当前位置:首页 » 以太坊知识 » 以太坊重放攻击

以太坊重放攻击

发布时间: 2021-07-08 14:44:05

1. IPsec 和L2TP有什么区别

L2TP(Layer Two Tunneling Protocol,第二层通道协议)是VPDN(虚拟专用拨号网络)技术的一种,专门用来进行第二层数据的通道传送,即将第二层数据单元,如点到点协议(PPP)数据单元,封装在IP或UDP载荷内,以顺利通过包交换网络(如internet),抵达目的地。
L2TP提供了一种远程接入访问控制的手段,其典型的应用场景是:某公司员工通过PPP拨入公司本地的网络访问服务器(NAS),以此接入公司内部网络,获取IP地址并访问相应权限的网络资源;该员工出差到外地,此时他想如同在公司本地一样以内网IP地址接入内部网络,操作相应网络资源,他的做法是向当地ISP申请L2TP服务,首先拨入当地ISP,请求ISP与公司NAS建立L2TP会话,并协商建立L2TP隧道,然后ISP将他发送的PPP数据通道化处理,通过L2TP隧道传送到公司NAS,NAS就从中取出PPP数据进行相应的处理,如此该员工就如同在公司本地那样通过NAS接入公司内网。
从上述应用场景可以看出L2TP隧道是在ISP和NAS之间建立的,此时ISP就是L2TP访问集中器(LAC),NAS也就是L2TP网络服务器(LNS)。LAC支持客户端的L2TP,用于发起呼叫,接收呼叫和建立隧道,LNS则是所有隧道的终点。在传统的PPP连接中,用户拨号连接的终点是LAC,L2TP使得PPP协议的终点延伸到LNS。
L2TP本质上是一种隧道传输协议,它使用两种类型的消息:控制消息和数据隧道消息。控制消息负责创建、维护及终止L2TP隧道,而数据隧道消息则负责用户数据的真正传输。L2TP支持标准的安全特性CHAP和PAP,可以进行用户身份认证。在安全性考虑上,L2TP仅定义了控制消息的加密传输方式,对传输中的数据并不加密。
IPsec(IP Security),顾名思义,是保障IP层安全的网络技术,它并不是指某一项具体的协议,而是指用于实现IP层安全的协议套件集合。IPsec实质上也是一种隧道传输技术,它将IP分组或IP上层载荷封装在IPsec报文内,并根据需要进行加密和完整性保护处理,以此保证数据在公共网络中传输过程的安全。
IPsec支持两种协议标准,鉴别首部(Authenticaion Header,AH)和封装安全有效载荷(Encapsulation Security Payload,ESP):
AH可证明数据的起源地(数据来源认证)、保障数据的完整性以及防止相同的数据包不断重播(抗重放攻击);
ESP能提供的安全服务则更多,除了上述AH所能提供的安全服务外,还能提供数据机密性,这样可以保证数据包在传输过程中不被非法识别;
AH与ESP提供的数据完整性服务的差别在于,AH验证的范围还包括数据包的外部IP头。
为正确实施IPsec封装及解封装IP数据包,必须建立IPsec隧道,也就是需要定义加密或鉴别算法、算法使用的密钥、密钥保持有效的生命期以及授权可用的数据访问策略等信息,这也被称为”安全联盟(Security Association,SA)”。
通常采用IKE(Internet Key Exchange,因特网密钥交换)协议来协商建立IPsec隧道。IKE协商实际上有两个阶段:
第一阶段协商,是在IPsec通信双方之间建立IKE的安全通道,即建立IKE SA,这个过程有两种模式,一种是常用的主模式(Main Mode),能提供身份保护服务,但需要较多的消息交互(多达六条消息),另一种是比较迅速的积极模式(Aggressive Mode),但协商能力较弱,也不能提供身份保护功能;
第二阶段协商是在IKE SA的保护下进行的,其目的是为特定的通信流协商IPsec安全通道,即建立IPsec SA。
由此可以看出IKE的主要作用是负责建立、维护和终止IPsec安全通道,通过其他的一些消息交换过程,可以帮助维持IPsec通道的可用性和安全性,服务于IPsec数据的安全传输。
这与L2TP控制消息帮助建立和维护L2TP数据传输通道的作用有异曲同工之妙。两者都可以提供通信双方之间的身份认证,并且都可以在提供完整性保护和机密性服务的环境下进行安全的有关参数协商和消息交互;同时还能根据各自的特点,提供一种保活(keepalive)机制来负责协调隧道双方的状态的同步,提高隧道的容错性和稳定性,所不同的是,IKE是充分利用IPsec通信流存在即对方活跃状态的证明的特点,以此减少保活报文通信量,这种方式也被称为”DPD(Dead Peer Detection,死亡对端探测)”。此外IKE的协商能力也远大于L2TP控制消息交互。
L2TP与IPsec的一个最大的不同在于它不对隧道传输中的数据进行加密,从而没法保证数据传输过程中的安全。因此这个时候,L2TP常和IPsec结合使用,先使用L2TP封装第二层数据,再使用IPsec封装对数据进行加密和提供完整性保护,由此保证通信数据安全传送到目的地。
L2TP由于封装的是第二层协议数据,因此可以认为是一种L2VPN(第二层VPN)技术。最新的L2TP协议草案(L2TP v3)表明,L2TP不仅可以封装PPP数据单元,还可以封装其他第二层协议数据,如Ethernet(以太网)、Frame Relay(帧中继)等。因此L2TP的作用已经扩展到将异地的局域网通过L2TP隧道跨越公共网络连接在一起,也就是实现异地局域网互联,这样可以将某些局域网技术如VLAN(虚拟局域网)应用到异地局域网之间,从而利用公共网络来模拟局域网。当然其数据传输过程中的安全性仍然依赖于IPsec来提供。同时由于对数据进行了层层封装,这样难免影响效率,导致性能不高。
IPsec封装的是IP层数据,或是IP上层协议载荷,因此可以认为是一种构建L3VPN(第三层VPN)的技术。其最大的特点是为数据传输过程提供了机密性、完整性保护和数据源验证,从而确保承载于公共网络的VPN的安全性和可靠性,同时由于添加的协议头并不多,且还可以利用硬件加密卡加速IPsec报文的处理,因而效率上得到了很大的提高;此外IKE协商过程能提供比较完备的用户身份认证,这就使得可以对IPsec用户访问实施有力控制,从而进一步保证了网络的安全。
因此就一般企业用户构建安全的VPN而言,应该使用IPsec技术,当然如果需要实现安全的VPDN,就应该采用L2TP+IPsec组合技术。

2. 如何客观评价以太经典

ETC这条链的延续可以说是出乎当时以太坊社区意料的,当90%的算力切换到新链ETH时,以太社区出现拥有10%算力的Ethereum Classic。这10%的算力仍然在短链上报块,直到P网突然上线名为ETC的数字资产,Ethereum Classic的代币正式诞生。当年,ETC上线P网一度引发重放攻击的威胁,有预言ETC如果未能解决此问题,而ETC这条被大部分以太坊社区抛弃的短链,则不能持续存在,然而ETC直到今天仍在运行。更好用的数字货币交易平台“币汇”。

相比较于ETH有Vitalik这一计算机天才加区块链大明星带队而言,ETC开发团队显得过于沉寂。在如今区块链领域里,以太坊成为仅次于比特币的市值第二大的加密货币,同时社区成员遍布全世界,据统计,如今的区块链项目100个当中就有94个基于以太坊平台开发。如此辉煌的成绩,除了以太坊开发团队的高超技术之外,当然少不了市场营销的厉害。相比较其他团队而言,V神的加持本来就是一个大的IP,尽管以太坊成长到第二大加密货币的地位。如今的V神仍然会满世界开会,在营销自己的同时也是在营销ETH。

而反观ETC这一边,多年来表现不温不火,随着区块链行业的不断发展壮大,作为老币的ETC眼看即将淹没在历史长河当中。真的如行业所说的,ETC跟狗币都是游击队吗?回顾ETC这些年的发展历程,2016年以太经典(Ethereum Classic,简称ETC)在The Dao事件中诞生,由全新的开发团队负责维护。P网是第一家上线ETC的交易所,随着越来越多的算力的加入,ETC的交易量也逐步上升。

3. 09年 9月三级网络技术笔试重点概括

第一章 计算机基础
1.1 计算机系统的组成
<1>年份事件:
1946 ENIAC 第一台计算机诞生
1969 ARPNET产生 互联网的诞生
1971 微处理器芯片4004产生 微机的诞生
1981 微处理器芯片Intel8088产生 IBM首推PC
1991.6 中科院高能所接入斯坦福大学 中国人上网
1994年 采用TCP/IP协议实现国际互联网全功能连接
1.2 计算机硬件组成
<1>计算机现实的分类
Sevrer、workstation、台式机、笔记本、手持设备
Server具有相对性、不需专门特定的处理器

<2>基本单位换算:
速率或带宽:T、G、M、K之间进率1000,单位bps
容量:T、G、M、K、B之间进率1024,单位字节
<3>英文简写:
MIPS、MFLOPS、MTBF、MTTR
<4>奔腾芯片的特点
32位、超标量、超流水、分支预测、哈佛结构、PCI总线
<5>安腾芯片特点
64位、EPIC
<6>主板的分类:
<7>网卡两层性:物理层+数据链路层

1.3 计算机软件组成
<1>软件=程序+数据+文档
<2>常用软件的分类:
<3>瀑布模型:
计划----定义、可行性
开发:初期----需求分析、总体设计、详细设计
后期----编码、测试
运行:运维

