当前位置:首页 » 矿机知识 » 机岩矿各项指标含量

机岩矿各项指标含量

发布时间: 2021-11-06 01:37:43

1. 页岩储层特征

页岩本身既是烃源岩又是储集层,是一种典型的“原位饱和成藏”机制形成。生物化学生气阶段,天然气或油裂解气首先吸附在有机质和岩石颗粒表面或聚集在有机质孔隙内,原位滞留饱和后,过饱和的天然气以游离相或溶解相,向外初次运移到上覆无机质页岩地层的孔隙中聚集,一部分以游离相存在于粒内、粒间孔或裂缝中,再饱和后,一部分天然气二次运移到常规储集层,形成常规天然气藏(图5-9)。

图5-9 页岩气形成机理与饱和成藏模式

一、岩石矿物组成

脆性矿物含量是影响页岩基质孔隙和微裂缝发育程度、含气性及压裂改造方式等的重要因素。页岩中粘土矿物含量越低,石英、长石、方解石等脆性矿物含量越高,岩石脆性越强,在外力作用下越易形成天然裂缝和诱导裂缝,形成树状或网状结构缝,有利于页岩气开采。而高粘土矿物含量的页岩塑性强,吸收能量强,以形成平面裂缝为主,不利于页岩体积改造。

美国产气页岩中石英含量为28%~52%,碳酸盐含量为4%~16%,总脆性矿物含量为46%~60%。Halliburton(2008)对北美地区多套页岩的统计及Jarvie(2007)对Barnett页岩矿物组成的分析(Daniel, et al.,2008;Jenking,2008),认为页岩岩矿组成不存在统一模式,如路易斯安那地区位于二级层序海进体系域中的侏罗系Haynesville页岩,自下而上可划分为3个基本类型:生物碎屑泥灰岩、纹层状页岩及硅质页岩,其矿物组成粘土矿物含量为50%,石英和方解石含量为50%。加拿大三叠系Montney页岩,由纹层泥质粉砂岩、富有机质页岩互层组成,陆源碎屑石英含量呈现纵向波动变化。斯伦贝谢公司利用ECS(元素俘获能谱)测井及SpectroLith岩性处理解释技术分析同样说明(图5-10),北美产气页岩矿物组成特征与Barnett页岩有很大区别。Barnett页岩以硅质含量高为特征,Eagle Ford页岩碳酸盐含量高(50%以上)。因此,富有机质页岩储层发育分布特征受沉积环境控制,不同沉积模式下的富有机质页岩储层矿物组有较大变化。

图5-10 北美页岩储层岩石矿物组成对比

中国海相页岩、海陆过渡相炭质页岩、湖相页岩3种页岩类型,脆性矿物含量总体比较高,均达到40%以上,如上扬子区古生界海相页岩石英含量为24.3%~52.0%,长石含量为4.3%~32.3%,方解石含量为8.5%~16.9%,总脆性矿物含量为40%~80%(表5-4;图5-11);四川盆地须家河组粘土矿物含量一般为15%~78%,平均为50%左右;石英、长石等脆性矿物含量一般为22%~86%,平均为50%左右。鄂尔多斯盆地上古生界含煤层系炭质页岩石英含量为32%~54%,平均48%,总脆性矿物含量为40%~58%;鄂尔多斯盆地中生界湖相页岩石英含量为27%~47%,平均40%,总脆性矿物含量为58%~70%。岩石矿物组成对页岩气后期开发至关重要,具备商业性开发的页岩,一般其脆性矿物含量要高于40%,粘土矿物含量小于30%。

表5-4 中国四川盆地与北美页岩地质条件对比

图5-11 四川盆地下古生界富有机质页岩矿物组成百分含量

二、页岩储层孔渗与微裂缝特征

1.孔渗特征

页岩孔隙大小从1~3nm至400~750nm不等(Robert, et al.,2009),比表面积大,结构复杂,丰富的内表面积可以通过吸附方式储存大量气体。页岩储层孔隙度、渗透率具有明显的正相关性,是页岩含气性的重要控制因素,如EagleFord页岩储层充气孔隙度高达10%,含气饱和度高达80%,相应的渗透率高达0.1×10-3μm2,为优质页岩储层。中国海相富有机质页岩微孔-纳米孔十分发育(图5-12),既有粒间孔,也有粒内孔和有机质孔,尤其有机质成熟后形成的纳米级微孔甚为发育,这些纳米级微孔是页岩气赋存的主要空间。四川盆地华蓥山红岩煤矿龙马溪组和威远地区筇竹寺组页岩实测结果:龙马溪组页岩孔隙度为2.43%~15.72%,平均4.83%;筇竹寺组页岩孔隙度为0.34%~8.10%,平均3.02%。鄂尔多斯盆地中生界湖相页岩实测孔隙度为0.4%~1.5%,渗透率为(0.012~0.653)×10-3μm2

