当前位置:首页 » 币圈知识 » 币圈斐波那契

币圈斐波那契

发布时间: 2022-02-25 17:05:38

1. 什么是斐波那契数列在日常生活中有什么实例

菲波那契数列指的是这样一个数列:

1,1,2,3,5,8,13,21……

这个数列从第三项开始,每一项都等于前两项之和

它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】

很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

该数列有很多奇妙的属性

比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……

还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值
斐波那契数列别名
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

2. 什么是斐波那契数列

斐波那契数列数列从第3项开始,每一项都等于前两项之和。

例子:数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........

应用:

生活斐波那契

斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。

斐波那契数与植物花瓣3………………………

百合和蝴蝶花5……………………

蓝花耧斗菜、金凤花、飞燕草、毛茛花8………………………

翠雀花13………………………

金盏和玫瑰21……………………

紫宛34、55、89……………雏菊

斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。

叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。

黄金分割

随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…

(2)币圈斐波那契扩展阅读:

性质:

平方与前后项

从第二项开始,每个奇数项的平方都比前后两项之积少1,每个偶数项的平方都比前后两项之积多1。

如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。

(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)

证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)

发明者:

斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

3. 斐波那契数列是什么在股市中怎么应用

斐波那契数列指的是这样一个数列:
1、1、2、3、5、8、13、21、……
这个数列从第三项开始,每一项都等于前两项之和。

通用公式:

(3)币圈斐波那契扩展阅读

斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。

斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。

另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……

其中百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。

4. 相机中的斐波那契螺旋线什么作用

作用是用斐波纳契比例构造完美构图。

斐波纳契比例也被称作Phi或黄金分割,这个规律由莱昂纳多·斐波纳契在公元1200年左右发现。他注意到自然界中大量出现了这个比例,以此为基础的自然结构设计即实用又美观。从此就有了黄金分割这个昵称。

斐波纳契比例并不是复杂的数学概念。这是一个实用的构图方式,历史上著名的艺术家和建筑师,以及世界500强公司都在用。对摄影的作用是用这个比例创造出的构图,经过裁剪,符合人类潜意识里的审美观。

(4)币圈斐波那契扩展阅读:

斐波纳契的成就。

欧洲,黑暗时代以后第一位有影响的数学家斐波那契(约1175~1240),其拉丁文代表著作《计算之书》(Liber Abaci)和《几何实践》(Practica Geometriae)也是根据阿拉伯文与希腊文材料编译而成的。

斐波那契,即比萨的列昂纳多(Leonardo of Pisa),早年随父在北非从师阿拉伯人习算,后又游历地中海沿岸诸国,回意大利后即写成《计算之书》(Liber Abaci,1202,亦译作《算盘全书》、《算经》)。《计算之书》最大的功绩是系统介绍印度记数法,影响并改变了欧洲数学的面貌。

5. 斐波那契数列从几开始

斐波那契数列
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
中文名
斐波那契数列
外文名
Fibonacci sequence
别名
黄金分割数列、兔子数列
表达式
F[n]=F[n-1]+F[n-2](n>=3,F[1]=1,F[2]=1)
提出者
莱昂纳多·斐波那契
快速
导航
通项公式

特性

应用

推广

相关数学

斐波那契弧线

Java代码实现

Javascript代码实现

C++代码实现

Python3代码实现

php代码实现

Rust代码实现
定义
斐波那契数列指的是这样一个数列:
这个数列从第3项开始,每一项都等于前两项之和。

自然中的斐波那契数列
斐波那契数列的定义者,是意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的莱昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,莱昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。另外斐波纳契还在计算机C语言程序题中应用广泛
斐波那契数列的黄金特征1,还让我们联想到佩尔数列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(该类数列的这种特征值称为勾股特征)。
佩尔数列Pn的递推规则:
据此类推到所有根据前两项导出第三项的通用规则:,称为广义斐波那契数列。
当时,我们得到斐波那契—卢卡斯数列。
当时,我们得到佩尔—勾股弦数(跟边长为整数的直角三角形有关的数列集合)。
当时,我们得到等差数列。其中时,我们得到自然数列1,2,3,4,5…自然数列的特征就是每个数的平方与前后两数之积的差为 1(等差数列的这种差值称为自然特征)。
具有类似黄金特征、勾股特征、自然特征的广义——斐波那契数列 。
当,时,我们得到等比数列1,2,4,8,16…
相关数学
排列组合
有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第 10 级台阶有几种不同的走法?
这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……
1,2,3,5,8,13…… 所以,登上十级,有 89 种走法。
类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?
答案是种。
求递推数列的通项公式
由数学归纳法可以得到:,将斐波那契数列的通项式代入,化简就得结果。