1.4 多媒体基本概念
<1>压缩标准的区别:
JPEG 静止图像
MPEG 动态图像
<2>超文本:非线性、跳跃性;
唇同步;
流媒体:边下边看
<3>压缩方法分类:
熵编码(无损压缩)----哈弗曼、算术、游程编码
源编码(有损压缩)----预测、矢量量化编码
混合编码
<4>流媒体:边下边看
技术特点:连续性、实时性、时序性(同步性)
---------------------------------------------------------------------------------
第二章 网络基本概念
2.1 计算机网络的形成与发展
<1>三网融合:计算机网络、电信通信网、广播电视网
2.2 计算机网络的基本概念
<1>定义:独立、自治、共享资源、信息传输
<2>计算机网络地理范围分类:LAN、WAN、MAN
<3>拓扑的定义:几何关系表示的网络结构 通信子网的抽象
<4>与网络拓扑相关的指标:
网络性能、系统可靠性、通信费用
<5>点对点网络不可能有总线型拓扑;
广播式网络中不可能有网状型拓扑
<6>点对点网络中星形、环形、树形、网状型拓扑各自特点;
<7>公式的计算----奈奎斯特准则与香农定理
<8>两定理基本原理:
Nyquist 理想低通 有限带宽
Shannon 有随机噪声的低通
<9>关于误码率:
是统计值,样本越大越精确;
不是越低越好,考虑实际需求;
二进制码元
2.3 分组交换技术的基本概念
<1>电路交换:
过程:线路建立、数据传输、线路释放
特点:优点----实时性高、适宜交互式会话类通信 模拟通信
不足----设备利用率底、不具备差错控制、流量控制
不适宜突发式通信
<2>存贮转发:
(1)Message----将发送数据作为一个逻辑单位转发 出错重传麻烦
(2)Packet----限定分组最大长度 如TCP/IP 最大64KB
含分组号 目的端需排序重组
<3>分组交换技术分:
(1)DG ----无需预先建立链路、需进行路由选择、目的结点需排序重组、
传输延迟大、适宜突发式通信
(2)VC----需预先建立链路、不需进行路由选择、适宜长报文传输
每个结点可同时和其他结点建立多条虚电路、

2.4 网络体系结构与网络协议
<1>协议三要素及其定义
语法----结构和格式
语义----控制信息、动作与响应
时序----实现顺序
<2>OSI七层结构
<3>Datalink、Transport、Network功能;
Datalink----建立无差错的数据链路、传送数据帧
Network----寻址、路由、拥塞控制
Transport----端到端可靠透明地传送报文
<4>TCP、UDP协议特点
TCP----可靠、面向连接、全双工、复杂、速度慢、传控制信息
UDP----不可靠、面向无连接、简单、速度快、传数据
<5>TCP/IP与OSI模型的对应关系
<6>TCP/IP协议中传输层、互联层的功能
传输层----建立用于会话的端到端的连接
互联层----将源报文发送至目的主机
<7>常见应用层协议
2.5 互联网的应用与发展(了解)
<1>p2p----非集中式、平等、独立路由、自治
2.6 无线网络应用的发展(了解)
<1>802.16----WMAN,无线城域网
<2>802.11----WLAN,无线局域网
Ad hoc----无线自组网
(1)WSN----无线传感器网络
(1)WMN----无线网格网
--------------------------------------------------------------------------------
第三章 局域网基础
3.1 局域网与城域网基本概念
<1>局域网技术三要素:
网络拓扑、传输介质与介质访问控制方法
<2>局域网介质访问控制方法:
CSMA/CD、Token bus、Token ring
<3>IEEE对Datalink划分为LLC和MAC层
<4>IEEE802标准中.1 .2 .3 .4 .5 .11 .16 所述内容
3.2 以太网
<1>CSMA/CD特点:
共享介质、广播、会听、平等竞争、随机、冲突、退避、
传输效率不稳定、 实时性差、低负荷、易实现
<2>CSMA/CD发送流程:
先听后发、边听边发、冲突停止、延迟重发
<3>理解以太网数据收发过程:
<4>冲突窗口2D/V 51.2微秒、 以太网帧长度64B--1518B
<5>以太网的实现:网卡、收发器、收发电缆线
网卡作用----编解码、帧拆装、CRC校验
<6>MAC地址的唯一性:
48 bit,厂商ID + 产品SN ,各占3个字节
<7>CSMA/CD、Token bus和Token ring的区别:
CSMA/CD----随机、实时性差、低负荷、易实现
Token----确定、实时、重负荷、实现困难
3.3 高速局域网的工作原理
<1>快速以太网及千兆以太网特点:
相同----帧格式、介质访问控制方法CSMA/CD、接口
不同:快速以太网----发送间隔10ns、MII介质独立接口、
双绞线及光纤 802.3u
千兆以太网----发送间隔1ns、GMII介质独立接口、
双绞线及光纤 802.3z
<2>万兆位以太网特点:
光纤、全双工、sonet/net、STM-64模式、10GMII
帧格式相同、不用CSMA/CD
3.4 交换式局域网与虚拟局域网
<1>交换式局域网的概念及特点:
概念----多端口之间建立多个并发连接
特点----低延迟、高带宽
支持不太速率和工作模式
支持VLAN
<2>交换式局域网端口和MAC映射表:
端口号与MAC地址 地址学习
<3>帧转发方式:
直通、存贮转发、改进的直通
<4>VLAN组网方式及特点:
组网方式----端口号、MAC地址、网络地址、IP广播组
特点式----管理方便、安全、服务质量高
3.5 无线局域网
<1>无线局域网的分类及特点:
红外----视距,包括定向、全方位、漫反射
安全、抗干扰、简单、传输距离短
扩频---- DSSS、FHSS、抗干扰能力强
<2>802.11b (1、2、5.5、11Mbps)与802.11a (54Mbps)速率
<3>802.11层次模型结构:
物理层+MAC
MAC----争用型 DCF+CSMA/CA
非争用型 PCF
3.6 局域网互联与网桥工作原理
<1>网桥的作用、工作过程及分类
作用----数据接受、地址过滤、数据转发,分割流量、连接局域网和局域网
工作过程----接受、存贮、地址过滤、帧转发
分类----源路由网桥 + 透明网桥
<2>各种网络连接所用的设备:
局域网互联----网桥
局域网与广域网、广域网与广域网----用路由器或网关
<3>网络设备工作的对应层次
Hub集线器----Physical
Bridge、Switch----Datalink
Router路由器----Network,分组存贮转发、路由选择、拥塞控制
Gateway网关----Application
-------------------------------------------------------------------------------------
第四章 网络操作系统
4.1 网络操作系统的特点
<1>单机操作系统的基本功能:
进程管理、内存管理、文件系统、设备I/O
<2>单机OS的组成及结构:
组成----驱动、内核、接口库及外围组件
结构----简单、层次、微内核、垂直和虚拟机结构
<3>OS启动进程的机制:
DOS---->EXEC
Windows---->CreatProcess
<4>常见文件系统:
DOS---->FAT
Windows---->VFAT
OS/2---->HPFS
NT---->FAT32、NTFS
<5>网络OS的基本任务:
屏蔽差异性、提供网络服务、实现资源共享管理、保证安全
4.2 网络操作系统的演变(无考点)

4.3 网络操作系统的类型与功能
<1>网络操作系统的分类:
专用型、通用型(变形级、基础级系统)
<2>NOS的发展:对等---->非对等 C/S
硬盘Server----文件Server----应用Server(DB、Web、Ftp、DNS、通信)
<3>文件服务器的功能:
为用户提供完善的数据、文件和目录服务
<4>网络管理服务功能:
网络性能分析、状态监控、存贮管理
<5>NOS功能:
文件、打印、DB通信、信息、分布式目录、网络管理、Internet/Intranet服务
<6>DB中传送信息所用的语言:SQL(Structured Query Language,结构化查询语言)
4.4 Windows NOS的发展
<1>Windows NT域的概念:
域同目录,NT只有一个主域,可有多个备份域
<2>NT的特点(4个)
<3>Windows 2000的特点及其理解:
特点----活动目录服务
树状、组织单元
主域、备份域----域间平等
主从式----多主机复制
用户全局、本地组----信任可传递、单点登陆
<4>Windows 2000 Server的版本及Server 2008的虚拟化技术。
4.5 NetWare NOS
<1>NetWare文件系统的基本单位及访问方式
<2>NetWare四类用户
<3>NetWare四级安全机制
<4>NetWare三级容错 SFT1、2、3
<5>IntranetWare特点:
支持IP和IPX、Web、Ftp
4.6 UNIX NOS
<1>UNIX的发展
1969 AT&T----Unix V1 汇编
1973 AT&T----Unix V5 C
1981 AT&T----Unix SV R4.0
1969 加州大学伯克利分校----BSD4.3
<2>UNIX特点:
可移植性强、shell语言,树形文件系统
<3>UNIX标准的演进:
POSIX--->UI、OSF--->COSE--->蒙特雷计划
<4>UNIX的版本及公司
IBM---->AIX
sun---->solaris
HP---->HP-UX、Digital unix
SCO---->OpenServer、UnixWare
<5>Unix solaris 10、AIX 5L、HP11 iV3等的新特性,特别是第一点。
4.7 Linux NOS
<1>Linux 起源----芬兰,赫尔辛基大学
<2>Linux特点----开源、自由软件
<3>各公司的Linux版本:
Red Hat----Red Hat Linux9.0、Red Hat Enterprise Linux 5.0
Novell----SUSE Linux、SUSE Enterprise Linux 11
第五章 Internet基础