有利页岩气储层与一定区域地质背景下的构造、沉积、有机地球化学特征密切相关,如目的层大多为含油气系统中主力烃源岩,尤其以海进体系域黑色页岩为佳,有机质以倾油的Ⅱ型干酪根为主,且现今处于大量生气阶段或充注过程中,既保存了较高的残余有机质丰度,储集大量吸附气,又能够增加一定孔隙度,容纳足够数量的游离气,同时有助于提高基质系统的渗透性(王正普等,2007),使得页岩储层品质提高,形成优质页岩储层。

2.微裂缝

裂缝的发育可为页岩气提供充足的储集空间,也可为页岩气提供运移通道,更能有效提高页岩气产量(程克明等,2009;张金川等,2004;Hill, et al.,2000;Bowker,2002;Hill,2002)。在不发育裂隙的情况下,页岩渗透能力非常低。石英含量高低是影响裂缝发育的重要因素,富含石英的页岩段脆性好,裂缝的发育程度比富含方解石的泥页岩更强。Nelson认为,除石英外,长石和白云石也是泥页岩中易脆组分。一般页岩中具有高含量的粘土矿物,但暗色富有机质页岩中的粘土矿物含量通常则较低。页岩气勘探必须寻找能够压裂成缝的页岩,即页岩的粘土矿物含量足够低(<50%)、脆性矿物含量丰富,使其易于成功压裂。

中国海相页岩、海陆交互相炭质页岩和湖相页岩均具有较好的脆性特征,无论是野外地质剖面还是井下岩心观察,发现其均发育较多的裂缝系统。如:上扬子地区寒武系筇竹寺组、志留系龙马溪组黑色页岩性脆、质硬,节理和裂缝发育,在三维空间成网络状分布,岩石薄片显示,微裂缝细如发丝,部分被方解石、沥青等次生矿物充填;鄂尔多斯盆地上古生界山西组岩心切片可看到呈网状分布的微裂缝;鄂尔多斯盆地中生界长7段黑色页岩页理十分发育,风化后呈薄片状。

三、页岩储层含气性

根据含气性,页岩气区带可划分为核心区、外围区。页岩含气量是衡量页岩气是否具经济开采价值和进行资源潜力评估评价的重要指标,页岩含气量包括游离气、吸附气及溶解气等。哈里伯顿公司(2009)认为商业开发远景区页岩含气量最低为2.8m3/t。北美已实现商业开发的页岩气,其含气量最低约为1.1m3/t,最高达9.91m3/t(表5-4)。吸附气部分主要与有机质、粘土矿物相关,游离气部分主要与基质孔隙相关。图5-13说明页岩吸附能力与有机质含量呈现正相关关系。

图5-12 四川盆地下古生界页岩有机质微孔-纳米级孔隙分布特征

图5-13 Barnett页岩含气量与有机质丰度TOC关系

①1scf(标准立方英尺)=0.0283168m3

需要强调的是,从页岩生烃、富集成藏机理的角度看,页岩有机质数量与质量等都是页岩含气量的关键影响因素。进一步而言,页岩气藏形成的有机质丰度下限及成熟度就是很关键的问题。目前,斯伦贝谢(Charles Boyer et al.,2006,转引自《页岩气地质与勘探开发实践丛书》编委会,2009)及Devon等在页岩气藏勘探开发实践中,将TOC含量下限值确定为2.0%。这一选值实际上相当于石油地球化学家在评定源岩等级时所确定的“好生油岩”标准。结合母质类型、热成熟度、矿物组成和岩石结构进行综合分析和判识,对于提高页岩气藏勘探开发的效果非常重要。有机质成熟度Ro大于1.2%往往被普遍作为形成有利的页岩气上限。

实测发现,四川盆地下寒武统筇竹寺组黑色页岩含气量为1.17~6.02m3/t,龙马溪组黑色页岩含气量为1.73~5.1m3/t,与北美产气页岩的含气量(表5-4)相比,均达到了商业性页岩气开发的下限,具备商业性开发价值。由于中国页岩气尚未进入开发阶段,钻探页岩气井少,因此无法获取更多的页岩含气量数据。但根据老井复查结果(程克明等,2009;王兰生等,2009;王社教等,2009;王世谦等,2009;张金川等,2008),在已往的钻井中,钻遇的黑色页岩段发现了大量的气测显示,有井涌和井喷现象发生,证明页岩段含气性很好。如四川盆地威远地区钻穿筇竹寺组的107口井中,有32口井52个井段出现不同级别的气测显示,威5井在钻至2795~2798m筇竹寺组页岩层段时发生井喷,中途测试获日产2.46×104m3的天然气;钻穿川南地区下志留统龙马溪组页岩层段的15口井中有32个层段见良好气测显示,阳63井3505~3518m龙马溪组页岩段,测试后获日产天然气3500m3