6. 斐波那契回调线口诀

将 1 除以 0.618 和 0.382。
它们具有以下特点:
1. 序列中的任何数字都由前两个数字之和组成。
2、前数与后数之比接近一个固定常数,即0.618。
3、后一个数字与前一个数字的比率接近1.618。
4. 1.618和0.618互为倒数,它们的乘积约为1。
5、如果有任何一个数与最后两个数比较,其值接近2.618; 如果与前两个数字相比,其值趋于接近0.382。
6、除了能够体现黄金分割的0.618和0.382这两个基本比例外,以上数字组合还有以下两组神秘比例。A、0.191、0.382、0.5、0.618、0.809;B、1、1.382、1.5、1.618、2、2.382、2.618。
将几个斐波那契回调值连成一条线(也称为黄金分割线)以查看整体趋势。
拓展资料:
一、基本用法:
1、斐波那契回调线常用于寻找上涨行情回调的支撑位和下跌行情回调的压力位。这里需要指出,斐波那契回调线也可以用来寻找目标位。斐波那契回调线由七个数字组成:0、0.236、0.382、0.5、0.618、0.764 和 1
2、绘制斐波那契回调线有两个方向:下跌行情:一般选择前高和近期低点,选择斐波那契技术指标,点击价格高点,按住鼠标,然后移至低点释放上涨行情:一般选择前低和近期高点,选择斐波那契技术指标,点击价格低点,按住鼠标,然后移动到低点释放上涨行情
二、交易技巧:如何使用斐波那契回调线指标。0.618线是最重要的黄金分割线。因此,看这条线能否在上涨行情中起到回调的支撑作用是非常重要的。显然,图中a点,两个交易日均在触及0.618线后回落,实物部分也收于0.618线上方_上涨行情再度开盘。另外,再看0.764、0.5、0.382和0.236线,对价格形成了良好的支撑。基本可以识别出这条回调线可以作为参考。
1、接下来,交易者可以考虑使用这条斐波那契回调线来布局下一个市场趋势。对于这些点,以三角形2背后的市场走势为例,交易者有两种操作方法:回调线下方挂空单是判断价格突破关键支撑位后下跌行情出现。另外,在下一个回调线设置止盈止损,在回调线上方设置止损。例如,在圆圈1下方放置一个空单,在圆圈2中设置止盈,在圆圈1上方设置止损,等等。
2、观察K线能否有效突破回调线。如果实体无法突破回调线,则采用反手布局。例如,在B圈0.618线的重要支撑位,在k线下方绘制并刺穿0.618线后,交易者可考虑多下单,获利止损可谨慎操作,以上各回调线各占一部分利润。但总体来说,0.618一线实力强大,上方空间一般到顶。
3、斐波那契回调是一种研究和判断事物发展趋势的技术分析方法。 用于判断支撑位和阻力位。 它以斐波那契数列命名。 斐波那契回调是基于这样一种理论,当趋势在一个方向发生变化时,它在相反方向的回调将在可预测的水平被阻止,然后趋势将返回到原来的方向。

7. 斐波那契回调线是什么

闪牛分析:

下图显示的是牛市和熊市中可能产生的斐波那契回调位。

1、在回调线的下方挂空单,这种做法是判断价格突破关键支撑位后,下跌行情会显现。另外,把止盈位设在下一条回调线,止损设在回调线上方。例如,在圆圈1的下方布局空单,把止盈设置在圆圈2,止损设置在圆圈1上方,以此类推。

2、观察K线能否有效突破回调线,倘若实体无法突破回调线,则反手布局。例如,在圆圈B的0.618线的重要支撑位上,K线下抽刺穿0.618线后强势回调,这时交易者可考虑布局一张多单,止盈可保守操作,在上方每一条回调线都获利了结一部分。但一般来说,0.618线由于威力强大,上方空间一般到顶端。

不过,也不能盲目的利用这个方法做单,如同图中蓝色圆圈显示,上影上抽突破0.382线后随即回落,实体收于下方,但是此次做空,将会被止损于0.382线上方,不过以这种方式,损失也不会过大。

后续走势可能会如何?