5.1 Internet的构成
<1>因特网的概念:
设计者----互联网络的一个实例
用户----信息资源网
<2>因特网的组成部分:
服务器客户机、信息资源、通信线路、路由器

5.2 Internet的接入
<1>Internet的接入:
电话网----Modem D/A A/D 56kbps
ADSL----上行16-640kbps 下行1.5M-9Mbps
HFC----上行10Mbps 下行10M-40Mbps
数据通信网----DDN、ATM、帧中继网 速率64kbps----2Mbps
5.3 IP协议与互联层服务
<1>IP协议内容:
IP数据报格式、寻址、路由、分片、重组、差错控制和处理
<2>互联层服务及IP地址唯一性:
互联层服务----无连接、不可靠、尽力传送
唯一性----Internet中任一台计算机均有IP地址
任两台主机IP地址不同
5.4 IP地址
<1>IP地址的构成:
32位,网络号+主机号,点分十进制记法,合法IP范围0--255
<2>单播A、B、C三类IP地址的网络位、主机为及判别:
判别:看第一个十进制数的范围,
A类(1-126)、B类(128-191)、C类(191-223)
<3>判断两台主机是否在同一网段:
看网络号是否相同,相同则在同一网络,否则不在同一网络
<4>特殊的IP地址:
网络地址----网络地址.0
有限广播地址----255.255.255.255
直接广播----网络地址.255
回送地址----127.x.x.x
私有地址---->10.x.x.x、192.168.x.x、
172.16.x.x--172.31.x.x
<5>IP地址与子网掩码关系:
子网掩码----1(网络及子网位).0(主机位)
IP地址与子网掩码相与得到网络地址,进而可计算子网号、主机号
<6>IP地址与MAC地址的转换:
IP---->MAC ARP 广播、高速缓冲表
MAC---->IP RARP
5.5 IP数据报
<1>对IP数据报格式及其相关字段的理解:
总长度最长64KB、报头最长长60B、TTL、源地址及目的地址
标识、标志、片偏移、选项、版本及协议类型等
5.6 差错与控制报文
ICMP报文分为:
<1>控制报文:
拥塞控制----源抑制,缓冲区存满
路由控制----重定向,选择最佳路径
<2>差错报文:
目的地不可达----网络、主机、协议及端口不可达
超时----TTL超期
参数错误
<3>请求/应答报文对:
回应请求/应答----测试目的主机或路由器的可达性
时戳请求/应答----同步时钟
掩码请求/应答----请求告知子网掩码
5.7 路由器与路由选择
<1>理解(N,R)对序偶、(M、N,R)三元组:
到目标网络最近的路由器的较近的端口地址(下一跳路由器)
<2>统一路由选择算法:(M、N,R)三元组+
特定主机M=255.255.255.255
默认路由M=0.0.0.0
A类IP地址M=255.0.0.0
B类IP地址M=255.255.0.0
C类IP地址M=255.255.255.0
<3>路由表建立:
静态路由表,手工维护
动态路由表,路由协议,自动维护
<4>理解RIP和OSPF路由协议:
<5>选择路由协议:
静态路由----小型、单路径、静态IP (网络数<10)
RIP----中型、多路径、动态IP (10<网络数<50)
OSPF----大型、多路径、动态IP (网络数>50)
5.8 IPV6协议
<1>IPV6基本知识:
128位,64位网络前缀+64网络接口标识符,冒号16进制表示法,8位段
零压缩,双冒号表示,缺位补零
<2>IPV6地址类型:
单播地址----可聚类全球单播、链路本地地址
组播地址----该多播地址表示的所有网络接口
任播地址----该多播地址表示的所有网络接口中的任一个
特殊地址----全零地址、回送地址(0::1)
映射到IPV4和IPV4兼容的IPV6地址
<3>IPV6数据报格式:
基本头(40B)+扩展头+数据单元
5.9 TCP与UDP
<1>TCP与UDP服务的特点
TCP----可靠、面向连接、全双工、流接口、
连接的可靠建立与优雅关闭
UDP----不可靠、无连接、简单、高效
<2>理解TCP三次握手和流量控制过程:
<3>常见应用程序对应的端口号
TCP端口:
FTP--20 21、Telnet--23、SMTP--25、DNS--53
HTTP--80、POP3--110
UDP端口:
DNS--53、TFTP--69、SNMP--161
第六章 Internet基本服务
6.1 客户机/服务器模型
<1>C/S定义及特性:
定义----客户机进程启动请求通信、服务器进程守护并响应
特性----互联网应用程序间同步、适应资源分配不均
<2>服务器的实现方法:
重复Server----面向无连接、请求处理时间已定,时间较短
并发Server----面向连接、请求处理时间不定,实时、灵活
<3>端口号----标识特点的服务
6.2 域名系统
<1>域名体系特点:
树状层次结构(倒树)、分布式
<2>传统的7个顶级域名
<3>域名解析的两种方法:
递归解析、反复解析,均有本地域名服务器完成
6.3 远程登陆服务
<1>Telnet采用C/S模式,NVT来屏蔽键盘的差异性、
屏蔽双方数据格式的差异性
6.4 FTP服务
<1>FTP通过C/S建立双重连接
控制连接(21)
Data连接(20) 建立方式----主动模式、被动模式
传输方式----文本文件、二进制文本
<2>FTP访问方式:
FTP命令行、浏览器、FTP下载工具
<3>FTP匿名服务:用户名anonymous 口令guest
6.5 电子邮件系统
<1>发送邮件用SMTP(25),接受用pop3(110)、IMAP
邮件的发送与接受均要经过邮件服务器,因SMTP和pop3均用C/S模式
<2>邮件地址格式:用户名@邮件服务器
<3>RFC822----邮件头+邮件体
MIME----邮件体多媒体化
6.6 WWW服务
<1>Web服务使用的传送协议HTTP,网页使用语言HTML
<2>URL协议类型:
HTTP、ftp、telnet、file、gopher
<3>web浏览器组成及工作原理:
控制单元、客户单元、解释单元
<4>Web服务器的安全级别
IP地址限制、用户验证、web权限、NTFS权限
<5>SSL作用及工作流程
验证客户机和服务器双方身份、加密传输数据
会话密钥有浏览器产生
第七章 网络安全技术
7.1 网络管理
<1>网络管理的5个功能:
配置、故障、性能、计费、安全管理
<2>管理者--代理模型:
通信方式----操作、通知
管理模式----集中式、分布式网络管理
<3>SNMP模型组成:
管理者、代理、SNMP、MIB(在被关节点内部)
<4>SNMP与CMIP的特点:
共同点----应用层协议、均采用管理者代理模型
不同点:SNMP用轮询监控、协议简单、安全性差
CMIP用委托监控、实时性强、安全性好
协议复杂、代理负荷重
7.2 信息安全技术概述
<1>信息安全的概念及目标:
概念----
目标----真实、完整、保密、可用、防抵赖、可控制、可审查
<2>安全准则TCSEC:
分四类7级,由D、C、B至A安全性逐步增强
<3>常见OS符合那个级别的安全要求:
D1----Dos、Win95
C2----Windows NT、Netware、Unix、Linux
<4>GB安全准则:
自主保护级---->不危害国家安全、社会秩序、经济建设、公共利益
指导保护级---->造成一定损害
监督保护级---->造成较大损害
强制保护级---->造成严重损害
专控保护级---->造成特别严重损害

7.3 网络安全分析与安全策略
<1>网络安全的概念、要素和目的:
概念----
要素----真实、完整、保密、可用、防抵赖
目的----信息存贮安全、信息传输安全
<2>常见的安全威胁及其影响的安全要素:
监听、信息泄露---->保密性
伪装、假冒---->真实性
篡改---->完整性
重放---->可控性
DOS---->可用性
否认---->防抵赖
<3>网络攻击的分类:
被动攻击----信息内容泄露、流量分析
难发现、可预防、加密
主动攻击----伪装、篡改、重放、DOS、DDOS
易检测、难预防
服务攻击----针对特定的网络服务
非服务攻击----针对网络底层协议
利用协议或OS漏洞实现

7.4 加密技术
<1>密码的分类:
转换类型----代换、置换(易位)
密钥个数----对称、非对称
明文处理方法----分组、流(序列)
<2>代换和置换算法基本原理及凯撒算法
<3>常见加密算法分类
对称----DES、IDEA、TDEA、AES、RC5、Blowfish
其中DES 数据64b、密钥56b
非对称----RSA、Elgamal、背包
<4>密钥管理:
KDC----对称密钥及私钥的分发
CA----公钥的认证,含在数字证书中
<5>理解非对称加密过程:
(发送方)加密----接收方公钥
(接受方)解密----接收方私钥
7.5 认证技术
<1>认证的目的及种类:
目的----信源识别、完整性验证
种类----消息认证、数字签名、身份认证
<2>常见认证算法及协议:
认证算法----MD5、SHA-1
一致、惟一、随机、单向不可逆
签名算法----RSA、Elgamal、椭圆曲线数字签名
身份认证协议----S/Key、X.509、Kerberos
<3>身份认证方法:
口令、个人持证、生物识别
<4>理解消息认证和数字签名的流程

7.6 安全技术应用
<1>电子邮件安全:
PGP、S/MIME,可实现签名和加密
<2>IPSec包含:
AH----源身份认证、数据完整性
ESP----身份认证、数据完整性、加密
7.7 入侵检测与防火墙
<1>入侵检测技术分类:
统计异常检测----阀值检测、基于轮廓
基于规则的检测----异常检测、渗透检测
<2>防火墙的分类:
包过滤路由器----简单、透明、处理速度快
应用级网关----代理服务器、针对特定应用、开销大
电路网关
堡垒主机
<3>防火墙的执行控制策略
服务、方向、用户、行为控制
<4>防火墙不足
不能防:绕过它的连接、内部的攻击、病毒
<5>防火墙的使用范围:
VLAN之间、外网与内网之间、总部网与分支机构网络之间
7.8 计算机病毒问题与防护
<1>病毒常识:
破坏性、传染性、潜伏性、复制能力
<2>常见病毒及防治:
木马、蠕虫、宏病毒、电子邮件病毒
检测、标识、清除
<3>扫描器的组成:
CPU模拟器、病毒签名扫描器、模拟控制模块
第八章 网络应用技术
8.1 组播技术
<1>理解单播、广播和组播:
<2>组播相关协议:
(a)组播组管理协议----IGMP、CGMP、IGMP Snooping
交换机监听发送主机发送的Router-port GMP形成
组成员和接口的对应关系,此后仅向有组成员的接口
转发组播报文,解决数据链路层中组播报文泛滥的问题
(b)组播路由协议
域间路由协议----MBGP、MSDP
域内路由协议:
密集模式----DVMRP、MOSPF、PIM-DM
稀疏模式----CBT、PIM-SM
8.2 P2P网络
<1>P2P网络结构
集中式拓扑----中心化、Server保留索引信息、快速检索
中心结点易受攻击、Napster、Maze
分布式非结构化----配置简单、洪泛搜索、随机转发、
可适应网络动态变化、支持复杂查询、
扩展性好、小网络效率高、GNUtella
分布式结构化----DHT、非中心化、自组织、良好的扩展性
健壮性、维护较复杂、Pastry、Tapestry
混合式结构----快速检索、可扩展、抗攻击 Skype、BT
eDonkey、PPLive
<2>混合式结构的P2P网络中结点分为:
用户结点、搜索结点、索引结点
<3>P2P应用:
分布式科学计算、文件共享、协同工作、流媒体直播、分布式搜索引擎
8.3 即时通信系统
<1>IM模式:
P2P(C/C)----传文件
中转(C/S)----文本消息
<2>了解IM协议----SIMPLE、XMPP
<3>SIP的组成及消息:
组成----用户代理、代理Server、重定向Server、注册Server
A消息----Request、Response
<4>XMPP采用C/S结构、由XMPP客户端、服务器、协议网关构成
8.4 IPTV
<1>IPTV基本业务
VOD----包括节目制作中心、专业视频服务器、视频节目库
VOD管理服务器、客户端播放设备
直播电视----IP网作传输网、机顶盒(信号转换)、组播
时移电视----时间轴根据用户需求而动、存贮媒体文件、点播
<2>IPTV构成及关键技术理解
构成----节目采集、存贮与服务、节目传送、用户终端设备、相关软件
理解----视频数字化、传输IP化、播放流媒体化
8.5 VoIP
<1>VoIP实现方法及构成
实现方法----PC-to-PC、PC-to-Phone、Phone-to-Phone
构成----终端设备、网关、网守、MCU
<2>VoIP网关作用
号码查询、建立通信连接、信号调制、信号解压缩、路由寻址
8.6 网络搜索技术
<1>全文搜索引擎组成
搜索器、索引器、检索器、用户接口
<2>google、网络各自技术特点

