当前位置:首页 » 以太坊知识 » 阿拉丁以太坊

阿拉丁以太坊

发布时间: 2021-08-26 22:39:27

『壹』 什么是以太

以太是一个历史上的名词,它的涵义也随着历史的发展而发展。

在古希腊,以太指的是青天或上层大气。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的笛卡儿是一个对科学思想的发展有重大影响的哲学家,他最先将以太引入科学,并赋予它某种力学性质。

在笛卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。以太虽然不能为人的感官所感觉,但却能传递力的作用,如磁力和月球对潮汐的作用力。

后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由胡克首先提出的,并为惠更斯所进一步发展。在相当长的时期内(直到20世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。

由于光可以在真空中传播,因此惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象。

牛顿虽然不同意胡克的光波动学说,但他也像笛卡儿一样反对超距作用,并承认以太的存在。在他看来,以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛顿也认为以太可以传播振动,但以太的振动不是光,因为当时光的波动学说还不能解释光的偏振现象,也不能解释光为什么会直线传播。

18世纪是以太论没落的时期。由于法国笛卡儿主义者拒绝引力的平方反比定律,而使牛顿的追随者起来反对笛卡儿哲学体系,因而连同他倡导的以太论也一同进入了反对之列。

随着引力的平方反比定律在天体力学方面的成功,以及探寻以太得试验并未获得实际结果,使得超距作用观点得以流行。光的波动说也被放弃了,微粒说得到广泛的承认。到18世纪后期,证实了电荷之间(以及磁极之间)的作用力同样是与距离平方成反比。于是电磁以太的概念亦被抛弃,超距作用的观点在电学中也占了主导地位。

19世纪,以太论获得复兴和发展,这首先还是从光学开始的,主要是托马斯·杨和菲涅耳工作的结果。杨用光波的干涉解释了牛顿环,并在实验的启示下,于1817年提出光波为横波的新观点,解决了波动说长期不能解释光的偏振现象的困难。

菲涅耳用被动说成功地解释了光的衍射现象,他提出的理论方法(现常称为惠更斯-菲涅耳原理)能正确地计算出衍射图样,并能解释光的直线传播现象。菲涅耳又进一步解释了光的双折射,获得很大成功。

1823年,他根据杨的光波为横波的学说,和他自己在1818年提出的:透明物质中以太密度与其折射率二次方成正比的假定,在一定的边界条件下,推出关于反射光和折射光振幅的著名公式,它很好地说明了布儒斯特数年前从实验上测得的结果。

菲涅耳关于以太的一个重要理论工作是导出光在相对于以太参照系运动的透明物体中的速度公式。1818年他为了解释阿拉果关于星光折射行为的实验,在杨的想法基础上提出:透明物质中以太的密度与该物质的折射率二次方成正比,他还假定当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动(以太部分曳引假说)。利用菲涅耳的理论,很容易就能得到运动物体内光的速度。

19世纪中期,曾进行了一些实验,以求显示地球相对以太参照系运动所引起的效应,并由此测定地球相对以太参照系的速度,但都得出否定的结果。这些实验结果可从菲涅耳理论得到解释,根据菲涅耳运动媒质中的光速公式,当实验精度只达到一定的量级时,地球相对以太参照系的速度在这些实验中不会表现出来,而当时的实验都未达到此精度。

在杨和菲涅耳的工作之后,光的波动说就在物理学中确立了它的地位。随后,以太在电磁学中也获得了地位,这主要是由于法拉第和麦克斯韦的贡献。

在法拉第心目中,作用是逐步传过去的看法有着十分牢固的地位,他引入了力线来描述磁作用和电作用。在他看来,力线是现实的存在,空间被力线充满着,而光和热可能就是力线的横振动。他曾提出用力线来代替以太,并认为物质原子可能就是聚集在某个点状中心附近的力线场。他在1851年又写道:“如果接受光以太的存在,那么它可能是力线的荷载物。”但法拉第的观点并未为当时的理论物理学家们所接受。

到19世纪60年代前期,麦克斯韦提出位移电流的概念,并在提出用一组微分方程来描述电磁场的普遍规律,这组方程以后被称为麦克斯韦方程组。根据麦克斯韦方程组,可以推出电磁场的扰动以波的形式传播,以及电磁波在空气中的速度为每秒31万公里,这与当时已知的空气中的光速每秒31.5万公里在实验误差范围内是一致的。

麦克斯韦在指出电磁扰动的传播与光传播的相似之后写道:“光就是产生电磁现象的媒质(指以太)的横振动”。后来,赫兹用实验方法证实了电磁波的存在。光的电磁理论成功地解释了光波的性质,这样以太不仅在电磁学中取得了地位,而且电磁以太同光以太也统一了起来。

麦克斯韦还设想用以太的力学运动来解释电磁现象,他在1855年的论文中,把磁感应强度比做以太的速度。后来他接受了汤姆孙(即开尔文)的看法,改成磁场代表转动而电场代表平动。

他认为,以太绕磁力线转动形成一个个涡元,在相邻的涡元之间有一层电荷粒子。他并假定,当这些粒子偏离它们的平衡位置即有一位移时,就会对涡元内物质产生一作用力引起涡元的变形,这就代表静电现象。

关于电场同位移有某种对应,并不是完全新的想法,汤姆孙就曾把电场比作以太的位移。另外,法拉第在更早就提出,当绝缘物质放在电场中时,其中的电荷将发生位移。麦克斯韦与法拉第不同之处在于,他认为不论有无绝缘物质存在,只要有电场就有以太电荷粒子的位移,位移的大小与电场强度成正比。当电荷粒子的位移随时间变化时,将形成电流,这就是他所谓的位移电流。对麦克斯韦来说,位移电流是真实的电流,而现在我们知道,只是其中的一部分(极化电流)才是真实的电流。

在这一时期还曾建立了其他一些以太模型,不过以太论也遇到一些问题。首先,若光波为横波,则以太应为有弹性的固体媒质。那么为何天体运行其中会不受阻力呢?有人提出了一种解释:以太可能是一种像蜡或沥青样的塑性物质,对于光那样快的振动,它具有足够的弹性像是固体,而对于像天体那样慢的运动则像流体。

另外,弹性媒质中除横波外一般还应有纵波,但实验却表明没有纵光波,如何消除以太的纵波,以及如何得出推导反射强度公式所需要的边界条件是各种以太模型长期争论的难题。

为了适应光学的需要,人们对以太假设一些非常的属性,如1839年麦克可拉模型和柯西模型。再有,由于对不同的光频率,折射率也不同,于是曳引系数对于不同频率亦将不同。这样,每种频率的光将不得不有自己的以太等等。以太的这些似乎相互矛盾性质实在是超出了人们的理解能力。

19世纪90年代,洛伦兹提出了新的概念,他把物质的电磁性质归之于其中同原子相联系的电子的效应。至于物质中的以太,则同真空中的以太在密度和弹性上都并无区别。他还假定,物体运动时并不带动其中的以太运动。但是,由于物体中的电子随物体运动时,不仅要受到电场的作用力,还要受到磁场的作用力,以及物体运动时其中将出现电介质运动电流,运动物质中的电磁波速度与静止物质中的并不相同。

在考虑了上述效应后,洛伦兹同样推出了菲涅耳关于运动物质中的光速公式,而菲涅耳理论所遇到的困难(不同频率的光有不同的以太)已不存在。洛伦兹根据束缚电子的强迫振动,可推出折射率随频率的变化。洛伦兹的上述理论被称为电子论,它获得了很大成功。