现在,我们根据此次画的斐波那契回调线来预测一下接下来的走势。从上图可以看出,已突破0.618线,即圆圈C的位置。目前在跌穿了0.764线后,有所反弹。不过,从当前的走势来说,方向依然不太明朗。交易者需要等待的是三个方向:

1、看K线能否回升至0.618线,倘若触及0.618线后无法有效突破,即可考虑布局空单,止盈如此前所说,在下一根回调线逐步获利了结,不过,最低可持有至15.61美元/盎司,即回调线底部;止损则可设在0.618线上方。

2、倘若K线有效突破0.618线,即可考虑布局多单,止盈止损方法同上。

3、K线再度跌破0.764线,可考虑布局空单,止损设在0.764线上方,止盈设在最低线处,但建议最好手动操作。

8. 斐波那契数列与音乐!!!!!!!!!!!!!!!

“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。)【√5表示根号5】
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
[编辑本段]【该数列有很多奇妙的属性】
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。如果所有的数都要求是自然数,能找出被任意正整数整除的项的此类如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成数列,必然是斐波那契数列的某项开始每一项的倍数,如4,6,10,16,26……(从2开始每个数的两倍)。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:
1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1
2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)-1
3.f(0)+f(2)+f(4)+…+f(2n)=f(2n+1)-1
4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)
5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1
6.f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)
7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)
8.f(2n-1)=[f(n)]^2-[f(n-2)]^2
9.3f(n)=f(n+2)+f(n-2)
在杨辉三角中隐藏着斐波那契数列
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
……
过第一行的“1”向左下方做45度斜线,之后做直线的平行线,将每条直线所过的数加起来,即得一数列1、1、2、3、5、8……
(1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。
(2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。
斐波那契数经常与花瓣的数目相结合:
3………………………百合和蝴蝶花
5………………………蓝花耧斗菜、金凤花、飞燕草
8………………………翠雀花
13………………………金盏草
21………………………紫宛
34,55,84……………雏菊
(3)斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。
(4)斐波那契数列与黄金比值
相继的斐波那契数的比的数列:
它们交错地或大于或小于黄金比的值。该数列的极限为。这种联系暗示了无论(尤其在自然现象中)在哪里出现黄金比、黄金矩形或等角螺线,那里也就会出现斐波那契数,反之亦然。
[编辑本段]【与之相关的数学问题】
1.排列组合.
有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?
这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……
1,2,3,5,8,13……所以,登上十级,有89种
2.数列中相邻两项的前项比后项的极限.
就是问,当n趋于无穷大时,F(n)/F(n+1)的极限是多少?
这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是所谓的黄金分割点,也是代表大自然的和谐的一个数字。
3.求递推数列a(1)=1,a(n+1)=1+1/a(n).的通项公式.
由数学归纳法可以得到:a(n)=F(n+1)/F(n).将菲波那契数列的通项式代入,化简就得结果。
[编辑本段]【斐波那契数列别名】

斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
斐波那契数列
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推可以列出下表:
经过月数:---0---1---2---3---4---5---6---7---8---9--10--11--12
兔子对数:---1---1---2---3---5---8--13--21--34--55--89-144-233
表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)
[编辑本段]【斐波那挈数列通项公式的推导】
斐波那契数列:1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
[编辑本段]【C语言程序】