4. 什么叫目标完整性检测

在网络安全领域,随着黑客应用技术的不断“傻瓜化”,入侵检测系统IDS的地位正在逐渐增加。一个网络中,只有有效实施了IDS,才能敏锐地察觉攻击者的侵犯行为,才能防患于未然!本文对IDS的概念、行为及策略等方面内容以问答形式进行全面介绍,期望帮助管理者更快和更好地使用IDS。

问:都有哪些重要的IDS系统?

根据监测对象不同,IDS系统分为很多种,以下是几种很重要的IDS系统:

1、NIDS
NIDS是network intrusion detection system的缩写,即网络入侵检测系统,主要用于检测hacker或cracker通过网络进行的入侵行为。
NIDS的运行方式有两种,一种是在目标主机上运行以监测其本身的通讯信息,另一种是在一台单独的机器上运行以监测所有网络设备的通讯信息,比如hub、路由器。

2、SIV
SIV是system integrity verifiers的缩写,即系统完整性检测,主要用于监视系统文件或者Windows 注册表等重要信息是否被修改,以堵上攻击者日后来访的后门。SIV更多的是以工具软件的形式出现,比如“Tripwire”,它可以检测到重要系统组件的变换情况,但并不产生实时的报警信息。

3、LFM
LFM是log file monitors的缩写,即日志文件监测器,主要用于监测网络服务所产生的日志文件。LFM通过检测日志文件内容并与关键字进行匹配的方式判断入侵行为,例如对于HTTP服务器的日志文件,只要搜索“swatch”关键字,就可以判断出是否有“phf”攻击。

4、Honeypots
蜜罐系统,也就是诱骗系统,它是一个包含漏洞的系统,通过模拟一个或多个易受攻击的主机,给黑客提供一个容易攻击的目标。由于蜜罐没有其它任务需要完成,因此所有连接的尝试都应被视为是可疑的。蜜罐的另一个用途是拖延攻击者对其真正目标的攻击,让攻击者在蜜罐上浪费时间。与此同时,最初的攻击目标受到了保护,真正有价值的内容将不受侵犯。蜜罐最初的目的之一是为起诉恶意黑客搜集证据,这看起来有“诱捕”的感觉。

问:谁是入侵者?

通常我们将入侵者称为hacker,但实际上这是不准确的。可以这么说:hacker是发现系统漏洞并修补漏洞的,cracker才是利用漏洞占山头搞破坏的入侵者。为了不混淆视听,在此干脆统一叫作入侵者吧。一般来说,入侵者分为两类:内部和外部。内部入侵者通常利用社会工程学盗用非授权帐户进行非法活动,比如使用其他人的机器、冒充是处长或局长;外部入侵者则要借助一定的攻击技术对攻击目标进行监测、查漏,然后采取破坏活动。

有一点请牢记:统计表明,入侵行为有80%来自内部。
问:入侵者如何进入系统?

主要有三种方式:

1、物理入侵
指入侵者以物理方式访问一个机器进行破坏活动,例如趁人不备遛进机房重地赶紧敲打两下键盘试图闯入操作系统、拿着钳子改锥卸掉机器外壳“借”走硬盘装在另一台机器上进行深入研究。

2、系统入侵
指入侵者在拥有系统的一个低级账号权限下进行的破坏活动。通常,如果系统没有及时“打”最近的补丁程序,那么拥有低级权限的用户就可能利用系统漏洞获取更高的管理特权。

3、远程入侵
指入侵者通过网络渗透到一个系统中。这种情况下,入侵者通常不具备任何特殊权限,他们要通过漏洞扫描或端口扫描等技术发现攻击目标,再利用相关技术执行破坏活动。NIDS主要针对的就是这种入侵。

问:入侵者为何能闯入系统?

苍蝇不盯无缝的蛋,入侵者只要找到复杂的计算机网络中的一个缝,就能轻而易举地闯入系统。所以,了解这些缝都有可能在哪里,对于修补它们至关重要。通常,裂缝主要表现在软件编写存在bug、系统配置不当、口令失窃、明文通讯信息被监听以及初始设计存在缺陷等方面。

1、软件编写存在bug
无论是服务器程序、客户端软件还是操作系统,只要是用代码编写的东西,都会存在不同程度的bug。Bug主要分为以下几类:

缓冲区溢出:指入侵者在程序的有关输入项目中了输入了超过规定长度的字符串,超过的部分通常就是入侵者想要执行的攻击代码,而程序编写者又没有进行输入长度的检查,最终导致多出的攻击代码占据了输入缓冲区后的内存而执行。别以为为登录用户名留出了200个字符就够了而不再做长度检查,所谓防小人不防君子,入侵者会想尽一切办法尝试攻击的途径的。

意料外的联合使用问题:一个程序经常由功能不同的多层代码组成,甚至会涉及到最底层的操作系统级别。入侵者通常会利用这个特点为不同的层输入不同的内容,以达到窃取信息的目的。例如:对于由Perl编写的程序,入侵者可以在程序的输入项目中输入类似“ mail < /etc/passwd”的字符串,从而使perl让操作系统调用邮件程序,并发送出重要的密码文件给入侵者。借刀杀人、借Mail送“信”,实在是高!

不对输入内容进行预期检查:有些编程人员怕麻烦,对输入内容不进行预期的匹配检查,使入侵者输送炸弹的工作轻松简单。

Race conditions:多任务多线程的程序越来越多,在提高运行效率的同时,也要注意Race conditions的问题。比如说:程序A和程序B都按照“读/改/写”的顺序操作一个文件,当A进行完读和改的工作时,B启动立即执行完“读/改/写”的全部工作,这时A继续执行写工作,结果是A的操作没有了表现!入侵者就可能利用这个处理顺序上的漏洞改写某些重要文件从而达到闯入系统的目的,所以,编程人员要注意文件操作的顺序以及锁定等问题。

2、系统配置不当
默认配置的不足:许多系统安装后都有默认的安全配置信息,通常被称为easy to use。但遗憾的是,easy to use还意味着easy to break in。所以,一定对默认配置进行扬弃的工作。

管理员懒散:懒散的表现之一就是系统安装后保持管理员口令的空值,而且随后不进行修改。要知道,入侵者首先要做的事情就是搜索网络上是否有这样的管理员为空口令的机器。

临时端口:有时候为了测试之用,管理员会在机器上打开一个临时端口,但测试完后却忘记了禁止它,这样就会给入侵者有洞可寻、有漏可钻。通常的解决策略是:除非一个端口是必须使用的,否则禁止它!一般情况下,安全审计数据包可用于发现这样的端口并通知管理者。

信任关系:网络间的系统经常建立信任关系以方便资源共享,但这也给入侵者带来借牛打力、间接攻击的可能,例如,只要攻破信任群中的一个机器,就有可能进一步攻击其他的机器。所以,要对信任关系严格审核、确保真正的安全联盟。

3、口令失窃
弱不禁破的口令:就是说虽然设置了口令,但却简单得再简单不过,狡猾的入侵者只需吹灰之力就可破解。

字典攻击:就是指入侵者使用一个程序,该程序借助一个包含用户名和口令的字典数据库,不断地尝试登录系统,直到成功进入。毋庸置疑,这种方式的关键在于有一个好的字典。

暴力攻击:与字典攻击类似,但这个字典却是动态的,就是说,字典包含了所有可能的字符组合。例如,一个包含大小写的4字符口令大约有50万个组合,1个包含大小写且标点符号的7字符口令大约有10万亿组合。对于后者,一般的计算机要花费大约几个月的时间才能试验一遍。看到了长口令的好处了吧,真正是一两拨千斤啊!

4、嗅探未加密通讯数据
共享介质:传统的以太网结构很便于入侵者在网络上放置一个嗅探器就可以查看该网段上的通讯数据,但是如果采用交换型以太网结构,嗅探行为将变得非常困难。

服务器嗅探:交换型网络也有一个明显的不足,入侵者可以在服务器上特别是充当路由功能的服务器上安装一个嗅探器软件,然后就可以通过它收集到的信息闯进客户端机器以及信任的机器。例如,虽然不知道用户的口令,但当用户使用Telnet软件登录时就可以嗅探到他输入的口令了。

远程嗅探:许多设备都具有RMON(Remote monitor,远程监控)功能以便管理者使用公共体字符串(public community strings)进行远程调试。随着宽带的不断普及,入侵者对这个后门越来越感兴趣了。

5、TCP/IP初始设计存在缺陷
即使软件编写不出现bug,程序执行时也按照正确的步骤进行,但初始设计存在缺陷仍会导致入侵者的攻击。TCP/IP协议现在已经广为应用、大行其道了,但是它却是在入侵者猖狂肆虐的今天之很早以前设计出来的。因此,存在许多不足造成安全漏洞在所难免,例如smurf攻击、ICMP Unreachable数据包断开、IP地址欺骗以及SYN湮没。然而,最大的问题在于IP协议是非常容易“轻信”的,就是说入侵者可以随意地伪造及修改IP数据包而不被发现。幸好,大救星Ipsec协议已经开发出来以克服这个不足。

问:入侵者如何获取口令?