19世纪末可以说是以太论的极盛时期。但是,在洛伦兹理论中,以太除了荷载电磁振动之外,不再有任何其他的运动和变化,这样它几乎已退化为某种抽象的标志。除了作为电磁波的荷载物和绝对参照系,它已失去所有其他具体生动的物理性质,这就又为它的衰落创造了条件。

如上所述,为了测出地球相对以太参照系的运动,实验精度必须达到很高的量级。到19世纪80年代,迈克耳孙和莫雷所作的实验第一次达到了这个精度,但得到的结果仍然是否定的,即地球相对以太不运动。此后其他的一些实验亦得到同样的结果,于是以太进一步失去了作为绝对参照系的性质。这一结果使得相对性原理得到普遍承认,并被推广到整个物理学领域。

在19世纪末和20世纪初,虽然还进行了一些努力来拯救以太,但在狭义相对论确立以后,它终于被物理学家们所抛弃。人们接受了电磁场本身就是物质存在的一种形式的概念,而场可以在真空中以波的形式传播。

量子力学的建立更加强了这种观点,因为人们发现,物质的原子以及组成它们的电子、质子和中子等粒子的运动也具有波的属性。波动性已成为物质运动的基本属性的一个方面,那种仅仅把波动理解为某种媒介物质的力学振动的狭隘观点已完全被冲破。

然而人们的认识仍在继续发展。到20世纪中期以后,人们又逐渐认识到真空并非是绝对的空,那里存在着不断的涨落过程(虚粒子的产生以及随后的湮没)。这种真空涨落是相互作用着的场的一种量子效应。

今天,理论物理学家进一步发现,真空具有更复杂的性质。真空态代表场的基态,它是简并的,实际的真空是这些简并态中的某一特定状态。目前粒子物理中所观察到的许多对称性的破坏,就是真空的这种特殊的“取向”所引起的。在这种观点上建立的弱相互作用和电磁相互作用的电弱统一理论已获得很大的成功。

这样看来,机械的以太论虽然死亡了,但以太概念的某些精神(不存在超距作用,不存在绝对空虚意义上的真空)仍然活着,并具有旺盛的生命力。

以太是一个物理学历史上的名词,它的涵义也随着历史的发展而发展。

在古希腊,以太指的是青天或上层大气。在宇宙学中,用以太来表示占据天体空间的物质。17世纪的笛卡儿最先将以太引入科学,并赋予它某种力学性质。

后来,以太又作为光波的荷载物同光的波动学说联系起来。随后,以太在电磁学中也获得了地位,而且电磁以太同光以太也统一了起来。

19世纪90年代,洛伦兹把物质的电磁性质归之于其中同原子相联系的电子的效应,之后以太论就开始渐渐的衰落了。

现在,机械的以太论虽然死亡了,但以太概念的某些精神 仍然活着,比如不存在超距作用,不存在绝对空虚意义上的真空等,并显示出旺盛的生命力。

『贰』 ftx交易所怎么样有哪些杰出表现

ftx一出现就在市场中形成了不小的影响力,那ftx交易所么样呢?ftx交易所是在2019年5月份成立的,在上线开放后的3个月时间左右,交易所的日交易量已经达到了上亿美元衍生品日交易量更是高达六千万美元左右,在提供衍生品交易的交易所中名列第七。从去年五月份开始,ftx交易所就已经以每天5亿美金以上的交易量跻身到了全球前十数字货币交易所的行列,可见是一匹黑马。

『叁』 以太是什么东西世上真有吗

是<关于莉莉周的一切>上的八?我也不懂,看了看网络知道上有:
[以太原本是物理学上的一个概念,它是被虚构出来的,用来解释一些当时无法解释的自然现象的.这种虚构的物质被认为是一种更基本的自然的存在,所有物质都存在在其中,是一种宇宙介质.宇宙存在于其中,就像鱼生存在水中一样.它应当是透明的,而又无处不在,充满了整个宇宙.遗憾的是,后来的物理学发展证明,这是一个错误的概念,以太并不存在.

但是以太概念却并没有因此而消亡,相反,由于它的传奇身世,越来越多的现代人都想借用以太一词的引申含意来表达他们独特的思想,比如我们日常所见的计算机以太网络.

在[关于莉莉周的一切]这本书里,我认为作者利用了以太一词的引申含意,用它代表了一种生活状态,一种空虚的信仰.就像以太这个词的本意一样-它代表了:无处不在的无法逃避的东西(以太的本意就是充满宇宙的东西,它必定是无处不在的,而我们既然生存在宇宙中,就注定无法逃避它),空虚的东西(任何物体都可穿过以太在宇宙中生存,所以以太一定是"中空的",这可以引申为生活中"空虚"的概念),人的一种信仰(以太并不是物理实验发现的,而是人臆想中创造出来的,当时的科学家十分愿意相信它的存在,所以,可以称其为一种信仰.)

由以上的分析,我认为这本书中的以太一词,代表了一种让人窒息的生活状态,一种抽象的空虚的信仰

你认为呢
欢迎讨论.
参考资料:我自己原创的
回答者:smartsman - 助理 三级 8-9 16:55]
借来一下,不过我还是不太懂,
我觉得<<关于莉莉周的一切>>比较好看!

『肆』 以太是一种信仰吗

以太
以太是一个历史上的名词,它的涵义也随着历史的发展而发展。

在古希腊,以太指的是青天或上层大气。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的笛卡儿是一个对科学思想的发展有重大影响的哲学家,他最先将以太引入科学,并赋予它某种力学性质。

在笛卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。以太虽然不能为人的感官所感觉,但却能传递力的作用,如磁力和月球对潮汐的作用力。

后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由胡克首先提出的,并为惠更斯所进一步发展。在相当长的时期内(直到20世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。

由于光可以在真空中传播,因此惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象。

牛顿虽然不同意胡克的光波动学说,但他也像笛卡儿一样反对超距作用,并承认以太的存在。在他看来,以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛顿也认为以太可以传播振动,但以太的振动不是光,因为当时光的波动学说还不能解释光的偏振现象,也不能解释光为什么会直线传播。

18世纪是以太论没落的时期。由于法国笛卡儿主义者拒绝引力的平方反比定律,而使牛顿的追随者起来反对笛卡儿哲学体系,因而连同他倡导的以太论也一同进入了反对之列。

随着引力的平方反比定律在天体力学方面的成功,以及探寻以太得试验并未获得实际结果,使得超距作用观点得以流行。光的波动说也被放弃了,微粒说得到广泛的承认。到18世纪后期,证实了电荷之间(以及磁极之间)的作用力同样是与距离平方成反比。于是电磁以太的概念亦被抛弃,超距作用的观点在电学中也占了主导地位。

19世纪,以太论获得复兴和发展,这首先还是从光学开始的,主要是托马斯·杨和菲涅耳工作的结果。杨用光波的干涉解释了牛顿环,并在实验的启示下,于1817年提出光波为横波的新观点,解决了波动说长期不能解释光的偏振现象的困难。

菲涅耳用被动说成功地解释了光的衍射现象,他提出的理论方法(现常称为惠更斯-菲涅耳原理)能正确地计算出衍射图样,并能解释光的直线传播现象。菲涅耳又进一步解释了光的双折射,获得很大成功。