main()
{
long fib[40] = {0,1};
int i;
for(i=2;i<40;i++)
{
fib[i ] = fib[i-1]+fib[i-2];
}
for(i=0;i<40;i++)
{
printf("F%d==%d\n", i, fib);
}
return 0;
}
[编辑本段]【C#语言程序】
public class Fibonacci
{
//NormRen
static void Main(string[] args)
{
int x = 0, y = 1;
for (int j = 1; j < 10; j++, y = x + y, x = y - x)
Console.Write(y + " ");
}
}
[编辑本段]【Java语言程序】
public class Fibonacci
{
public static void main(String[] args)
{
int x=1,y=1;
System.out.println(x+" ");
for(int i=1;i<=20;i++)
{
System.out.println(y+" ");
y=x+y;x=y-x;
}
}
}
[编辑本段]【Pascal语言程序】
递推:
var
fib: array[0..40]of longint;
i: integer;
begin
fib[0] := 1;
fib[1] := 1;
for i:=2 to 39 do
fib[i ] := fib[i-1] + fib[i-2];
for i:=0 to 39 do
write('F', i, '=', fib[i ]);
end.
递归:
function fib(n:integer):longint;
begin
if (n=1) then exit(0);
if (n=2) then exit(1);
fib:=fib(n-2)+fib(n-1);
end;
[编辑本段]【PL/SQL程序】
declare i number :=0;
j number :=1;
x number :=1;
begin
while x<1000
loop
dbms_output.put_line(x);
x:=i+j;
i:=j;
j:=x;
end loop;
end;
[编辑本段]【数列与矩阵】
对于斐波那契数列1,1,2,3,5,8,13…….有如下定义
F(n)=f(n-1)+f(n-2)
F(1)=1
F(2)=1
对于以下矩阵乘法
F(n+1) = 1 1 * F(n)
F(n) 1 0 F(n-1)
它的运算就是
F(n+1)=F(n)+F(n-1)
F(n)=F(n)
可见该矩阵的乘法完全符合斐波那契数列的定义
设1 为B,1 1为C
1 1 0
可以用迭代得到:
斐波那契数列的某一项F(n)=(BC^(n-2))1
这就是斐波那契数列的矩阵乘法定义.
另矩阵乘法的一个运算法则A¬^n(n为偶数)=A^(n/2)* A^(n/2).
因此可以用递归的方法求得答案.
时间效率:O(logn),比模拟法O(n)远远高效。
代码(PASCAL)
{变量matrix是二阶方阵, matrix是矩阵的英文}
program fibonacci;
type
matrix=array[1..2,1..2] of qword;
var
c,cc:matrix;
n:integer;
function multiply(x,y:matrix):matrix;
var
temp:matrix;
begin
temp[1,1]:=x[1,1]*y[1,1]+x[1,2]*y[2,1];
temp[1,2]:=x[1,1]*y[1,2]+x[1,2]*y[2,2];
temp[2,1]:=x[2,1]*y[1,1]+x[2,2]*y[2,1];
temp[2,2]:=x[2,1]*y[1,2]+x[2,2]*y[2,2];
exit(temp);
end;
function getcc(n:integer):matrix;
var
temp:matrix;
t:integer;
begin
if n=1 then exit(c);
t:=n div 2;
temp:=getcc(t);
temp:=multiply(temp,temp);
if odd(n) then exit(multiply(temp,c))
else exit(temp);
end;
procere init;
begin
readln(n);
c[1,1]:=1;
c[1,2]:=1;
c[2,1]:=1;
c[2,2]:=0;
if n=1 then
begin
writeln(1);
halt;
end;
if n=2 then
begin
writeln(1);
halt;
end;
cc:=getcc(n-2);
end;
procere work;
begin
writeln(cc[1,1]+cc[1,2]);
end;
begin
init;
work;
end.
[编辑本段]【数列值的另一种求法】
F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距离 x 最近的整数。
[编辑本段]【数列的前若干项】
1、 1
2 、1
3 、2
4 、3
5 、5
6 、8
7 、13
8 、21
9 、34
10、 55
11 、89
12 、144
13 、233
14 、377
15 、610
16 、987
17 、1597
18 、2584
19 、4181
20 、6765
......
斐波那契弧线
斐波那契弧线,第一,此趋势线以二个端点为准而画出,例如,最低点反向到最高点线上的两个点。三条弧线均以第二个点为中心画出,并在趋势线的斐波纳契水平:38.2%, 50%和61.8%交叉。
斐波纳契弧线,是潜在的支持点和阻力点水平价格。斐波纳契弧线和斐波纳契扇形线常常在图表里同时绘画出。支持点和阻力点就是由这些线的交汇点得出。
要注意的是弧线的交叉点和价格曲线会根据图表数值范围而改变因为弧线是圆周的一部分,它的形成总是一样的。
斐波那契扇形线
斐波那契扇形线,例如,以最低点反向到最高点线上的两个端点画出的趋势线。然后通过第二点画出一条“无形的(看不见的)”垂直线。然后,从第一个点画出第三条趋势线:38.2%, 50%和61.8%的无形垂直线交叉。
这些线代表了支撑点和阻力点的价格水平。为了能得到一个更为精确的预报,建议和其他斐波纳契工具一起使用。
[编辑本段]【斐波那契数列的应用】
一位魔术师拿着一块边长为8英尺的正方形地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方
形地毯。”这位匠师对魔术师算术之差深感惊异,因为商者之间面积相差达一平方英尺呢!可是魔术师竟让匠师用图2和图3的办法达到了他的目的!
这真是不可思议的事!亲爱的读者,你猜得到那神奇的一 平方英尺究竟跑到哪儿去呢?
斐波那契数列在自然科学的其他分支,也有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。
另外,观察延龄草,野玫瑰,南美血根草,大波斯菊,金凤花,耧斗菜,百合花,蝴蝶花的花瓣.可以发现它们花瓣数目具有斐波那契数:3,5,8,13,21……
斐波那契螺旋
具有13条顺时针旋转和21条逆时针旋转的螺旋的蓟的头部
具有13条逆时针旋转和21条逆时针旋转的螺旋的蓟的头部
这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数0.618033989……的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。