四、页岩储层评价标准

根据Barnett和Haynesville等北美主要页岩气藏的地质特点,页岩气优质储层一般具备如(表5-5)所示特点,此标准对于开展中国页岩气储层评价具有重要指导意义。

中国页岩勘探开发尚处于起步阶段,页岩气地质条件与美国相比既有相似性,也存在很多差异。因此,对页岩储层评价的标准还不能完全照搬北美页岩气储层评价标准(蒋裕强等,2009)。根据中国南方海相和北方海陆交互相页岩气富集特征,从厚度、地化指标、脆性矿物含量、物性、孔隙流体和力学性质等方面确定的中国页岩储层评价标准(表5-6)为:厚度大于30m,热成熟度为1.1%~4.5%,有机质含量>2%,具有较好脆性(石英、方解石等脆性矿物含量大于40%,粘土含量小于30%),有效孔隙度在2%以上,含油饱和度低于5%,岩石杨氏弹性模量在3.03MPa以上,泊松比小于0.25。

表5-5 北美主要产气页岩储层特征

表5-6 中国页岩气储层评价标准

2. 矿的含量多少

铅锌矿 简介
铅是人类从铅锌矿石中提炼出来的较早的金属之一。它是最软的重金属,也是比重大的金属之一,具蓝灰色,硬度1.5,比重11.34,熔点327.4℃,沸点1750℃,展性良好,易与其他金属(如锌、锡、锑、砷等)制成合金。
锌从铅锌矿石中提炼出来的金属较晚,是古代7种有色金属(铜、锡、铅、金、银、汞、锌)中最后的一种。锌金属具蓝白色,硬度2.0,熔点419.5℃,沸点911℃,加热至100~150℃时,具有良好压性,压延后比重7.19。锌能与多种有色金属制成合金或含锌合金,其中最主要的是锌与铜、锡、铅等组成的黄铜等,还可与铝、镁、铜等组成压铸合金。
铅锌用途广泛,用于 我国铅锌矿分布电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等领域。此外,铅金属在核工业、石油工业等部门也有较多的用途。
矿产分布
分布广泛,但储量主要相对集中几个省区。目前,已有 27个省、区、市发现并勘查了铅锌资源,但从富集程度和现保有储量来看,主要集中于6个省区,铅锌合计储量大于800万吨的省区依次为云南2662.91万吨、内蒙古1609.87万吨、甘肃1122.49万吨、广东1077.32万吨、湖南888.59万吨、广西878.80万吨,合计为8239.98万吨,占全国铅锌 我国铅锌矿分布合计储量12956.92万吨的64%。从三大经济地区分布来看,主要集中于中西部地区,铅储量占73.8%,锌储量占74.8%。
矿物特点
铅锌矿矿石标本铅锌在自然界里特别在原生矿床中共生极为密切。它们具有共同的成矿物质来源和十分相似的地球化学行为,有类似的外层电子结构,都具有强烈的亲硫性,并形成相同的易溶络合物。它们被铁锰质、粘土或有机质吸附的情况也很相近。铅在地壳中平均含量约为15×10-6,在有关岩石中平均含量:砂岩7×10-6、碳酸盐岩9×10-6、页岩20×10-6。锌在地壳中平均含量约为80×10-6,在有关岩石中平均含量:玄武岩105×10-6、花岗岩中60×10-6、砂岩16×10-6、碳酸盐岩20×10-6、页岩95×10-6。
目前,在地壳上已发现的铅锌矿物约有250多种,大约1/3是硫化物和硫酸盐类。方铅矿、闪锌矿等是冶炼铅锌的主要工业矿物原料。