1823年,他根据杨的光波为横波的学说,和他自己在1818年提出的:透明物质中以太密度与其折射率二次方成正比的假定,在一定的边界条件下,推出关于反射光和折射光振幅的著名公式,它很好地说明了布儒斯特数年前从实验上测得的结果。

菲涅耳关于以太的一个重要理论工作是导出光在相对于以太参照系运动的透明物体中的速度公式。1818年他为了解释阿拉果关于星光折射行为的实验,在杨的想法基础上提出:透明物质中以太的密度与该物质的折射率二次方成正比,他还假定当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动(以太部分曳引假说)。利用菲涅耳的理论,很容易就能得到运动物体内光的速度。

19世纪中期,曾进行了一些实验,以求显示地球相对以太参照系运动所引起的效应,并由此测定地球相对以太参照系的速度,但都得出否定的结果。这些实验结果可从菲涅耳理论得到解释,根据菲涅耳运动媒质中的光速公式,当实验精度只达到一定的量级时,地球相对以太参照系的速度在这些实验中不会表现出来,而当时的实验都未达到此精度。

在杨和菲涅耳的工作之后,光的波动说就在物理学中确立了它的地位。随后,以太在电磁学中也获得了地位,这主要是由于法拉第和麦克斯韦的贡献。

在法拉第心目中,作用是逐步传过去的看法有着十分牢固的地位,他引入了力线来描述磁作用和电作用。在他看来,力线是现实的存在,空间被力线充满着,而光和热可能就是力线的横振动。他曾提出用力线来代替以太,并认为物质原子可能就是聚集在某个点状中心附近的力线场。他在1851年又写道:“如果接受光以太的存在,那么它可能是力线的荷载物。”但法拉第的观点并未为当时的理论物理学家们所接受。

到19世纪60年代前期,麦克斯韦提出位移电流的概念,并在提出用一组微分方程来描述电磁场的普遍规律,这组方程以后被称为麦克斯韦方程组。根据麦克斯韦方程组,可以推出电磁场的扰动以波的形式传播,以及电磁波在空气中的速度为每秒31万公里,这与当时已知的空气中的光速每秒31.5万公里在实验误差范围内是一致的。

麦克斯韦在指出电磁扰动的传播与光传播的相似之后写道:“光就是产生电磁现象的媒质(指以太)的横振动”。后来,赫兹用实验方法证实了电磁波的存在。光的电磁理论成功地解释了光波的性质,这样以太不仅在电磁学中取得了地位,而且电磁以太同光以太也统一了起来。

麦克斯韦还设想用以太的力学运动来解释电磁现象,他在1855年的论文中,把磁感应强度比做以太的速度。后来他接受了汤姆孙(即开尔文)的看法,改成磁场代表转动而电场代表平动。

他认为,以太绕磁力线转动形成一个个涡元,在相邻的涡元之间有一层电荷粒子。他并假定,当这些粒子偏离它们的平衡位置即有一位移时,就会对涡元内物质产生一作用力引起涡元的变形,这就代表静电现象。

关于电场同位移有某种对应,并不是完全新的想法,汤姆孙就曾把电场比作以太的位移。另外,法拉第在更早就提出,当绝缘物质放在电场中时,其中的电荷将发生位移。麦克斯韦与法拉第不同之处在于,他认为不论有无绝缘物质存在,只要有电场就有以太电荷粒子的位移,位移的大小与电场强度成正比。当电荷粒子的位移随时间变化时,将形成电流,这就是他所谓的位移电流。对麦克斯韦来说,位移电流是真实的电流,而现在我们知道,只是其中的一部分(极化电流)才是真实的电流。

在这一时期还曾建立了其他一些以太模型,不过以太论也遇到一些问题。首先,若光波为横波,则以太应为有弹性的固体媒质。那么为何天体运行其中会不受阻力呢?有人提出了一种解释:以太可能是一种像蜡或沥青样的塑性物质,对于光那样快的振动,它具有足够的弹性像是固体,而对于像天体那样慢的运动则像流体。

另外,弹性媒质中除横波外一般还应有纵波,但实验却表明没有纵光波,如何消除以太的纵波,以及如何得出推导反射强度公式所需要的边界条件是各种以太模型长期争论的难题。

为了适应光学的需要,人们对以太假设一些非常的属性,如1839年麦克可拉模型和柯西模型。再有,由于对不同的光频率,折射率也不同,于是曳引系数对于不同频率亦将不同。这样,每种频率的光将不得不有自己的以太等等。以太的这些似乎相互矛盾性质实在是超出了人们的理解能力。

19世纪90年代,洛伦兹提出了新的概念,他把物质的电磁性质归之于其中同原子相联系的电子的效应。至于物质中的以太,则同真空中的以太在密度和弹性上都并无区别。他还假定,物体运动时并不带动其中的以太运动。但是,由于物体中的电子随物体运动时,不仅要受到电场的作用力,还要受到磁场的作用力,以及物体运动时其中将出现电介质运动电流,运动物质中的电磁波速度与静止物质中的并不相同。

在考虑了上述效应后,洛伦兹同样推出了菲涅耳关于运动物质中的光速公式,而菲涅耳理论所遇到的困难(不同频率的光有不同的以太)已不存在。洛伦兹根据束缚电子的强迫振动,可推出折射率随频率的变化。洛伦兹的上述理论被称为电子论,它获得了很大成功。

19世纪末可以说是以太论的极盛时期。但是,在洛伦兹理论中,以太除了荷载电磁振动之外,不再有任何其他的运动和变化,这样它几乎已退化为某种抽象的标志。除了作为电磁波的荷载物和绝对参照系,它已失去所有其他具体生动的物理性质,这就又为它的衰落创造了条件。

如上所述,为了测出地球相对以太参照系的运动,实验精度必须达到很高的量级。到19世纪80年代,迈克耳孙和莫雷所作的实验第一次达到了这个精度,但得到的结果仍然是否定的,即地球相对以太不运动。此后其他的一些实验亦得到同样的结果,于是以太进一步失去了作为绝对参照系的性质。这一结果使得相对性原理得到普遍承认,并被推广到整个物理学领域。

在19世纪末和20世纪初,虽然还进行了一些努力来拯救以太,但在狭义相对论确立以后,它终于被物理学家们所抛弃。人们接受了电磁场本身就是物质存在的一种形式的概念,而场可以在真空中以波的形式传播。

量子力学的建立更加强了这种观点,因为人们发现,物质的原子以及组成它们的电子、质子和中子等粒子的运动也具有波的属性。波动性已成为物质运动的基本属性的一个方面,那种仅仅把波动理解为某种媒介物质的力学振动的狭隘观点已完全被冲破。

然而人们的认识仍在继续发展。到20世纪中期以后,人们又逐渐认识到真空并非是绝对的空,那里存在着不断的涨落过程(虚粒子的产生以及随后的湮没)。这种真空涨落是相互作用着的场的一种量子效应。

今天,理论物理学家进一步发现,真空具有更复杂的性质。真空态代表场的基态,它是简并的,实际的真空是这些简并态中的某一特定状态。目前粒子物理中所观察到的许多对称性的破坏,就是真空的这种特殊的“取向”所引起的。在这种观点上建立的弱相互作用和电磁相互作用的电弱统一理论已获得很大的成功。