1、监听明文口令信息
大量的通讯协议比如Telnet、Ftp、基本HTTP都使用明文口令,这意味着它们在网络上是赤裸裸地以未加密格式传输于服务器端和客户端,而入侵者只需使用协议分析器就能查看到这些信息,从而进一步分析出口令,成为真用户的克隆。

2、监听加密口令信息
当然,更多的通讯协议是使用加密信息传输口令的。这时,入侵者就需要借助字典或者采用暴力攻击法来解密了。注意,我们并不能察觉到入侵者的监听行为,因为他在暗处,是完全被动的,没有发送任何信息到网络上,入侵者的机器仅被用于分析这些口令信息。

3、重放攻击(Replay attack)
这又是一种间接的攻击方式,就是说:入侵者不必对口令进行解密,需要的是重新编写客户端软件以使用加密口令实现系统登录。

4、窃取口令文件
口令文件通常都保存在一个单独的文件中,例如UNIX系统的口令文件是/etc/passwd(也可能是那个文件的镜像),WinNT系统的口令文件是/winnt/system32/config/sam。入侵者一旦获取了口令文件,就可以使用破解程序发现其中的弱口令信息。

5、观察
用户可能由于设置的口令复杂难记而将它写在一张纸上压在键盘下随时查看,或者在输入口令的时候不管身后有没有站着一位“看客”。入侵者的搜索力与记忆力都非常好,这些操作习惯对他们来说简直就是轻松练兵。所以,别忽视入侵者的眼睛!

6、社会工程
前面提到过这个问题,社会工程就是指采用非隐蔽方法盗用非授权帐户进行的非法活动,比如使用其他人的机器、冒充是处长或局长骗取管理员信任得到口令等等。记住:如果有人想要你的口令,无论他说是为了什么,请记住他,一旦发生了关于口令的案件,那个人就是头号嫌疑犯!

问:典型的入侵场景有哪些?

所谓入侵场景,就是指入侵者都会从哪些方面采取哪些步骤尝试攻击系统。典型的入侵画面是这样一幕幕展开的:

1、外部调研
知己知彼,百战不殆。入侵者攻击的第一步就是尽一切可能对攻击目标进行调研以获取充足的资料。采取的方法包括:使用whois工具获取网络注册信息;使用nslookup或dig工具搜索DNS表以确定机器名称;搜索关于公司的公开新闻。这一步对于被攻击者是完全不知的。

2、内部分析
确定了攻击目标的基本属性(站点地址、主机名称),入侵者将对它们进行深入剖析。方法有:遍历每个Web页面搜索是否存在CGI漏洞;使用ping工具一一探寻“活”着的机器;对目标机器执行UDP/TCP扫描以发现是否有可用服务。这些行为都属于正常的网络操作,还不能算作入侵行为,但是NIDS系统将能够告诉管理者“有人正在撼动门把手……”

3、漏洞利用
现在到了开始动手的时候了!破坏花样实在繁多,在此择优列举如下:通过在输入项目中写入壳命令字符串(shell command)来考验CGI脚本的安全性;通过发送大量数据以确定是否存在臭名昭著的缓冲区溢出漏洞;尝试使用简单口令破解登录障碍。当然,混合使用多种方式是攻占成功的不二法门。

4、站稳脚跟
对于入侵者而言,一旦成功地入侵了网络中的一台机器,就可以说是站稳脚跟了。入侵者现在要做的就是隐藏入侵痕迹并制造日后再攻的后门,这就需要对日志文件或其他系统文件进行改造,或者安装上木马程序、或者替换系统文件为后门程序。这时,SIV(系统完整性检测)系统会注意到这些文件的变化。由于内部网络中的安全措施通常都比较少,进一步地,入侵者将以这第一台机器作为跳板,攻击网络中的其他机器,寻找下一个安身之家。

5、享受成果
到此,入侵者可以说是完成了攻击任务,剩下的就是享受成果了:或者对窃取的秘密文件肆意使用、或者滥用系统资源、或者篡改Web页面内容,甚至将你的机器作为跳板攻击其他机器。

以上讨论是的有目的入侵者的通常行为。还有一种入侵场景通常被称为“birthday attack”,我想其含义是模拟生日时接收到许多熟人或者未知朋友的礼物吧,不过用在这里还要在礼物前加上“攻击”两字了。Birthday attack的一般步骤是:随机搜索一个Internet地址;搜索其上是否有指定的漏洞;如果有,根据已知的漏洞利用方法进行攻击。

5. SCTP链路用来传输哪些接口的数据

工业控制网络的以太网化使得企业的制造控制网络和企业信息网络可以无缝地结合起来,形成生产、控制、管理、决策、服务一体化的企业运行模式,对改变生产管理运营模式、提升企业竞争力产生了巨大的提升作用。

可见,工业以太网已经成为了连接地理上分布的控制网络的纽带,更成为了企业信息自动化的“神经中枢”。因此,以工业以太网为对象,研究其信息安全具有重大意义。

1 工业以太网面临的信息安全问题

由于技术和商业等因素的原因,工业领域的主要厂商单独或者几家联合推出了不同的解决方案,导致了多种网络标准共存的局面。例如,西门子公司主推Profibus和ProfiNet;罗克韦尔自动化提出了CIP网络概念,包括EtherNet/IP,ControlNet和DeviceNet三层网络;施耐德电器则基于Modbus和Modbus TCP实现数据在系统中的透明传输。

目前,实际使用的工业以太网的协议有上百种,常用的也有20多种,例如Modbus TCP,FF-HSE,Profi-Net,SRTP TCP/IP,EtherCAT等。

考虑到现场总线的实时性要求,对于要求响应时间小于5ms的应用,各大厂商和标准化组织还在IEEE 802.11的基础上进行了实时扩展,即实时以太网。2005年5月发布的实时以太网国际标准IEC 61784-2公布了包括中国在内的EPA在内的15种实时以太网协议。

虽然工业以太网总线协议的种类繁多,但是基本上都是在各自修改其应用层协议的基础上支持TCP/IP规范实现的,以争取通过高层协议达到相互兼容的目的。

作为工控网络通信的关键环节,工业以太网带来更加开放集成的工业自动化和信息化的整体解决方案,拥有越来越广阔的应用前景的同时,也导致了工业自动控制网络的安全威胁的增加。目前,针对工业以太网的安全研究已经成为一个热点。一种研究思路是从信息安全的五个基本要素:机密性、完整性、可用性、可控性与可审查性对照审查并加强其薄弱环节,另一种研究思路是按照资产风险威胁模型针对具体的工业以太网从入侵检测的角度进行网络安全的防范。