矿石工业要求
尽管现在已发现有250多种铅锌矿物,但可供目前工业利用的仅有17种。其中,铅工业矿物有11种,锌工业矿物有6种,以方铅矿、闪锌矿最为重要。还有菱锌矿、白铅矿等。
矿石工业类型,以矿石自然类型为基础,按矿石氧化程度可分为硫化矿石(铅或锌氧化率<10%)、氧化矿石(铅或锌氧化率>30%)、混合矿石(铅或锌氧化率10%~30%);按矿石中主要有用组分可分为:铅矿石、锌矿石、铅锌矿石、铅锌铜矿石、铅锌硫矿石、铅锌铜硫矿石、铅锡矿石、铅锑矿石、锌铜矿石等;按矿石结构构造,可分为:浸染状矿石、致密块状矿石、角砾状矿石、条带状矿石、细脉浸染状矿石等。
为适应我国铅锌矿地质勘探工作和矿山生产建设的需要,地质矿产部和冶金工业部根据我国铅锌矿产资源状况和采选冶技术条件,于1983年联合制定并颁布《铅锌矿地质勘探规范》(试行),制定了铅锌矿一般工业指标,普查勘探中用于评价矿床有否工业价值。

矿业简史
中华民族的祖先对铅锌矿的开采、冶炼和利用曾做出过重要贡献。中国古代“铅”写作“钅公”。商代(公元前16~前11世纪)中期在青铜器铸造中已用铅,西周(公元前11世纪~前771年)的铅戈含铅达99.75%。在古代,铅往往被加入铜中成为合金化金属,还用来制作铅白、铅丹等。古代炼铅的原料有两类,一类是氧化铅,以白铅矿为主,另一类是硫化矿,以方铅矿为主。明代陆容在《菽园杂记》中有叙述含银硫化铅矿的冶炼方法。宋应星在《天工开物》中提到当时开采的三种铅锌矿物,一种是“银矿铅”,系指与辉银矿等共生的方铅矿;另一种是“铜山铅”,系指含方铅矿、闪锌矿、黄铜矿等的多金属矿;还一种是“草节铅”,可能是指结晶粗大的方铅矿。
由于铅矿中多含有银,古代为了提取白银,因此大量开采并冶炼铅。
中国是最早发明炼锌的国家。古代称锌为“倭铅”。炼锌,据史料记载至迟在10世纪的五代就已能冶炼。贵州赫章志上即有该县妈姑地区在五代后汉高祖天福年间(公元947年)开始炼锌的记载。明代宋应星在《天工开物》中也有叙述,用炉甘石作原料,用坩埚冶炼,书中附有图。
明、清时锌主要用配制黄铜,供铸钱及制造各种器皿用。约在17世纪初开始向欧洲出口锌锭。1745年从广州装运锌锭的一艘船在瑞典哥德堡触礁沉没,1872年被打捞起一部分锌锭,经分析锌含量达98.99%,可见当时中国冶炼锌的水平是相当高的。
中国古代不仅对铅锌的冶炼和利用有重要创举,而且很早就认识了铅锌矿的产出分带性。在《管子·地数篇》中就记载“上有陵石者,下有铅锡赤铜”,“上有铅者 ,其下有银”。当代许多铅锌矿床的勘查有不少的矿区都是通过古矿硐和冶炼炉渣遗址等发现的。
近百年来,在旧中国时期铅锌业基础薄弱,只有几个规模小的矿山和工厂,采矿、选矿、冶炼基本上土法生产,最高年产量,铅8900t、锌7100t。新中国成立后,铅锌业发展很快。经过40多年来的大规模地质勘查,探明了丰富的铅锌矿产资源,建设了一大批国营大中型铅锌矿山和冶炼厂,形成了较大的采选冶生产能力,产量居于世界前列。1996年铅精矿(金属含量,下同)产量64.3万t,锌精矿(金属含量,下同)产量112.1万t。铅锌金属产量(含矿产产量和杂产产量):铅70.6万t,居世界第2位;锌118.4万t,居世界第1位。现在不仅满足国内需求,而且还出口铅锌产品,成为世界铅锌生产大国之一。

3. 岩浆岩的矿物成分

尽管自然界的矿物种类很多,但组成岩浆岩的常见矿物只有十几种,这些矿物称为主要造岩矿物(rock-forming mineral)。对于主要造岩矿物可以根据其含量多少、成分、成因等进行多种划分。

1.按照矿物含量多少的划分

岩浆岩的主要矿物的平均含量见表1-2,其中长石含量最高,占整个岩浆岩成分的60%以上,其次是石英。因此这两种矿物就成了岩浆岩的鉴别和分类的重要依据之一。为了便于研究不同矿物的含量与特征,将岩浆岩中的矿物分为主要矿物、次要矿物和副矿物。