这样看来,机械的以太论虽然死亡了,但以太概念的某些精神(不存在超距作用,不存在绝对空虚意义上的真空)仍然活着,并具有旺盛的生命力。

『伍』 爱因斯坦提出相对论的基础是以太,那以太是什么

首先声明:爱因斯坦提出相对论的基础不是以太。相对论证明了以太的不存在。

在古希腊,以太指的是青天或上层大气。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的笛卡儿是一个对科学思想的发展有重大影响的哲学家,他最先将以太引入科学,并赋予它某种力学性质。

在笛卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。以太虽然不能为人的感官所感觉,但却能传递力的作用,如磁力和月球对潮汐的作用力。

后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由胡克首先提出的,并为惠更斯所进一步发展。在相当长的时期内(直到20世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。

由于光可以在真空中传播,因此惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象。

牛顿虽然不同意胡克的光波动学说,但他也像笛卡儿一样反对超距作用,并承认以太的存在。在他看来,以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛顿也认为以太可以传播振动,但以太的振动不是光,因为当时光的波动学说还不能解释光的偏振现象,也不能解释光为什么会直线传播。

19世纪中期,曾进行了一些实验,以求显示地球相对以太参照系运动所引起的效应,并由此测定地球相对以太参照系的速度,但都得出否定的结果。这些实验结果可从菲涅耳理论得到解释,根据菲涅耳运动媒质中的光速公式,当实验精度只达到一定的量级时,地球相对以太参照系的速度在这些实验中不会表现出来,而当时的实验都未达到此精度。

在杨和菲涅耳的工作之后,光的波动说就在物理学中确立了它的地位。随后,以太在电磁学中也获得了地位,这主要是由于法拉第和麦克斯韦的贡献。

为了测出地球相对以太参照系的运动,实验精度必须达到很高的量级。到19世纪80年代,迈克耳孙和莫雷所作的实验第一次达到了这个精度,但得到的结果仍然是否定的,即地球相对以太不运动。此后其他的一些实验亦得到同样的结果,于是以太进一步失去了作为绝对参照系的性质。这一结果使得相对性原理得到普遍承认,并被推广到整个物理学领域。

在19世纪末和20世纪初,虽然还进行了一些努力来拯救以太,但在狭义相对论确立以后,它终于被物理学家们所抛弃。人们接受了电磁场本身就是物质存在的一种形式的概念,而场可以在真空中以波的形式传播。

『陆』 相对论中的以太是什么东西

以太(Ether)是一个历史上的名词,它的涵义也随着历史的发展而发展。

在古希腊,以太指的是青天或上层大气。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的笛卡儿是一个对科学思想的发展有重大影响的哲学家,他最先将以太引入科学,并赋予它某种力学性质。

在笛卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。以太虽然不能为人的感官所感觉,但却能传递力的作用,如磁力和月球对潮汐的作用力。

后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由胡克首先提出的,并为惠更斯所进一步发展。在相当长的时期内(直到20世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。

由于光可以在真空中传播,因此惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象。

牛顿虽然不同意胡克的光波动学说,但他也像笛卡儿一样反对超距作用,并承认以太的存在。在他看来,以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛顿也认为以太可以传播振动,但以太的振动不是光,因为当时光的波动学说还不能解释光的偏振现象,也不能解释光为什么会直线传播。

18世纪是以太论没落的时期。由于法国笛卡儿主义者拒绝引力的平方反比定律,而使牛顿的追随者起来反对笛卡儿哲学体系,因而连同他倡导的以太论也一同进入了反对之列。

随着引力的平方反比定律在天体力学方面的成功,以及探寻以太得试验并未获得实际结果,使得超距作用观点得以流行。光的波动说也被放弃了,微粒说得到广泛的承认。到18世纪后期,证实了电荷之间(以及磁极之间)的作用力同样是与距离平方成反比。于是电磁以太的概念亦被抛弃,超距作用的观点在电学中也占了主导地位。

19世纪,以太论获得复兴和发展,这首先还是从光学开始的,主要是托马斯·杨和菲涅耳工作的结果。杨用光波的干涉解释了牛顿环,并在实验的启示下,于1817年提出光波为横波的新观点,解决了波动说长期不能解释光的偏振现象的困难。

菲涅耳用被动说成功地解释了光的衍射现象,他提出的理论方法(现常称为惠更斯-菲涅耳原理)能正确地计算出衍射图样,并能解释光的直线传播现象。菲涅耳又进一步解释了光的双折射,获得很大成功。

1823年,他根据杨的光波为横波的学说,和他自己在1818年提出的:透明物质中以太密度与其折射率二次方成正比的假定,在一定的边界条件下,推出关于反射光和折射光振幅的著名公式,它很好地说明了布儒斯特数年前从实验上测得的结果。

菲涅耳关于以太的一个重要理论工作是导出光在相对于以太参照系运动的透明物体中的速度公式。1818年他为了解释阿拉果关于星光折射行为的实验,在杨的想法基础上提出:透明物质中以太的密度与该物质的折射率二次方成正比,他还假定当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动(以太部分曳引假说)。利用菲涅耳的理论,很容易就能得到运动物体内光的速度。

19世纪中期,曾进行了一些实验,以求显示地球相对以太参照系运动所引起的效应,并由此测定地球相对以太参照系的速度,但都得出否定的结果。这些实验结果可从菲涅耳理论得到解释,根据菲涅耳运动媒质中的光速公式,当实验精度只达到一定的量级时,地球相对以太参照系的速度在这些实验中不会表现出来,而当时的实验都未达到此精度。

在杨和菲涅耳的工作之后,光的波动说就在物理学中确立了它的地位。随后,以太在电磁学中也获得了地位,这主要是由于法拉第和麦克斯韦的贡献。

在法拉第心目中,作用是逐步传过去的看法有着十分牢固的地位,他引入了力线来描述磁作用和电作用。在他看来,力线是现实的存在,空间被力线充满着,而光和热可能就是力线的横振动。他曾提出用力线来代替以太,并认为物质原子可能就是聚集在某个点状中心附近的力线场。他在1851年又写道:“如果接受光以太的存在,那么它可能是力线的荷载物。”但法拉第的观点并未为当时的理论物理学家们所接受。

到19世纪60年代前期,麦克斯韦提出位移电流的概念,并在提出用一组微分方程来描述电磁场的普遍规律,这组方程以后被称为麦克斯韦方程组。根据麦克斯韦方程组,可以推出电磁场的扰动以波的形式传播,以及电磁波在空气中的速度为每秒31万公里,这与当时已知的空气中的光速每秒31.5万公里在实验误差范围内是一致的。

麦克斯韦在指出电磁扰动的传播与光传播的相似之后写道:“光就是产生电磁现象的媒质(指以太)的横振动”。后来,赫兹用实验方法证实了电磁波的存在。光的电磁理论成功地解释了光波的性质,这样以太不仅在电磁学中取得了地位,而且电磁以太同光以太也统一了起来。

麦克斯韦还设想用以太的力学运动来解释电磁现象,他在1855年的论文中,把磁感应强度比做以太的速度。后来他接受了汤姆孙(即开尔文)的看法,改成磁场代表转动而电场代表平动。

他认为,以太绕磁力线转动形成一个个涡元,在相邻的涡元之间有一层电荷粒子。他并假定,当这些粒子偏离它们的平衡位置即有一位移时,就会对涡元内物质产生一作用力引起涡元的变形,这就代表静电现象。

『柒』 〈关于莉莉周的一切>的以太

以太:网络解释:

以太
开放分类: 物理学、天文学
以太(Ether)(或译乙太;英语:ether或aether)是古希腊哲学家所设想的一种物质,是一种曾被假想的电磁波的传播媒质,但后来被证实并不存在。
在古希腊,以太指的是青天或上层大气。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的笛卡儿是一个对科学思想的发展有重大影响的哲学家,他最先将以太引入科学,并赋予它某种力学性质。

在笛卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。以太虽然不能为人的感官所感觉,但却能传递力的作用,如磁力和月球对潮汐的作用力。

后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由胡克首先提出的,并为惠更斯所进一步发展。在相当长的时期内(直到20世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。

由于光可以在真空中传播,因此惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象。

牛顿虽然不同意胡克的光波动学说,但他也像笛卡儿一样反对超距作用,并承认以太的存在。在他看来,以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛顿也认为以太可以传播振动,但以太的振动不是光,因为当时光的波动学说还不能解释光的偏振现象,也不能解释光为什么会直线传播。

18世纪是以太论没落的时期。由于法国笛卡儿主义者拒绝引力的平方反比定律,而使牛顿的追随者起来反对笛卡儿哲学体系,因而连同他倡导的以太论也一同进入了反对之列。

随着引力的平方反比定律在天体力学方面的成功,以及探寻以太得试验并未获得实际结果,使得超距作用观点得以流行。光的波动说也被放弃了,微粒说得到广泛的承认。到18世纪后期,证实了电荷之间(以及磁极之间)的作用力同样是与距离平方成反比。于是电磁以太的概念亦被抛弃,超距作用的观点在电学中也占了主导地位。

19世纪,以太论获得复兴和发展,这首先还是从光学开始的,主要是托马斯·杨和菲涅耳工作的结果。杨用光波的干涉解释了牛顿环,并在实验的启示下,于1817年提出光波为横波的新观点,解决了波动说长期不能解释光的偏振现象的困难。科学家们逐步发现光是一种波,而生活中的波大多需要传播介质(如声波的传递需要借助于空气,水波的传播借助于水等)。受传统力学思想影响,于是他们便假想宇宙到处都存在着一种称之为以太的物质,而正是这种物质在光的传播中起到了介质的作用。
以太的假设事实上代表了传统的观点:电磁波的传播需要一个“绝对静止”的参照系,当参照系改变,光速也改变。
然而根据麦克斯韦方程组,电磁波的传播不需要一个“绝对静止”的参照系,因为该方程里两个参数都是无方向的标量,所以在任何参照系里光速都是不变的。

其中ε0是真空介电常数,μ0 是真空磁导率。
这个“绝对静止系”就是「以太系」。其他惯性系的观察者所测量到的光速,应该是"以太系"的光速,与这个观察者在"以太系"上的速度之矢量和。
以太无所不在,没有质量,绝对静止。按照当时的猜想,以太充满整个宇宙,电磁波可在其中传播。假设太阳静止在以太系中,由于地球在围绕太阳公转,相对于以太具有一个速度v,因此如果在地球上测量光速,在不同的方向上测得的数值应该是不同的,最大为c +v,最小为cv。如果太阳在以太系上不是静止的,地球上测量不同方向的光速,也应该有所不同。

菲涅耳用被动说成功地解释了光的衍射现象,他提出的理论方法(现常称为惠更斯-菲涅耳原理)能正确地计算出衍射图样,并能解释光的直线传播现象。菲涅耳又进一步解释了光的双折射,获得很大成功。

1823年,他根据杨的光波为横波的学说,和他自己在1818年提出的:透明物质中以太密度与其折射率二次方成正比的假定,在一定的边界条件下,推出关于反射光和折射光振幅的著名公式,它很好地说明了布儒斯特数年前从实验上测得的结果。

菲涅耳关于以太的一个重要理论工作是导出光在相对于以太参照系运动的透明物体中的速度公式。1818年他为了解释阿拉果关于星光折射行为的实验,在杨的想法基础上提出:透明物质中以太的密度与该物质的折射率二次方成正比,他还假定当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动(以太部分曳引假说)。利用菲涅耳的理论,很容易就能得到运动物体内光的速度。

19世纪中期,曾进行了一些实验,以求显示地球相对以太参照系运动所引起的效应,并由此测定地球相对以太参照系的速度,但都得出否定的结果。这些实验结果可从菲涅耳理论得到解释,根据菲涅耳运动媒质中的光速公式,当实验精度只达到一定的量级时,地球相对以太参照系的速度在这些实验中不会表现出来,而当时的实验都未达到此精度。

在杨和菲涅耳的工作之后,光的波动说就在物理学中确立了它的地位。随后,以太在电磁学中也获得了地位,这主要是由于法拉第和麦克斯韦的贡献。

在法拉第心目中,作用是逐步传过去的看法有着十分牢固的地位,他引入了力线来描述磁作用和电作用。在他看来,力线是现实的存在,空间被力线充满着,而光和热可能就是力线的横振动。他曾提出用力线来代替以太,并认为物质原子可能就是聚集在某个点状中心附近的力线场。他在1851年又写道:“如果接受光以太的存在,那么它可能是力线的荷载物。”但法拉第的观点并未为当时的理论物理学家们所接受。

到19世纪60年代前期,麦克斯韦提出位移电流的概念,并在提出用一组微分方程来描述电磁场的普遍规律,这组方程以后被称为麦克斯韦方程组。根据麦克斯韦方程组,可以推出电磁场的扰动以波的形式传播,以及电磁波在空气中的速度为每秒31万公里,这与当时已知的空气中的光速每秒31.5万公里在实验误差范围内是一致的。

麦克斯韦在指出电磁扰动的传播与光传播的相似之后写道:“光就是产生电磁现象的媒质(指以太)的横振动”。后来,赫兹用实验方法证实了电磁波的存在。光的电磁理论成功地解释了光波的性质,这样以太不仅在电磁学中取得了地位,而且电磁以太同光以太也统一了起来。

麦克斯韦还设想用以太的力学运动来解释电磁现象,他在1855年的论文中,把磁感应强度比做以太的速度。后来他接受了汤姆孙(即开尔文)的看法,改成磁场代表转动而电场代表平动。

他认为,以太绕磁力线转动形成一个个涡元,在相邻的涡元之间有一层电荷粒子。他并假定,当这些粒子偏离它们的平衡位置即有一位移时,就会对涡元内物质产生一作用力引起涡元的变形,这就代表静电现象。

关于电场同位移有某种对应,并不是完全新的想法,汤姆孙就曾把电场比作以太的位移。另外,法拉第在更早就提出,当绝缘物质放在电场中时,其中的电荷将发生位移。麦克斯韦与法拉第不同之处在于,他认为不论有无绝缘物质存在,只要有电场就有以太电荷粒子的位移,位移的大小与电场强度成正比。当电荷粒子的位移随时间变化时,将形成电流,这就是他所谓的位移电流。对麦克斯韦来说,位移电流是真实的电流,而现在我们知道,只是其中的一部分(极化电流)才是真实的电流。

在这一时期还曾建立了其他一些以太模型,不过以太论也遇到一些问题。首先,若光波为横波,则以太应为有弹性的固体媒质。那么为何天体运行其中会不受阻力呢?有人提出了一种解释:以太可能是一种像蜡或沥青样的塑性物质,对于光那样快的振动,它具有足够的弹性像是固体,而对于像天体那样慢的运动则像流体。