一些工业以太网络存在的信息安全威胁主要表现在缺乏认证,容易导致非授权访问;信息泄露或者丢失;破坏数据完整性;拒绝服务攻击。

和以太网面临的安全威胁一样,工业以太网也面临侦听、重放、拒绝服务攻击等多种安全威胁。举例来

6. 旁路攻击也叫旁路控制,描述最准确的是哪个

1、内置Bypass/2、OBS模块3、路由模式4、桥接模式5、旁路模式6、TCP/IP协议簇7、静态路由8、RIP(v1/v2)9、OSPF10、DHCPRelay11、DHCPServer12、PPPoE13、DDNS14、QoS15、弹性带宽16、可视化VPN17、应用路由(没有解释)18、AnyDNS(没有解释)19、Web认证20、智能DNS21、多链路负载均衡22、MIPS多核网络处理器23、PAP24、CHAP25、Firewall26、ACL27、端口镜像28、ARP攻击29、URL跳转30、域名过滤1、内置Bypass/名词解释:旁路功能详细解释:网络安全设备一般都是应用在两个或的网络之间,比如内网和外网之间,网络安全设备内的应用程序会对通过他的网络封包来进行分析,以判断是否有威胁存在,处理完后再按照一定的路由规则将封包转发出去,而如果这台网络安全设备出现了故障,比如断电或死机后,那连接这台设备上所有网段也就彼此失去联系了,这个时候如果要求各个网络彼此还需要处于连通状态,那么就必须Bypass出面了。Bypass顾名思义,就是旁路功能,也就是说可以通过特定的触发状态(断电或死机)让两个网络不通过网络安全设备的系统,而直接物理上导通,所以有了Bypass后,当网络安全设备故障以后,还可以让连接在这台设备上的网络相互导通,当然这个时候这台网络设备也就不会再对网络中的封包做处理了。软件测试过程中出现bypasscode,测试未完全开发的软件时,有些功能还未完成,会产生error,通过bypasscode,可以忽略及跳过这些error,从而继续替他功能的测试.2、OBS模块名词解释:光突发交换网络详细解释:光突发交换中的“突发”可以看成是由一些较小的具有相同出口边缘节点地址和相同QoS要求的数据分组组成的超长数据分组,这些数据分组可以来自于传统IP网中的IP包。突发是光突发交换网中的基本交换单元,它由控制分组(BCP,BurstControlPacket,作用相当于分组交换中的分组头)与突发数据BP(净载荷)两部分组成。突发数据和控制分组在物理信道上是分离的,每个控制分组对应于一个突发数据,这也是光突发交换的核心设计思想。例如,在WDM系统中,控制分组占用一个或几个波长,突发数据则占用所有其它波长。将控制分组和突发数据分离的意义在于控制分组可以先于突发数据传输,以弥补控制分组在交换节点的处理过程中O/E/O变换及电处理造成的时延。随后发出的突发数据在交换节点进行全光交换透明传输,从而降低对光缓存器的需求,甚至降为零,避开了目前光缓存器技术不成熟的缺点。并且,由于控制分组大小远小于突发包大小,需要O/E/O变换和电处理的数据大为减小,缩短了处理时延,大大提高了交换速度。这一过程就好像一个出境旅行团,在团队出发前,一个工作人员携带团员们的有关资料,提前一天到达边境出入境手续及预定车票等,旅行团随后才出发,节约了游客们的时间也简化了程序。5、旁路模式名词解释:详细解释:泛指在一个系统的正常流程中,有一堆检核机制,而ByPassMode就是当检核机制发生异常,无法在短期间内排除时,使系统作业能绕过这些检核机制,使系统能够继续执行的作业模式。6、TCP/IP协议簇名词解释:TCP/IP协议簇是Internet的基础,也是当今最流行的组网形式。TCP/IP是一组协议的代名词,包括许多别的协议,组成了TCP/IP协议簇详细解释:其中比较重要的有SLIP协议、PPP协议、IP协议、ICMP协议、ARP协议、TCP协议、UDP协议、FTP协议、DNS协议、SMTP协议等。TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。7、静态路由名词解释:是指由网络管理员手工配置的路由信息详细解释:当网络的拓扑结构或链路的状态发生变化时,网络管理员需要手工去修改路由表中相关的静态路由信息。静态路由信息在缺省情况下是私有的,不会传递给其他的路由器。当然,网管员也可以通过对路由器进行设置使之成为共享的。静态路由一般适用于比较简单的网络环境,在这样的环境中,网络管理员易于清楚地了解网络的拓扑结构,便于设置正确的路由信息。在一个支持DDR(dial-on-demandrouting)的网络中,拨号链路只在需要时才拨通,因此不能为动态路由信息表提供路由信息的变更情况。在这种情况下,网络也适合使用静态路由。8、RIP(v1/v2)名词解释:1.RIPv1是有类路由协议,RIPv2是无类路由协议详细解释RIPv1不能支持VLSM,RIPv2可以支持VLSM,RIPv1没有认证的功能,RIPv2可以支持认证,并且有明文和MD5两种认证,。RIPv1没有手工汇总的功能,RIPv2可以在关闭自动汇总的前提下,进行手工汇总,RIPv1是广播更新,RIPv2是组播更新,RIPv1对路由没有标记的功能,RIPv2可以对路由打标记(tag),用于过滤和做策略RIPv1发送的updata最多可以携带25条路由条目,RIPv2在有认证的情况下最多只能携带24条路由,RIPv1发送的updata包里面没有next-hop属性,RIPv2有next-hop属性,可以用与路由更新的重定,RIPv1是定时更新,每隔三十秒更新一次,而RIPv2采用了触发更新等机制来加速路由计算。9、OSPF名词解释:OSPF(OpenShortestPathFirst开放式最短路径优先)[1]是一个内部网关协议(InteriorGatewayProtocol,简称IGP),用于在单一自治系统(autonomoussystem,AS)内决策路由。与RIP相比,OSPF是链路状态路由协议,而RIP是距离矢量路由协议。OSPF的协议管理距离(AD)是110。详细解释:IETF为了满足建造越来越大基于IP网络的需要,形成了一个工作组,专门用于开发开放式的、链路状态路由协议,以便用在大型、异构的IP网络中。新的路由协议已经取得一些成功的一系列私人的、和生产商相关的、最短路径优先(SPF)路由协议为基础,在市场上广泛使用。包括OSPF在内,所有的SPF路由协议基于一个数学算法—Dijkstra算法。这个算法能使路由选择基于链路-状态,而不是距离向量。OSPF由IETF在20世纪80年代末期开发,OSPF是SPF类路由协议中的开放式版本。最初的OSPF规范体现在RFC1131中。这个第1版(OSPF版本1)很快被进行了重大改进的版本所代替,这个新版本体现在RFC1247文档中。RFC1247OSPF称为OSPF版本2是为了明确指出其在稳定性和功能性方面的实质性改进。这个OSPF版本有许多更新文档,每一个更新都是对开放标准的精心改进。接下来的一些规范出现在RFC1583、2178和2328中。OSPF版本2的最新版体现在RFC2328中。最新版只会和由RFC2138、1583和1247所规范的版本进行互操作。10、DHCPRelay名词解释:DHCPRelay(DHCPR)DHCP中继也叫做DHCP中继代理详细解释:如果DHCP客户机与DHCP服务器在同一个物理网段,则客户机可以正确地获得动态分配的ip地址。如果不在同一个物理网段,则需要DHCPRelayAgent(中继代理)。用DHCPRelay代理可以去掉在每个物理的网段都要有DHCP服务器的必要,它可以传递消息到不在同一个物理子网的DHCP服务器,也可以将服务器的消息传回给不在同一个物理子网的DHCP客户机。11、DHCPServer名词解释:指在一个特定的网络中管理DHCP标准的一台计算机详细解释:DHCP服务器的职责是当工作站登录进来时分配IP地址,并且确保分配给每个工作站的IP地址不同,DHCP服务器极大地简化了以前需要用手工来完成的一些网络管理任务。12、PPPoE名词解释:pppoe是point-to-pointprotocoloverethernet的简称详细解释:可以使以太网的主机通过一个简单的桥接设备连到一个远端的接入集中器上。通过pppoe协议,远端接入设备能够实现对每个接入用户的控制和计费。与传统的接入方式相比,pppoe具有较高的性能价格比,它在包括小区组网建设等一系列应用中被广泛采用,目前流行的宽带接入方式ADSL就使用了pppoe协议。13、DDNS名词解释:DDNS(DynamicDomainNameServer)是动态域名服务的缩写详细解释DDNS是将用户的动态IP地址映射到一个固定的域名解析服务上,用户每次连接网络的时候客户端程序就会通过信息传递把该主机的动态IP地址传送给位于服务商主机上的服务器程序,服务器程序负责提供DNS服务并实现动态域名解析。也就是说DDNS捕获用户每次变化的IP地址,然后将其与域名相对应,这样其他上网用户就可以通过域名来进行交流。而最终客户所要记忆的全部,就是记住动态域名商给予的域名即可,而不用去管他们是如何实现的。14、QoS名词解释:QoS(QualityofService)服务质量,是网络的一种安全机制详细解释:是用来解决网络延迟和阻塞等问题的一种技术。在正常情况下,如果网络只用于特定的无时间限制的应用系统,并不需要QoS,比如Web应用,或E-mail设置等。但是对关键应用和多媒体应用就十分必要。当网络过载或拥塞时,QoS能确保重要业务量不受延迟或丢弃,同时保证网络的高效运行。15、弹性带宽名词解释:弹性带宽是指,对带宽的运行,采取“人少时快,人多时均”的策略,最大化的利用带宽资源详细解释:对迅雷、BT之类的P2P下载的带宽大户进行了限速,从而使带宽得到了有效的利用。为了改善固定数值限速的缺陷和不足,提高带宽利用率,艾泰科技ReOS2009网络操作系统支持的弹性带宽技术可以根据网吧实时上网人数动态地改变每个IP拥有的带宽,使带宽分配更加合理。在带宽充足时,有带宽需求的用户可以获得的带宽;在带宽紧张时,降低占用带宽过高的用户的带宽,分配给需要带宽但占用带宽低的用户。弹性限速后,众多网络应用效果大为改观。用户可以配置针对不同的IP地址(段),不同的应用(服务)设置智能限速的策略,同时可以设置策略的生效方式(独占或共享)、优先级、生效线路和生效时间段。16、可视化VPN名词解释:虚拟专用网络(VirtualPrivateNetwork,简称VPN)详细解释:指的是在公用网络上建立专用网络的技术。其之所以称为虚拟网,主要是因为整个VPN网络的任意两个节点之间的连接并没有传统专网所需的端到端的物理链路,而是架构在公用网络服务商所提供的网络平台,如Internet、ATM(异步传输模式〉、FrameRelay(帧中继)等之上的逻辑网络,用户数据在逻辑链路中传输。它涵盖了跨共享网络或公共网络的封装、加密和身份验证链接的专用网络的扩展。VPN主要采用了隧道技术、加解密技术、密钥管理技术和使用者与设备身份认证技术。17、应用路由名词解释:详细解释:18、AnyDNS名词解释:详细解释19、Web认证名词解释:web本意是蜘蛛网和网的意思详细解释:现广泛译作网络、互联网等技术领域。表现为三种形式,即超文本(hypertext)、超媒体(hypermedia)、超文本传输协议(HTTP)等。一种全局性的信息结构,它将文档中的不同部分通过关键字建立链接,使信息得以用交互方式搜索。它是超级文本的简称。20、智能DNS名词解释:智能DNS是域名频道在业界首创的智能解析服务详细解释:能自动判断访问者的IP地址并解析出对应的IP地址,使网通用户会访问到网通服务器,电信用户会访问到电信服务器。智能DNS就是根据用户的来路,自动智能化判断来路IP返回给用户,而不需要用户进行选择。比方一个企业的站点三个运营商的带宽都有:电信、网通、移动,同样有三个来自不同运营商网络的访问用户,那电信访问企业网址的时候,智能DNS会自动根据IP判断,再从电信返回给电信用户;其他的也同理。但也会遇到一个问题,就是三个用户所使用的网络运营商的DNS同步了解析企业站点所用的智能DNS,不然用户有可能无法访问到企业站点,一般会出现在智能DNS刚生效的时候,这种情况下一般可以请求网络运营商主动同步智能DNS的解析表;或者等待最多72小时,DNS会自动同步。智能DNS有软件和硬件,软件有久负盛名的开源bind,做服务的有dnspod、DNSLA等21、多链路负载均衡名词解释:多链路主要依靠BGP来导向多个互联网链路上的流量详细解释:BGP是一种区域间的路由协议,旨在使ip路由器将互联网上的数据包从A点导向B点。然而,BGP是路由的核心技术,很难用来实施多归属管理,并且BGP路由不提供一个适当的机制来确保基于链路的动态灵活路由。最为关键的是:中国的各个运营商不会向用户提供BGP路由协议。由此诞生了“多链路负载均衡”,成功解决了电信与网通之间、不同链路之间互联互通的问题,除此之外,双线路可以互为备份,如一条链路出现故障时,可以自动切换到其它链路;并在一条链路流量大时自动分配其余流量到其他的链路上等等。22、MIPS多核网络处理器名词解释:传统网络处理器通过专门针对网络处理而优化的指令集及并行体系结构来加速基本的包处理任务,获得与通用处理器接近的灵活性和与ASIC接近的高性能详细解释。如Intel的网络处理器主要用于包转发,微引擎执行基本的包处理任务,XScaleCore处理例外包、控制消息及传输层协议等,都是比较基本的处理任务。但是受处理器内部资源(如片上存储、代码空间、处理器时钟频率等)的限制,无法支持DPI这样的复杂处理.用低级编程语言(汇编语言),缺乏稳定的支持软件。从而,网络处理器并没有如人们最初预料的那样迅速普及开来。在这种形势下,部分厂商开始了新型多核网络处理器的研发。23、PAP名词解释:密码认证协议(PAP),是PPP协议集中的一种链路控制协议,主要是通过使用2次握手提供一种对等结点的建立认证的简单方法,这是建立在初始链路确定的基础上的。详细解释:PAP并不是一种强有效的认证方法,其密码以文本格式在电路上进行发送,对于窃听、重放或重复尝试和错误攻击没有任何保护。对等结点控制尝试的时间和频度。所以即使是更高效的认证方法(如CHAP),其实现都必须在PAP之前提供有效的协商机制。该认证方法适用于可以使用明文密码模仿登录远程主机的环境。在这种情况下,该方法提供了与常规用户登录远程主机相似的安全性。24、CHAP名词解释:CHAP全称是PPP(点对点协议)询问握手认证协议()。详细解释:该协议可通过三次握手周期性的校验对端的身份,可在初始链路建立时完成时,在链路建立之后重复进行。通过递增改变的标识符和可变的询问值,可防止来自端点的重放攻击,限制暴露于单个攻击的时间。25、Firewall名词解释:一种确保网络安全的方法详细解释:防火墙可以被安装在一个单独的路由器中,用来过滤不想要的信息包,也可以被安装在路由器和主机中,发挥更大的网络安全保护作用。防火墙被广泛用来让用户在一个安全屏障后接入互联网,还被用来把一家企业的公共网络服务器和企业内部网络隔开。另外,防火墙还可以被用来保护企业内部网络某一个部分的安全。例如,一个研究或者会计子网可能很容易受到来自企业内部网络里面的窥探。26、ACL名词解释:访问控制列表(AccessControlList,ACL)详细解释:是路由器和交换机接口的指令列表,用来控制端口进出的数据包。ACL适用于所有的被路由协议,如IP、IPX、AppleTalk等。这张表中包含了匹配关系、条件和查询语句,表只是一个框架结构,其目的是为了对某种访问进行控制。信息点间通信和内外网络的通信都是企业网络中必不可少的业务需求,但是为了保证内网的安全性,需要通过安全策略来保障非授权用户只能访问特定的网络资源,从而达到对访问进行控制的目的。简而言之,ACL可以过滤网络中的流量,是控制访问的一种网络技术手段。27、端口镜像名词解释:端口镜像(portMirroring)把交换机一个或多个端口(VLAN)的数据镜像到一个或多个端口的方法。详细解释:为了方便对一个或多个网络接口的流量进行分析(如IDS产品、网络分析仪等),可以通过配置交换机来把一个或多个端口(VLAN)的数据转发到某一个端口来实现对网络的监听。监视到进出网络的所有数据包,供安装了监控软件的管理服务器抓取数据,如网吧需提供此功能把数据发往公安部门审查。而企业出于信息安全、保护公司机密的需要,也迫切需要网络中有一个端口能提供这种实时监控功能。在企业中用端口镜像功能,可以很好的对企业内部的网络数据进行监控管理,在网络出现故障的时候,可以做到很好地故障定位。28、ARP攻击名词解释:ARP攻击,是针对以太网地址解析协议(ARP)的一种攻击技术详细解释:此种攻击可让攻击者取得局域网上的数据封包甚至可篡改封包,且可让网络上特定计算机或所有计算机无法正常连接。最早探讨ARP攻击的文章是由YuriVolobue所写的《ARP与ICMP转向游戏》。29、URL跳转名词解释:统一资源定位符(URL,英语Uniform/UniversalResourceLocator的缩写)也被称为网页地址,是因特网上标准的资源的地址(Address)。它最初是由蒂姆·伯纳斯-李发明用来作为万维网的地址的。现在它已经被万维网联盟编制为因特网标准RFC1738了。详细解释:统一资源定位符(URL)是用于完整地描述Internet上网页和其他资源的地址的一种标识方法。Internet上的每一个网页都具有一个唯一的名称标识,通常称之为URL地址,这种地址可以是本地磁盘,也可以是局域网上的某一台计算机,的是Internet上的站点。简单地说,URL就是Web地址,俗称“网址”。URI方案集,包含如何访问Internet上的资源的明确指令。URL是统一的,因为它们采用相同的基本语法,无论寻址哪种特定类型的资源(网页、新闻组)或描述通过哪种机制获取该资源。30、域名过滤名词解释:以针对某些特定范围域名进行过滤的一种机制,允许这些域名通过或不通过。详细解释:目前的域名解析,只能针对特定域名进行翻译解析。但是如果根本就不想针对某些域名进行解析怎么呢,针对这种情况可以设置一个过滤器,将这些域名直接过滤掉并告知请求方。同样,如果只想针对某些特定域名进行解析,也可以利用这个过滤器来实现。即只让这些域名解析通过,别的通通屏蔽并告知请求方。这样可以节省流量,提高效率,特别针对企业内部网有很大借鉴意义。(以上内容摘自网络文库)