9. 外汇宝:什么是斐波那契回归线

斐波那契回调线,也被称作“黄金分割线”,是通过分析技术图形来预判未来价格走势的一种常用工具。斐波那契回调线通常被用作分析货币对、商品价格重要支撑/阻力位。
斐波那契回调线的画线方法是:选取一段时期内一波行情的高点和低点,通过计算得出两个点位间38.2%、50%、61.8%位置。若有需要可以扩展至23.6%、80.9%、100%、138.2%、161.8%位置。其中,38.2%、61.8%最容易形成关键阻力位/支撑位。
通常而言,货币对、商品价格之前一波下跌行情的38.2%位置为弱势反弹位,61.8%位置为强势反弹位;之前一波上涨行情的38.2%位置为弱势回调位,61.8%位置为强势回调位。

10. 斐波那契数列的应用是什么

(1)斐波那契数列与排列组合

有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法。

这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……

1、2、3、5、8、13、21……所以,登上10级台阶总共有89种登法。

(2)斐波那契数列与与黄金分割的关系

有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618。

(或者说后一项与前一项的比值小数部分越来越逼近黄金分割0.618、前一项与后一项的比值越来越逼近黄金分割0.618),越到后面,这些比值越接近黄金比.

1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625,…………,55÷89=0.617977…,…………,144÷233=0.618025…,46368÷75025=0.6180339886…,...

(3)斐波那契螺旋线

以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线。自然界中存在许多斐波那契螺旋线的图案。

斐波那契数列在自然界的体现:

(1)树木的分叉

树苗在第一年后长出一条新枝,新枝成长一年后变为老枝,老枝每年都长出一个新枝,以后每个树枝都遵循这样的规律,于是第一年只有一个主干,第二年有两个枝,第三年三个,第四年五个,以此类推,每年的分枝数便构成了斐波那契数列。

(2)花瓣的数量

有很多花瓣也都遵循斐波那契数列,比如:兰花,雏菊,延龄草,野玫瑰,大波斯菊,金凤花,百合花,蝴蝶花,紫苑,南美血根草等等。

以上内容参考网络-斐波那契数列

热点内容
币圈如何做到共识 发布:2025-07-23 13:00:49 浏览:732
积分系统区块链例子 发布:2025-07-23 12:39:26 浏览:214
币圈中国允许吗 发布:2025-07-23 12:23:44 浏览:808
去中心化平台PPT 发布:2025-07-23 12:22:27 浏览:843
以太坊开始挖多少个 发布:2025-07-23 12:22:26 浏览:728
我们全家喜欢去购物中心的翻译 发布:2025-07-23 12:22:17 浏览:739
币圈全球站 发布:2025-07-23 12:04:49 浏览:137
合约机电话费一直不交会怎么样 发布:2025-07-23 11:15:48 浏览:909
以太坊转账网络确认 发布:2025-07-23 11:15:48 浏览:118
币圈做空多做怎么赚钱 发布:2025-07-23 10:45:48 浏览:52