另外,弹性媒质中除横波外一般还应有纵波,但实验却表明没有纵光波,如何消除以太的纵波,以及如何得出推导反射强度公式所需要的边界条件是各种以太模型长期争论的难题。

为了适应光学的需要,人们对以太假设一些非常的属性,如1839年麦克可拉模型和柯西模型。再有,由于对不同的光频率,折射率也不同,于是曳引系数对于不同频率亦将不同。这样,每种频率的光将不得不有自己的以太等等。以太的这些似乎相互矛盾性质实在是超出了人们的理解能力。

1881年-1884年,阿尔伯特·迈克尔逊和爱德华·莫雷为测量地球和以太的相对速度,进行了著名的迈克尔逊-莫雷实验。实验结果显示,不同方向上的光速没有差异。这实际上证明了光速不变原理,即真空中光速在任何参照系下具有相同的数值,与参照系的相对速度无关,以太其实并不存在。后来又有许多实验支持了上面的结论。
以太说曾经在一段历史时期内在人们脑中根深蒂固,深刻地左右着物理学家的思想。著名物理学家洛伦兹推导出了符合电磁学协变条件的洛伦兹变换公式,但无法抛弃以太的观点。

19世纪90年代,洛伦兹提出了新的概念,他把物质的电磁性质归之于其中同原子相联系的电子的效应。至于物质中的以太,则同真空中的以太在密度和弹性上都并无区别。他还假定,物体运动时并不带动其中的以太运动。但是,由于物体中的电子随物体运动时,不仅要受到电场的作用力,还要受到磁场的作用力,以及物体运动时其中将出现电介质运动电流,运动物质中的电磁波速度与静止物质中的并不相同。

在考虑了上述效应后,洛伦兹同样推出了菲涅耳关于运动物质中的光速公式,而菲涅耳理论所遇到的困难(不同频率的光有不同的以太)已不存在。洛伦兹根据束缚电子的强迫振动,可推出折射率随频率的变化。洛伦兹的上述理论被称为电子论,它获得了很大成功。

19世纪末可以说是以太论的极盛时期。但是,在洛伦兹理论中,以太除了荷载电磁振动之外,不再有任何其他的运动和变化,这样它几乎已退化为某种抽象的标志。除了作为电磁波的荷载物和绝对参照系,它已失去所有其他具体生动的物理性质,这就又为它的衰落创造了条件。

如上所述,为了测出地球相对以太参照系的运动,实验精度必须达到很高的量级。到19世纪80年代,麦克尔逊和莫雷所作的实验第一次达到了这个精度,但得到的结果仍然是否定的,即地球相对以太不运动。此后其他的一些实验亦得到同样的结果,于是以太进一步失去了作为绝对参照系的性质。这一结果使得相对性原理得到普遍承认,并被推广到整个物理学领域。

在19世纪末和20世纪初,虽然还进行了一些努力来拯救以太,但在狭义相对论确立以后,它终于被物理学家们所抛弃。人们接受了电磁场本身就是物质存在的一种形式的概念,而场可以在真空中以波的形式传播。

量子力学的建立更加强了这种观点,因为人们发现,物质的原子以及组成它们的电子、质子和中子等粒子的运动也具有波的属性。波动性已成为物质运动的基本属性的一个方面,那种仅仅把波动理解为某种媒介物质的力学振动的狭隘观点已完全被冲破。

然而人们的认识仍在继续发展。到20世纪中期以后,人们又逐渐认识到真空并非是绝对的空,那里存在着不断的涨落过程(虚粒子的产生以及随后的湮没)。这种真空涨落是相互作用着的场的一种量子效应。

今天,理论物理学家进一步发现,真空具有更复杂的性质。真空态代表场的基态,它是简并的,实际的真空是这些简并态中的某一特定状态。目前粒子物理中所观察到的许多对称性的破坏,就是真空的这种特殊的“取向”所引起的。在这种观点上建立的弱相互作用和电磁相互作用的电弱统一理论已获得很大的成功。
但爱因斯坦则大胆抛弃了以太学说,认为光速不变是基本的原理,并以此为出发点之一创立了狭义相对论。虽然后来的事实证明确实不存在以太,不过以太假说仍然在我们的生活中留下了痕迹,如以太网等。

这样看来,机械的以太论虽然死亡了,但以太概念的某些精神(不存在超距作用,不存在绝对空虚意义上的真空)仍然活着,并具有旺盛的生命力。

我的以太
以太是一种可以被磁力控制的物质,整个宇宙都有。它会随着磁场的运动而运动。之所以上述实验没有成功是否就是因为地球的以太给地球控制是运动的呢相对地球静止。以太是一种象水一样的东西。它只作用与磁力。只有磁力可以改变他的动方法。在磁力的速度不高时,以太随着磁力运动。当速度达到一定时就会使以太产生刚性物质的速动。通过样的特性,我想可以解释现在的一些现像了吧。过去的人们把以太的很多特性说得很对。有一个不对的就是以太是静止的。

以太这个词在电影《关于莉莉周的一切》里面,被赋予新的定义

1.古 希腊哲学家首先设想出来的一种媒质。十七世纪后,物理学家为解释光的传播以及电磁和引力相互作用而又重新提出。当时认为光是一种机械的弹性波,但由于它可以通过真空传播,因此必须假设存在一种尚未为实验发现的以太作为传播光的媒质。这种媒质是无所不在的,没有质量的,而且是“绝对静止”的,电磁和引力作用则是它的特殊机械作用。以太这一概念到十九世纪曾为人们所普遍接受,但科学家始终无法通过实验来证明它的存在。到了二十世纪初,随着相对论的建立和对场的进一步研究,确定光的传播和一切相互作用的传递都通过各种场,而不是通过机械媒质,以太才作为一个陈旧的概念而被抛弃。
2.近代 康有为 、 谭嗣同 、 孙中山 等使用的哲学名词,是物理学名词的借用。 康有为在《孟子微》中把以太与“仁”、“不忍人之心”等道德观念等同起来。 谭嗣同在《仁学》、《以太说》中既把以太说成宇宙间无所不在的无色、无声、无臭的物质,但同时又作了种种精神性的解释,把 孔子 的“仁”、“元”、“性”,墨家 的“兼爱”,佛家的“慈悲”,基督的“灵魂”等,都看作是以太的作用。 孙中山则在《孙文学说》中把以太看作物质世界的本源,认为它“动而生电子,电子凝而成元素,元素合而成物质,物质聚而成地球”,并不具有精神性质。

『捌』 什么是以太

以太
以太是一个历史上的名词,它的涵义也随着历史的发展而发展。

在古希腊,以太指的是青天或上层大气。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的笛卡儿是一个对科学思想的发展有重大影响的哲学家,他最先将以太引入科学,并赋予它某种力学性质。

在笛卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。以太虽然不能为人的感官所感觉,但却能传递力的作用,如磁力和月球对潮汐的作用力。

后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由胡克首先提出的,并为惠更斯所进一步发展。在相当长的时期内(直到20世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。

由于光可以在真空中传播,因此惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象。

牛顿虽然不同意胡克的光波动学说,但他也像笛卡儿一样反对超距作用,并承认以太的存在。在他看来,以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛顿也认为以太可以传播振动,但以太的振动不是光,因为当时光的波动学说还不能解释光的偏振现象,也不能解释光为什么会直线传播。

18世纪是以太论没落的时期。由于法国笛卡儿主义者拒绝引力的平方反比定律,而使牛顿的追随者起来反对笛卡儿哲学体系,因而连同他倡导的以太论也一同进入了反对之列。

随着引力的平方反比定律在天体力学方面的成功,以及探寻以太得试验并未获得实际结果,使得超距作用观点得以流行。光的波动说也被放弃了,微粒说得到广泛的承认。到18世纪后期,证实了电荷之间(以及磁极之间)的作用力同样是与距离平方成反比。于是电磁以太的概念亦被抛弃,超距作用的观点在电学中也占了主导地位。