◎主要矿物:在岩石中含量较高,是划分岩石大类的依据,是确定岩石名称所不可缺少的。例如,花岗岩类的主要矿物是石英和钾长石,若不含石英和钾长石就不能定名为花岗岩。

◎次要矿物:在岩石中含量较低,对划分岩石大类不起主要作用,但可作为确定岩石种属的依据。例如,花岗岩中石英和钾长石是主要矿物,但也可以含有少量的角闪石或黑云母,它们是次要矿物,此时,角闪石和黑云母就可作为划分花岗岩种属的依据,如含角闪石的花岗岩称角闪花岗岩,含黑云母的花岗岩称黑云母花岗岩。次要矿物和主要矿物因岩石种类而异,如角闪石在花岗岩中是次要矿物,而在闪长岩中是主要矿物,橄榄石在辉长岩中是次要矿物,在橄榄岩中则是主要矿物。

◎副矿物:含量最低,通常不到1%,个别情况下可达5%,因此在一般岩浆岩的分类命名中不起作用。常见的副矿物有铬铁矿、磁铁矿、钛铁矿、锆石、榍石、磷灰石、褐帘石、石榴子石、碳酸盐类矿物等。但是,有时在某些特殊类型的岩石中,通常作为副矿物的某些矿物会成为次要矿物甚至主要矿物。例如,碳酸盐矿物,在一般岩浆岩中为副矿物,但在碳酸岩中为主要矿物。

2.按照矿物成分的划分

按化学成分特点,将主要造岩矿物分为两类:

◎硅铝矿物:SiO2与Al2O3的含量较高,不含Fe、Mg,其中包括石英、长石类及副长石类。这些矿物颜色较浅,所以又叫浅色矿物(light-colored mineral)。

◎镁铁矿物:FeO与MgO的含量较高,SiO2含量较低,主要包括橄榄石类、辉石类、角闪石类及黑云母类等矿物。这些矿物的颜色一般较深,多为黑色或暗绿色,所以又叫暗色矿物(dark-colored mineral)。岩石的颜色、密度常与铁镁矿物的含量有关,含铁镁矿物多的,颜色深,密度较大,反之颜色浅,密度较小。

在岩浆岩中,铁镁矿物和硅铝矿物的含量是随岩石而异的。有的岩石浅色矿物集中,有的又是铁镁矿物较多。铁镁矿物在岩浆岩中的百分含量称为色率(color index)。色率是肉眼鉴定岩石的重要指标,就钙碱性岩石而言,色率越高,岩石越基性,反之岩石越酸性。例如,橄榄岩的平均色率为90,辉长岩为30~50,闪长岩为20~30,花岗岩小于10(参见表1-2)。

尽管造岩矿物种类繁多,但其中最主要的不外乎橄榄石、辉石、角闪石、黑云母、斜长石、钾长石、石英七种。这七种矿物在不同种类的岩石中的组合和相对含量都不相同,故在标本上鉴定这些岩石时,主要的任务之一就是正确鉴定出岩石中的这些矿物的种类及其相对含量,以区别不同类别的岩浆岩。

3.按照矿物成因的划分

按成因,岩浆岩矿物可分为原生矿物、他生矿物和次生矿物三类。

◎原生矿物:在岩浆结晶过程中所形成的矿物,如橄榄石、辉石、角闪石、云母、长石、石英等,也包括部分岩浆作用晚期析出的富含挥发分的矿物,如电气石、萤石等。

◎他生矿物:一般在正常的岩浆岩中不出现,大多是由于岩浆同化了围岩和捕虏体使其成分发生变化而形成的。如果花岗岩浆同化了碳酸盐类的岩石,则形成富含钙的硅酸盐矿物,如钙铁榴石、硅灰石等;如果同化了泥质岩石,则常形成堇青石、红柱石等富铝矿物。

◎次生矿物:是在岩浆岩形成后,由于受到风化作用或岩浆期后热液蚀变作用,由原生矿物发生变化而形成的新矿物。例如,橄榄石蚀变成蛇纹石或伊丁石,辉石、角闪石蚀变成绿泥石,钾长石蚀变成高岭石等。这些次生矿物交代原生矿物后,还常保留有原生矿物的外形,称为矿物假象。

4. 选矿指标如何计算

金属矿主要算精矿的回收率,试验中,精矿回收率=(精矿产率*精矿品位)/(100*给矿产率)*100%
生产上 就得看整个选矿流程有几个产品了,利用方程式计算出产率,再由上面的公式计算回收率

5. 岩心钻探六大指标是什么

岩心钻探六大指标:
钻孔布置;
岩、矿心采取率与整理;
钻孔弯曲度与测量、孔深误差测量与校正;
简易水文观测和工程地质编录;
原始班报表;
终孔与封孔

6. 石灰岩矿床地质勘查与评价

一、矿床一般工业指标

不同的工业用途,对石灰岩矿石有不同的工业要求。

.1 冶金熔剂、电石、制碱石灰岩化学成分一般要求(表20-1、表2-02)