7. 360年度汽车安全报告:两种新型攻击模式引关注

汽车网络信息安全问题越来越成为备受关注的话题。

近日,360公司正式发布了《2019智能网联汽车信息安全年度报告》,该报告从智能网联汽车网络安全发展趋势、新型攻击手段、汽车安全攻击事件、汽车安全风险总结和安全建设建议等方面对2019年智能网联汽车信息安全的发展做了梳理。

据介绍,APN是运营商给厂商建立的一条专有网络,因为私网APN是专网,安全级别很高,直接接入到车厂的核心交换机上,绕过了网络侧的防火墙和入侵检测系统的防护。但是,一旦黑客通过私有APN网络渗透到车厂的内部网络,则可实施进一步的渗透攻击,实现远程批量控制汽车。

在此前一次演讲中,360Sky-Go的安全研究人员发现中国国内大部分自主品牌汽车,均使用私有APN连接车控相关的TSP后端服务器。通过ISP拉专线可以在一定程度上保护后端服务器的安全,但与此同时也给后端服务器带来了更多的安全风险。

原因在于,由于私有APN的存在,TSP虽然不会暴露于公网,但却导致了TSP的安全人员忽视了私有网络和TSP本身的安全问题,同时私有网络内没有设置严格的安全访问控制,过度信任T-Box,使得T-Box可以任意访问私有网络内部资产。

同时,很多不必要的基础设施服务也暴露于APN私网内,将引发更多安全风险。因此,一旦黑客获取到智能汽车的T-Box通讯模块,即可通过通讯模块接入车厂私有网络,进而攻击车厂内网,导致TSP沦陷。

基于生成式对抗网联(GSN)的自动驾驶算法攻击的发生则是源于在深度学习模型训练过程中,缺失了对抗样本这类特殊的训练数据。在目前深度学习的实际应用中,通过研究人员的实验证明,可以通过特定算法生成相应的对抗样本,直接攻击图像识别系统。因此,当前的神经网络算法仍存在一定的安全隐患,值得引起我们的注意。

除了这两种新型攻击方式之外,还有一种攻击方式值得我们注意,就是数字钥匙。

据介绍,数字车钥匙可用于远程召唤,自动泊车等新兴应用场景,这种多元化的应用场景也导致数字钥匙易受攻击。原因在于,数字车钥匙的“短板效应”显著,身份认证、加密算法、密钥存储、数据包传输等任一环节遭受黑客入侵,则会导致整个数字车钥匙安全系统瓦解。目前常见的攻击方式是通过中继攻击方式,将数字车钥匙的信号放大,从而盗窃车辆。

未来智能汽车的安全

在手机行业,从传统功能机升级换代到智能机,一直伴随着的就是网络信息安全问题,即使在现如今智能手机如此发达的时期,也不可避免的出现网络诈骗现象。

与手机行业相似的是,传统功能车升级换代到智能网联车,其势必也将会面临网络信息安全问题。然而,汽车不比手机,手机被网络黑客攻击,最多出现的就是财产损失。但汽车一旦被黑客攻击或劫持,很有可能会出现严重的交通事故。

基于此,360在报告中提出了5点建议:

第一、建立供应商关键环节的安全责任体系,可以说汽车网络安全的黄金分割点在于对供应商的安全管理。“新四化”将加速一级供应商开发新产品,届时也会有新一级供应商加入主机厂采购体系,原有的供应链格局将被重塑。供应链管理将成为汽车网络安全的新痛点,主机厂应从质量体系,技术能力和管理水平等多方面综合评估供应商。

第二、推行安全标准,夯实安全基础。2020年,将是汽车网络安全标准全面铺开的一年。根据ISO21434等网络安全标准,在概念、开发、生产、运营、维护、销毁等阶段全面布局网络安全工作,将风险评估融入汽车生产制造的全生命周期,建立完善的供应链管理机制,参照电子电器零部件的网络安全标准,定期进行渗透测试,持续对网络安全数据进行监控,并结合威胁情报进行安全分析,开展态势感知,从而有效地管理安全风险。

第三、构建多维安全防护体系,增强安全监控措施。被动防御方案无法应对新兴网络安全攻击手段,因此需要在车端部署安全通信模组、安全汽车网关等新型安全防护产品,主动发现攻击行为,并及时进行预警和阻断,通过多节点联动,构建以点带面的层次化纵深防御体系。

