,信息量的增加,信息范围的拓宽,使许多系统程序和应用程序的规模很大,结构又相当复杂。因此,为了编写出一个“好”的程序,必须分析待处理的对象的特征及各对象之间存在的关系,这就是数据结构这门课所要研究的问题。众所周知,计算机的程序是对信息进行加工处理。在大多数情况下,这些信息并不是没有组织,信息(数据)之间往往具有重要的结构关系,这就是数据结构的内容。数据的结构,直接影响算法的选择和效率。
计算机解决一个具体问题时,大致需要经过下列几个步骤:首先要从具体问题中抽象出一个适当的数学模型,然后设计一个解此数学模型的算法(Algorithm),最后编出程序、进行测试、调整直至得到最终解答。寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描述。计算机算法与数据的结构密切相关,算法无不依附于具体的数据结构,数据结构直接关系到算法的选择和效率。运算是由计算机来完成,这就要设计相应的插入、删除和修改的算法 。也就是说,数据结构还需要给出每种结构类型所定义的各种运算的算法。
数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并由计算机程序处理的符号的总称。
数据元素是数据的基本单位,在计算机程序中通常作为一个整体考虑。一个数据元素由若干个数据项组成。数据项是数据的不可分割的最小单位。有两类数据元素:一类是不可分割的原子型数据元素,如:整数"5",字符 "N" 等;另一类是由多个款项构成的数据元素,其中每个款项被称为一个数据项。例如描述一个学生的信息的数据元素可由下列6个数据项组成。其中的出身日期又可以由三个数据项:"年"、"月"和"日"组成,则称"出身日期"为组合项,而其它不可分割的数据项为原子项。
关键字指的是能识别一个或多个数据元素的数据项。若能起唯一识别作用,则称之为 "主" 关键字,否则称之为 "次" 关键字。
数据对象是性质相同的数据元素的集合,是数据的一个子集。数据对象可以是有限的,也可以是无限的。
数据处理是指对数据进行查找、插入、删除、合并、排序、统计以及简单计算等的操作过程。在早期,计算机主要用于科学和工程计算,进入八十年代以后,计算机主要用于数据处理。据有关统计资料表明,现在计算机用于数据处理的时间比例达到80%以上,随着时间的推移和计算机应用的进一步普及,计算机用于数据处理的时间比例必将进一步增大。
数据结构是指同一数据元素类中各数据元素之间存在的关系。数据结构分别为逻辑结构、存储结构(物理结构)和数据的运算。数据的逻辑结构是对数据之间关系的描述,有时就把逻辑结构简称为数据结构。逻辑结构形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。
数据元素相互之间的关系称为结构。有四类基本结构:集合、线性结构、树形结构、图状结构(网状结构)。树形结构和图形结构全称为非线性结构。集合结构中的数据元素除了同属于一种类型外,别无其它关系。线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。在图形结构中每个结点的前驱结点数和后续结点数可以任意多个。
数据结构在计算机中的表示(映像)称为数据的物理(存储)结构。它包括数据元素的表示和关系的表示。数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。顺序存储方法:它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。链接存储方法:它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。索引存储方法:除建立存储结点信息外,还建立附加的索引表来标识结点的地址。散列存储方法:就是根据结点的关键字直接计算出该结点的存储地址。
数据结构中,逻辑上(逻辑结构:数据元素之间的逻辑关系)可以把数据结构分成线性结构和非线性结构。线性结构的顺序存储结构是一种随机存取的存储结构,线性表的链式存储结构是一种顺序存取的存储结构。线性表若采用链式存储表示时所有结点之间的存储单元地址可连续可不连续。逻辑结构与数据元素本身的形式、内容、相对位置、所含结点个数都无关。
算法的设计取决于数据(逻辑)结构,而算法的实现依赖于采用的存储结构。数据的运算是在数据的逻辑结构上定义的操作算法,如检索、插入、删除、更新的排序等。
『玖』 试述算法的组成要素、算法的基本性质
顺序结构、条件结构、循环结构是算法的三种基本逻辑结构,它们是构成算法的基本要素.
基本性质
(1)有效性
(2)确定性
(3)有穷性
『拾』 最近经常听到有人说算力,到底什么是算力
就是计算的能力,多数是在游戏中说到这个词语,比如恐龙有钱里面。就有算力