表20-1 黑色冶金熔剂石灰岩化学成分一般要求

表20-2 有色冶金熔剂、电石、制碱石灰岩化学成分一般要求

2.水泥原料矿石化学成分一般要求(表20-3)

表20-3 水泥用石灰质原料矿石化学成分一般要求

3.矿山开采技术条件要求

矿山露天开采技术条件一般要求如下:

1)最低可采标高:一般不低于矿区附近的最低地平面标高,如低于最低地平面标高,必须通过技术经济论证确定。

2)剥采比:覆盖层、脉岩、夹层、边坡围岩的剥离总量与矿石总量之比,一般不大于0.5:1(m3/m3)。

3)可采厚度:大、中型矿一般8 m,小型矿4 m。

4)夹石剔除厚度:一般2 m。

5)采场最终边坡角:一般50。~60°。

6)采场最终底盘最小宽度:大中型一般不小于60 m,小型矿一般不小于40 m。

7)爆破安全距离:矿床开采边界对公路、铁路、高压线、居民区和其他主要建筑物的爆破安全距离一般不小于300m,如爆破安全距离小于300m时,应与投资者商定。

二、矿床勘探类型的划分

.1 勘查类型划分的主要地质依据

(1)矿体内部结构复杂程度

1)简单:矿石质量稳定或变化有规律,不含或含少量不连续夹层。

2)中等:矿石质量较稳定,含不连续夹层,分布无规律。

3)复杂:矿石质量不稳定,含较多的不连续夹层,分布无规律。

(2)矿体厚度稳定程度

1)稳定:矿体连续,厚度变化小或呈有规律变化,厚度变化系数<40%。

2)较稳定:矿体基本连续,厚度变化不大,局部变化较大,厚度变化系数40%~70%。

3)不稳定:矿体连续性差,厚度变化大,变化无规律,厚度变化系数>70%。

(3)构造复杂程度

1)简单:矿体呈单斜或宽缓向、背斜,产状变化小,一般没有较大断层切割矿体,所见少量断层对矿体形态影响小。

2)中等:矿体呈单斜或宽缓向、背斜,产状变化较大,有少数较大断层切割矿体,对矿体圈定、对应连接有一定影响。

3)复杂:矿体呈单斜或中常向斜、背斜,产状变化大,有一些较大断层或较多断层切割矿体,破坏了矿体的完整性,对矿体圈定、对应连接影响较大。

(4)岩浆岩与变质岩

1)不发育:一般没有较大脉岩、岩株、变质岩等分布,所见岩浆岩及变质岩不发育对矿体影响小。

2)较发育:有一些较大脉岩、岩株、变质岩等分布,所见岩浆岩及变质岩较发育对矿体影响较大。

3)发育:有较多较大脉岩、岩株、变质岩等分布,所见岩浆岩及变质岩发育对矿体影响大。

(5)岩溶发育程度

1)不发育:有少量较大溶洞分布,地表、地下岩溶率一般<3%,对开采影响小。

2)较发育:分布有较多较大的溶洞,地表、地下岩溶率一般为3%~10%,对开采有一定影响。

3)发育:分布大量溶洞,地表、地下岩溶率一般在10%以上,对开采有较大影响。

2.冶金、化工用石灰岩及水泥原料矿产勘查类型(表20-4)

表20-4 冶金、化工用石灰岩及水泥原料矿产勘查类型

三、不同勘探类型勘探工程间距的要求(表20-5)

表20-5 石灰岩矿参考勘查工程间距

以上不同勘探类型和不同储量级别之间的工程间距总是相互过渡的,没有规定过死,这样,有利于结合矿床实际灵活运用,甚至可以考虑过渡类型。

一般在确定一个具体矿床的勘探类型和工程间距时,首先要以矿床本身的地质特征为基础,参照规范,初步拟定矿床的类型和大致的工程间距,并遵循由稀而密、由浅入深,由表及里的施工程序,逐步施工,随着工作的不断深入,认识的不断深化,随时注意检查和验证早期拟定的类型和网度,发现问题,及时纠正。这样,才能使类型和工程间距确定得较为正确和合理。

四、采样、样品加工及化验要求

石灰岩矿床勘探工作的主要任务就是要查明矿石质量,圈定矿体,计算储量,为矿山设计和开采提供依据。为此,地质勘查的各个阶段,随着勘探工程施工的进展情况,均应及时的进行各种取样工作。