第四、利用威胁情报及安全大数据提升安全运营能力。网络安全环境瞬息万变,高质量的威胁情报和持续积累的安全大数据可以帮助车企以较小的代价最大程度地提升安全运营能力,从而应对变化莫测的网络安全挑战。

第五、良好的汽车安全生态建设依赖精诚合作。术业有专攻,互联网企业和安全公司依托在传统IT领域的技术沉淀和积累,紧跟汽车网络安全快速发展的脚步,对相关汽车电子电气产品和解决方案有独到的钻研和见解。只有产业链条上下游企业形成合力,才能共同将汽车网络安全提升到“主动纵深防御”新高度,为“新四化”的成熟落地保驾护航。

未来汽车安全问题势必是多种多样的,而对此只有产业链上下游共同努力,才能防范于未然。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

8. LBTC(闪电比特币)有投资价值吗

虚拟货币,或者更正式的叫法,数字货币。它虽然带着货币的字眼,但更准确的理解,应该是一种数字化的金融资产,它之所以有价值,是源自背后区块链技术在支付、清算、公证、数字验证等方面的应用,带来效率提升、成本降低的结果。
你可以这样理解,它就像是这些技术服务商们的股票。当这些技术应用越来越广时,这些虚拟币就越来越值钱了。
2009年出现的比特币,是世界上第一种虚拟币,也正是它,第一次应用了如今全世界大红大紫的区块链技术。
在比特币之后,市场上模仿者不断。它们或在比特币基础上改良,或提出了比比特币更宏大的技术设想。其他市场上常见且被业内人士认为是“正规军”的虚拟币,被统称为竞争币,跟比特币一起组成了整个数字货币市场,总市值接近1千亿美元。
市场上虚拟币成千上万种,绝大多数风险很大;另外还有很多干脆就是以骗人为目的的传销币。
为了帮大家避免上当受骗,下面简单介绍一下最主要的几种“正规军”:
1. 比特币(BTC)
比特币是世界上第一种虚拟币,全部总量设定为2100万个。目前已经“挖”出的比特币超过1600万个,总市值约450亿美元,相当于全部虚拟币总市值的一半,是目前当之无愧的币圈老大。
比特币目前已被全球几十万个商家接受为支付币种;另外在各种区块链技术的创业中,比特币也成了通用的筹集资金的货币。因此,随着对比特币的需求加大,从长期看,比特币的价值可能会越来越大。
2. 以太币(ETH)
以太币被视为“比特币2.0版”,也是最有可能超越比特币市值的竞争币。前段时间市值一度接近比特币,不过最近一个月来的价格下调,目前市值只有比特币的一半左右。
以太币于2014年夏天诞生,它是在以太坊区块链上发行的,跟比特币不一样。以太坊区块链是一个去中心化的应用平台,解决了比特币自身技术上局限于货币应用、功能扩展性不足的问题,因此有着较大的技术优势。
3.比特现金(BCH)
BCH继承了少部分比特币遗产,比特币现金的名字也不错,形象logo也继承到了比特币的一部分。BCH的生态也是不错的。
BCH追求做一个世界货币,和一个链上应用底层平台。BCH正在积极部署主链扩容和发展二层网络来实现理想。
整个生态主要从两方面努力。第一个方向是做主链扩容、支付体验和功能完善。扩容是保持货币交易手续费确定性很低的保证。提高支付体验,包括普及零确认,预共识,以及可能的缩短区块时间,等,都是朝着更好的支付体验方向进化。主链功能完善包括OP_Return扩容,发代币,添加新操作码这些。
虽然BCH主链功能的扩展,基于BCH的应用就可以发展起来。最著名的是memo这样的去中心化微博,JoyStream这样的付费下载种子的应用,keyport这种去中心化加密通信等等。
第二个方向是发展二层网络。基于BCH网络来搭建新的区块链,比如虫洞和Kenoken都是基于BCH的类似以太坊的网络。BCH通过二层网络来承接更复杂的区块链功能,如通知合约。BCH二层网络的竞争方向是和BTC的侧链相竞争。
4.闪电比特币(LBTC)
比特币发展到今天已经有10个年头了,在这十年的发展中,比特币一共经历了三次重要的分裂,现在变成了四种货币,第一种是目前继承了比特币绝大多数遗产的BTC;第二种是BCH;第三种是BSV,第四种是LBTC。
LBTC的诞生是为了破除大矿工和Bitcoin Core对比特币的权力垄断,为比特币引入更多的新特性和功能,并大幅度提升性能。闪电比特币(Lightning Bitcoin, LBTC)是一种点对点的电子现金系统,是基于比特币的创新实验,它使用基于UTXO的DPoS共识机制,将投票权和记帐权分开,使代币不再被任一方绑架,是一种极高速度、低手续费、高扩展性的全球价值互联网传输协议。由于采用了DPoS共识机制,用户不用专业矿机也能够参与,达到真正的去中心化。
上面这4种,就是当前最主流的比特币协议分叉版本,也是能够实现你财富暴涨愿望的投资品,老司机们可以玩玩,不过前提是,你需要做好巨亏的准备——因为他们的波动非常大。
对于小白,我想说:虽然虚拟币是普通人逆袭暴富的秘密武器,不过这玩意大起大落,你要想从中赚到大钱,其实很难。
另外,目前来看,虚比特币的价位算是处于高位的,不排除是2019年以横盘为主。这个时候,我觉得可以抄底一些其他主流分叉币,比如BCH,BSV和LBTC是不错的选择。

9. 2009年12月分三级网络技术笔试复习题

OK.我以我的人格担保这是我写的。无聊的话你可以查,我今年3月刚考过。也许是时间仓促,就没有针对你的问题进行删减。被你这么说我觉得很不爽。既然不是你所需要的,那我拿走。我当时买的是清华大学出版社的《考纲考点考题透解与模拟》,我觉得知识点抓得很准。你努力吧!

10. 如何创建和签署以太坊交易

交易

区块链交易的行为遵循不同的规则集

  • 由于公共区块链分布式和无需许可的性质,任何人都可以签署交易并将其广播到网络。

  • 根据区块链的不同,交易者将被收取一定的交易费用,交易费用取决于用户的需求而不是交易中资产的价值。

  • 区块链交易无需任何中央机构的验证。仅需使用与其区块链相对应的数字签名算法(DSA)使用私钥对其进行签名。

  • 一旦一笔交易被签名,广播到网络中并被挖掘到网络中成功的区块中,就无法恢复交易。

  • 以太坊交易结构

  • 以太坊交易的数据结构:交易0.1个ETH

    {
    'nonce':'0x00', // 十进制:0
    'gasLimit': '0x5208', //十进制: 21000
    'gasPrice': '0x3b9aca00', //十进制1,000,000,000
    'to': '' ,//发送地址
    'value': '0x16345785d8a0000',//100000000000000000 ,10^17
    'data': '0x', // 空数据的十进制表示
    'chainId': 1 // 区块链网络ID
    }

    这些数据与交易内容无关,与交易的执行方式有关,这是由于在以太坊中发送交易中,您必须定义一些其他参数来告诉矿工如何处理您的交易。交易数据结构有2个属性设计"gas": "gasPrice","gasLimit"。

  • "gasPrice": 单位为Gwei, 为 1/1000个eth,表示交易费用

  • "gasLimit": 交易允许使用的最大gas费用。

  • 这2个值通常由钱包提供商自动填写。

    除此之外还需要指定在哪个以太坊网络上执行交易(chainId): 1表示以太坊主网。

    在开发时,通常会在本地以及测试网络上进行测试,通过测试网络发放的测试ETH进行交易以避免经济损失。在测试完成后再进入主网交易。

    另外,如果需要提交一些其它数据,可以用"data"和"nonce"作为事务的一部分附加。

    A nonce(仅使用1次的数字)是以太坊网络用于跟踪交易的数值,有助于避免网络中的双重支出以及重放攻击。

  • 以太坊交易签名

    以太坊交易会涉及ECDSA算法,以Javascript代码为例,使用流行的ethers.js来调用ECDSA算法进行交易签名。

  • const ethers = require('ethers')

  • const signer = new ethers.Wallet('钱包地址')


  • signer.signTransaction({

  • 'nonce':'0x00', // 十进制:0

  • 'gasLimit': '0x5208', //十进制: 21000

  • 'gasPrice': '0x3b9aca00', //十进制1,000,000,000

  • 'to': '' ,//发送地址

  • 'value': '0x16345785d8a0000',//100000000000000000 ,10^17

  • 'data': '0x', // 空数据的十进制表示

  • 'chainId': 1 // 区块链网络ID

  • })

  • .then(console.log)
  • 可以使用在线使用程序Composer将已签名的交易传递到以太坊网络。这种做法被称为”离线签名“。离线签名对于诸如状态通道之类的应用程序特别有用,这些通道是跟踪两个帐户之间余额的智能合约,并且在提交已签名的交易后就可以转移资金。脱机签名也是去中心化交易所(DEXes)中的一种常见做法。

    也可以使用在线钱包通过以太坊账户创建签名验证和广播。

    使用Portis,您可以签署交易以与加油站网络(GSN)进行交互。


链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

热点内容
如何去深圳人才中心查入户黑名单 发布:2025-07-17 03:59:09 浏览:361
ExP区块链到底是不是骗局 发布:2025-07-17 03:43:54 浏览:352
区块链公链币区块链公链币种种 发布:2025-07-17 03:43:16 浏览:757
bsc链上怎么也有eth 发布:2025-07-17 03:19:41 浏览:997
比特币提现拥堵 发布:2025-07-17 03:10:57 浏览:584
数字货币狂人是哪里人 发布:2025-07-17 03:10:46 浏览:144
参加合约怎么停机 发布:2025-07-17 03:00:39 浏览:974
手机全网管理矿机 发布:2025-07-17 02:42:24 浏览:153
期货区块链 发布:2025-07-17 02:38:54 浏览:390
比特币2013年1月价格表 发布:2025-07-17 02:35:17 浏览:1000