19世纪,以太论获得复兴和发展,这首先还是从光学开始的,主要是托马斯·杨和菲涅耳工作的结果。杨用光波的干涉解释了牛顿环,并在实验的启示下,于1817年提出光波为横波的新观点,解决了波动说长期不能解释光的偏振现象的困难。

菲涅耳用被动说成功地解释了光的衍射现象,他提出的理论方法(现常称为惠更斯-菲涅耳原理)能正确地计算出衍射图样,并能解释光的直线传播现象。菲涅耳又进一步解释了光的双折射,获得很大成功。

1823年,他根据杨的光波为横波的学说,和他自己在1818年提出的:透明物质中以太密度与其折射率二次方成正比的假定,在一定的边界条件下,推出关于反射光和折射光振幅的著名公式,它很好地说明了布儒斯特数年前从实验上测得的结果。

菲涅耳关于以太的一个重要理论工作是导出光在相对于以太参照系运动的透明物体中的速度公式。1818年他为了解释阿拉果关于星光折射行为的实验,在杨的想法基础上提出:透明物质中以太的密度与该物质的折射率二次方成正比,他还假定当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动(以太部分曳引假说)。利用菲涅耳的理论,很容易就能得到运动物体内光的速度。

19世纪中期,曾进行了一些实验,以求显示地球相对以太参照系运动所引起的效应,并由此测定地球相对以太参照系的速度,但都得出否定的结果。这些实验结果可从菲涅耳理论得到解释,根据菲涅耳运动媒质中的光速公式,当实验精度只达到一定的量级时,地球相对以太参照系的速度在这些实验中不会表现出来,而当时的实验都未达到此精度。

在杨和菲涅耳的工作之后,光的波动说就在物理学中确立了它的地位。随后,以太在电磁学中也获得了地位,这主要是由于法拉第和麦克斯韦的贡献。

在法拉第心目中,作用是逐步传过去的看法有着十分牢固的地位,他引入了力线来描述磁作用和电作用。在他看来,力线是现实的存在,空间被力线充满着,而光和热可能就是力线的横振动。他曾提出用力线来代替以太,并认为物质原子可能就是聚集在某个点状中心附近的力线场。他在1851年又写道:“如果接受光以太的存在,那么它可能是力线的荷载物。”但法拉第的观点并未为当时的理论物理学家们所接受。

到19世纪60年代前期,麦克斯韦提出位移电流的概念,并在提出用一组微分方程来描述电磁场的普遍规律,这组方程以后被称为麦克斯韦方程组。根据麦克斯韦方程组,可以推出电磁场的扰动以波的形式传播,以及电磁波在空气中的速度为每秒31万公里,这与当时已知的空气中的光速每秒31.5万公里在实验误差范围内是一致的。

麦克斯韦在指出电磁扰动的传播与光传播的相似之后写道:“光就是产生电磁现象的媒质(指以太)的横振动”。后来,赫兹用实验方法证实了电磁波的存在。光的电磁理论成功地解释了光波的性质,这样以太不仅在电磁学中取得了地位,而且电磁以太同光以太也统一了起来。

麦克斯韦还设想用以太的力学运动来解释电磁现象,他在1855年的论文中,把磁感应强度比做以太的速度。后来他接受了汤姆孙(即开尔文)的看法,改成磁场代表转动而电场代表平动。

他认为,以太绕磁力线转动形成一个个涡元,在相邻的涡元之间有一层电荷粒子。他并假定,当这些粒子偏离它们的平衡位置即有一位移时,就会对涡元内物质产生一作用力引起涡元的变形,这就代表静电现象。

关于电场同位移有某种对应,并不是完全新的想法,汤姆孙就曾把电场比作以太的位移。另外,法拉第在更早就提出,当绝缘物质放在电场中时,其中的电荷将发生位移。麦克斯韦与法拉第不同之处在于,他认为不论有无绝缘物质存在,只要有电场就有以太电荷粒子的位移,位移的大小与电场强度成正比。当电荷粒子的位移随时间变化时,将形成电流,这就是他所谓的位移电流。对麦克斯韦来说,位移电流是真实的电流,而现在我们知道,只是其中的一部分(极化电流)才是真实的电流。

在这一时期还曾建立了其他一些以太模型,不过以太论也遇到一些问题。首先,若光波为横波,则以太应为有弹性的固体媒质。那么为何天体运行其中会不受阻力呢?有人提出了一种解释:以太可能是一种像蜡或沥青样的塑性物质,对于光那样快的振动,它具有足够的弹性像是固体,而对于像天体那样慢的运动则像流体。

另外,弹性媒质中除横波外一般还应有纵波,但实验却表明没有纵光波,如何消除以太的纵波,以及如何得出推导反射强度公式所需要的边界条件是各种以太模型长期争论的难题。

为了适应光学的需要,人们对以太假设一些非常的属性,如1839年麦克可拉模型和柯西模型。再有,由于对不同的光频率,折射率也不同,于是曳引系数对于不同频率亦将不同。这样,每种频率的光将不得不有自己的以太等等。以太的这些似乎相互矛盾性质实在是超出了人们的理解能力。

19世纪90年代,洛伦兹提出了新的概念,他把物质的电磁性质归之于其中同原子相联系的电子的效应。至于物质中的以太,则同真空中的以太在密度和弹性上都并无区别。他还假定,物体运动时并不带动其中的以太运动。但是,由于物体中的电子随物体运动时,不仅要受到电场的作用力,还要受到磁场的作用力,以及物体运动时其中将出现电介质运动电流,运动物质中的电磁波速度与静止物质中的并不相同。

在考虑了上述效应后,洛伦兹同样推出了菲涅耳关于运动物质中的光速公式,而菲涅耳理论所遇到的困难(不同频率的光有不同的以太)已不存在。洛伦兹根据束缚电子的强迫振动,可推出折射率随频率的变化。洛伦兹的上述理论被称为电子论,它获得了很大成功。

19世纪末可以说是以太论的极盛时期。但是,在洛伦兹理论中,以太除了荷载电磁振动之外,不再有任何其他的运动和变化,这样它几乎已退化为某种抽象的标志。除了作为电磁波的荷载物和绝对参照系,它已失去所有其他具体生动的物理性质,这就又为它的衰落创造了条件。

如上所述,为了测出地球相对以太参照系的运动,实验精度必须达到很高的量级。到19世纪80年代,迈克耳孙和莫雷所作的实验第一次达到了这个精度,但得到的结果仍然是否定的,即地球相对以太不运动。此后其他的一些实验亦得到同样的结果,于是以太进一步失去了作为绝对参照系的性质。这一结果使得相对性原理得到普遍承认,并被推广到整个物理学领域。

在19世纪末和20世纪初,虽然还进行了一些努力来拯救以太,但在狭义相对论确立以后,它终于被物理学家们所抛弃。人们接受了电磁场本身就是物质存在的一种形式的概念,而场可以在真空中以波的形式传播。

量子力学的建立更加强了这种观点,因为人们发现,物质的原子以及组成它们的电子、质子和中子等粒子的运动也具有波的属性。波动性已成为物质运动的基本属性的一个方面,那种仅仅把波动理解为某种媒介物质的力学振动的狭隘观点已完全被冲破。