.1 基本分析

基本分析样品在勘查工程中分层、分段采取。地表样品应在新鲜岩矿层中采取,采样方法一般用刻槽法,刻槽断面规格一般为(3cm x 2cm)~(10cm ×5cm),钻孔中采样用半心法。样长一般为2~4 m。采样方法、长度和断面规格,应根据矿石质量变化情况,考虑矿体可采厚度和夹石剔除厚度而定。对肉眼可以区别的夹石,其厚度超过0.5 m者应单独采样分析。基本分析项目见表20-6。

表20-6 石灰岩基本分析项目

2.组合分析

组合分析样品应按勘查工程分层、分类型、分品级由基本分析的副样中按所代表的厚度按比例组合而成。组合分析样品代表厚度一般为8~16 m。石灰岩组合分析项目见表20-7。

表20-7 石灰岩组合分析项目

3.光谱分析、多元素分析取样

光谱分析、多元素分析样品是按矿层、矿石类型、品级从基本分析样品的副样中抽取1~2件。

多元素分析项目可视光谱分析的结果而定,一般多元素分析项目为CaO, MgO, SiO2,Al2O3,Fe2O3,K2O,Na2O,SO3,TiO2,P2O5,Mn3O4,Cl-和烧失量。

4.样品加工

化学分析样品的加工包括破碎、过筛、拌匀和缩分四个程序。样品缩分公式:Q =K 2d,K值一般采用0.05~0.1,对质量均匀者采用较小的K值,反之采用较大的K值。

五、矿石加工技术试验要求

预查阶段应收集矿石加工技术有关资料进行类比研究,普查阶段一般应进行矿石加工技术对比研究,做出是否可作为工业原料的评价,详查阶段与勘探应根据投资者的需求进行矿石加工技术的试验。

1.冶金、化工石灰岩加上技术试验要求

耐磨、耐压:冶金工业用做熔剂石灰岩一般做此项试验。试样规格5cm ×5cm ×5cm。

煅烧试验:试验一般采用半工业规模试验。如果已有类似加工技术方面数据,可通过类比确定。

水洗试验:通过水洗试验,确定是否增加洗矿设备,目的是为提高矿石质量,确保矿石经破碎、磨矿后能满足要求。

2.水泥原料工艺性能试验要求

应通过试验以验证矿石利用的可能性。需进行试验时,应在勘探阶段进行.对新类型矿石应提前进行。试验研究一般采用实验室规模试验。一般情况下全套试验(不含辊磨试验)需各种原料试验样重约100~200 kg,辊磨易磨性试验所需样重约1200~1500 kg。干法生产应做易磨性、磨蚀性、可磨性、可破性、辊磨易磨性、易烧性等试验项目。

六、石灰岩作为水泥原料时的配料计算及综合评价

自然界较难找到一种单一的原料,能完全满足制造水泥的要求,因此,只能选用几种原料,进行合理搭配,使其总的化学成分符合生产优质水泥熟料要求。一般水泥熟料中的CaO为60%~66%,SiO2为19%~23%,Al2O3为4%~7%,Fe2O3为3%~5%。

目前生产硅酸盐水泥熟料的原料主要有石灰质原料、粘土质原料和辅助原料三大类。石灰质原料的种类有石灰岩、大理岩、泥灰岩、白垩等,以石灰岩应用最广泛。粘土质原料包括地壳表层的风化沉积物如粘土、黄土等,也包括了已经硬结成岩的页岩、泥岩等。其总的特点是组成物质以粘土矿物为主,其含量一般大于50%。化学成分上w(SiO2)56%~70%,w(Al2O3)12%~16%,w(Fe2O3)4%~8%。它是水泥熟料所需SiO2, Al2O3和Fe2O,的主要来源。是制造硅酸盐水泥不可缺少的主要原料之一。辅助原料在水泥生产中,有些用量较少,但对提高产品质量,改善操作条件,保证正常生产起着良好作用的原料。