然而人们的认识仍在继续发展。到20世纪中期以后,人们又逐渐认识到真空并非是绝对的空,那里存在着不断的涨落过程(虚粒子的产生以及随后的湮没)。这种真空涨落是相互作用着的场的一种量子效应。

今天,理论物理学家进一步发现,真空具有更复杂的性质。真空态代表场的基态,它是简并的,实际的真空是这些简并态中的某一特定状态。目前粒子物理中所观察到的许多对称性的破坏,就是真空的这种特殊的“取向”所引起的。在这种观点上建立的弱相互作用和电磁相互作用的电弱统一理论已获得很大的成功。

这样看来,机械的以太论虽然死亡了,但以太概念的某些精神(不存在超距作用,不存在绝对空虚意义上的真空)仍然活着,并具有旺盛的生命力。

以太是一个物理学历史上的名词,它的涵义也随着历史的发展而发展。

在古希腊,以太指的是青天或上层大气。在宇宙学中,用以太来表示占据天体空间的物质。17世纪的笛卡儿最先将以太引入科学,并赋予它某种力学性质。

后来,以太又作为光波的荷载物同光的波动学说联系起来。随后,以太在电磁学中也获得了地位,而且电磁以太同光以太也统一了起来。

19世纪90年代,洛伦兹把物质的电磁性质归之于其中同原子相联系的电子的效应,之后以太论就开始渐渐的衰落了。

现在,机械的以太论虽然死亡了,但以太概念的某些精神 仍然活着,比如不存在超距作用,不存在绝对空虚意义上的真空等,并显示出旺盛的生命力。

『玖』 比原链如何让多元资产在公有链平台中流通起来!

互联网把人类文明的两大标志——文字和货币“比特化”,但仍然版权不明、易受攻击,信息交流和财富流通仍然严重依靠于中心化组织,例如其中的授信和征信服务。

区块链(Blockchain)的底层逻辑是以共同竞争记账方式存储信息,每一页加密账本相当于“区块”,而交易审核结果盖上了不可篡改的时间戳,遍布存储于整个网络。这种“分布式总账技术”带来了权益归属和陌生人的互信,为资产自由交易带来了曙光。

作为比特币底层技术的区块链,为何能成为金融科技的最大热门?截止6月18日,1个比特币约合18750元人民币,全球数字资产总市值已经超过了1100亿美元,数字资产种类达到4321种,市值1亿美元的数字货币就有40多种;那么,币与币之间、链与链之间、数字币种与法币之间、物理资产与比特资产之间的自由流通成为巨大的痛点,如何才能搭建起资产从原子世界跃迁到比特世界的桥梁呢?与区块链同样炙手可热的人工智能(AI),二者结合会碰撞出什么样的火花?本文试做解。

一、区块链产业如火如荼,国内创业者“比较优势”凸显

区块链是由中本聪在2008年发表奠定性论文《比特币:一种点对点电子现金系统》提出,而比特币正是中本聪创立的用来奖励参与者竞争记账的酬劳,主要是通过“工作量证明”(Proof Of Work,POW)来“挖矿”并得到奖金。而“挖矿”是一个比拼共识算法能力的过程,需要投入巨大的能源消耗,值得一提的是,目前全球四大比特币“矿池”主要是集中在中国西南以及内蒙古地区。

在公有链任何节点都是开放的,每个人都可以参与到区块链中的计算,都可以下载获得完整区块链数据(全部账本),随着区块链自身的安全级别提升,在私有链之中,很多节点都有访问权限,只有特定被许可的节点才能被公开访问。

“智能合约”的出现是要解决把法币协议转化为比特世界中的协议问题,智能合约能够加速现实货币在区块链之中成为“可编程货币”,而如何使法币与数字货币连接,进而联通原子世界和比特世界,促进资产在两个世界间的交互和应用?就需要“比原链”来解决了。

“比原链“由国内区块链行业最大的开发者社区巴比特打造。与其他的单一资产区块链相比,“比原链”的区块链交互协议更适合多元比特资产比如数字货币、收益权、非上市股权、债权等基于智能合约进行复杂性交互操作。

中国在金融科技上的投资额度世界第一,区块链是与移动支付、保险等并列的赛道,BAT在近两年纷纷布局区块链,网络与Circle(跨境支付)达成战略合作、阿里与以太坊合作开发金融云、腾讯旗下的微众银行基于腾讯云做联盟链云服务等。截至2017年4月底,全球总共455家区块链公司累计融资额为19.47亿美元,国内的区块链创业者融资公司就有61家。


区块链中占主流的工作量证明机制(POW)被诟病“哈希”计算应用范围窄,造成了极大矿机的闲置与能源浪费;比原链在挖矿的哈希过程中引入矩阵运算与卷积运算,使得矿机对人工智能ASIC更友好。区块链中矿机市场繁荣,刺激了人工智能公司对ASIC芯片的供应链,被淘汰或闲置的“矿机”也可应用于AI加速。

结语:

区块链虽然“烧脑”,但并没有影响开发者的探索激情。这不只是比特币的利益诉求,还是真正回归“价值的互联网”自由、开放、协作的渴望。正如数字经济之父唐·塔普斯科特把区块链技术比喻为开启人类小康社会的“阿拉丁神灯”,随着打通各种币种、链区以及传统金融资产交易的公有链平台诞生,多元资产比特化化正逐渐成为现实,并能为人工智能提供开放大数据、可控化的智能合约、矿机加速,哈耶克所预言的货币、自由资产的时代,以及人们投资与交易资产未来会和现今网购一般便利,一定是基于人工智能和区块链技术共赢互促的基础上。

作者:李星,靠谱的阿星,科技专栏作家

『拾』 “以太”是什么意思网卡的名字吗

以太网,指由施乐公司创建并由施乐、Intel和DEC公司联合开发的基带局域网规范。以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10 Mbps的速率运行在多种类型的电缆上。

90年代,交换型以太网得到了发展,并先后推出了100兆的快速以太网、1000兆的千兆位以太网和10000兆的万兆位以太网等更高速的以太网技术。以太网的帧格式特别适合于传输IP数据包。随着Internet的快速发展,以太网被广泛使用。值得一提的是,如果接入网也采用以太网,将形成从局域网、接入网、城域网到广域网全部是以太网的结构,这样采用与IP数据包结构近似的以太网帧结构,各网之间无缝连接,中间不需要任何格式转换,可以提高运行效率,方便管理,降低成本,这种结构可以提供端到端的连接。基于以上原因,以太网接入得到了快速发展,并且越来越受到人们的重视

热点内容
比特币合约上手指南 发布:2025-07-14 22:56:41 浏览:750
南京南站去加拿大签证中心 发布:2025-07-14 22:49:08 浏览:938
数字货币交易所故障 发布:2025-07-14 22:47:42 浏览:917
怎么快速得圈币 发布:2025-07-14 22:31:20 浏览:42
数字资产交易区块链 发布:2025-07-14 22:26:25 浏览:992
比特币虚拟变实体 发布:2025-07-14 22:25:18 浏览:174
没有矿池怎么挖比特币 发布:2025-07-14 22:13:45 浏览:257
trx减脂效果怎么样 发布:2025-07-14 21:46:47 浏览:724
比特币应该开合约吗 发布:2025-07-14 21:35:51 浏览:303
以太坊代币兑换 发布:2025-07-14 21:34:15 浏览:262