熟料中的有害杂质为MgO,K2O,Na2O,SO3,fSiO2等。

氧化镁主要来源于灰质原料中的白云石,煅烧后以方镁石存在于熟料中,制成水泥后,与水作用形成氢氧化镁,并引起水泥的体积膨胀,降低了水泥的强度,甚至引起构件的破坏。所以,国家标准规定,熟料中氧化镁的含量不得超过5%。氧些钾及氧化钠主要来源于粘土原料中的云母及长石等矿物。它们能与熟料中的硅酸二钙和硅酸三钙起化学反应,生成游离的氧化钙,降低了水泥质量,故要求熟料中氧化钾和氧化钠的总含量不得超过1.3%。三氧化硫能与氧化钾和氧化钠反应生成硫酸盐,影响到制成水泥的安定性,含量多时,在煅烧过程中易引起结窑,影响正常生产,故规定其含量不得超过1.5%。游离二氧化硅主要为燧石及石英颗粒,因其硬度大,难粉磨,而且化学活泼性差,增加了煅烧的困难,所以灰质原料中限定其含量不超过4%。粘土质原料中含砂量一般要求不超过5%,最多不超过10%。

在水泥生产中,只有通过调整水泥生料中各种原料的配比,以获得所需要的化学成分,才能控制熟料中各种矿物成分的含量。生产实践中是通过对以下几个系数的计算,以求得合理的原料配比。

(1)饱和系数(KH

是指石灰质饱和系数,也叫石灰质饱和比。它是反映熟料中的二氧化硅被氧化钙所饱和的程度,即熟料中所含氧化钙的总和,扣除满足三氧化二铝、三氧化二铁、三氧化硫形成铝酸三钙、铁铝酸四钙和硫酸钙所需要的氧化钙以后,剩余的氧化钙,如果能满足熟料中二氧化硅全部形成硅酸三钙,则饱和系数应为1,如果只能满足二氧化硅全部形成硅酸二钙,则饱和系数等于0.66,如果饱和系数大于1,说明熟料中二氧化硅全部形成硅酸三钙后,尚有游离的氧化钙存在;如果饱和系数小于0,66,说明熟料中氧化钙严重不足,有游离二氧化硅存在。水泥配料中要求控制饱和系数在0.85~0.92。即

非金属矿产地质与勘查评价

实际上KH值是控制熟料中硅酸三钙与硅酸二钙两种矿物的含量比例。当饱和系数超过0.92趋近于1时,说明熟料中硅酸三钙过多,它的早期强度高,凝结硬化快,但烧成较困难,如果饱和系数小于0.85趋近于0.66时,说明熟料中硅酸二钙过多,它制成的水泥凝结硬化慢,早期强度较低,而且熟料冷却不迅速时,易产生粉化现象,严重影响水泥质量。

(2)硅酸率(n)

硅酸率简称硅率,是熟料中二氧化硅与三氧化二铝及三氧化二铁总和的比值,它实际上反映了熟料中硅酸盐矿物与熔媒矿物的相对含量关系。硅酸率大,说明熟料中硅酸盐矿物较多,制成的水泥强度较大,但煅烧困难。如果硅酸率较小,说明熟料中熔媒矿物较多,熟料较易烧成,但制成的水泥强度较低,质量较差。一般要求硅酸率控制在1.8~2.5之间较为适宜,即

n=SiO2/(Al2O3+Fe2O3)=1.8~2.5

(3)铝氧率(ρ)

铝氧率也叫铁率,是熟料中三氧化二铝与三氧化二铁的比值,它代表了熟料中铝酸三钙与铁铝酸四钙两种熔媒矿物的相对含量关系。铝氧率高,说明熟料中铝酸三钙相对较多,这种熟料制成的水泥凝结硬化较快,但煅烧熟料时黏性大,操作困难。铝氧率低,熟料中铁铝酸四钙相对较多,煅烧比较容易,但制成的水泥凝结硬化较慢,强度较低。一般要求控制铝氧率在1.0~1.8的范围内较为合适。即

ρ= Al2O3/Fe2O3=1.0~1.8

在对作为水泥原料的石灰岩矿床进行评价时,除按照规范要求对其质量进行评价外,还需要注意结合水泥生产对原料的总体要求进行评价,特别是水泥灰岩原料紧缺地区,应加强对有害组分含量较低的泥质灰岩的综合评价,通过调整水泥生产时的配料,使其能满足水泥生产的要求。

七、石灰岩矿床地质经济技术评价要点

石灰岩矿床的地质勘查评价工作主要是在区域地质调查的基础上进行,它实质上是将踏勘中发现的各个石灰岩矿点进行比较,根据不同的用途和要求,本着先易后难,先近后远的原则,选择经济技术条件较好的石灰岩矿床作为下一步工作的重点。在石灰岩矿床的地质勘查工作中应注意下列问题。

(1)矿点选择

这是一项综合性的技术经济工作。矿点选择是否合理,关系到地质工作及建厂后的经济效益。在一个建厂的区域内有一个以上可供选择的矿点时,应本着先易后难,全面衡量,保证矿石质量数量与开采条件最为有利的原则进行比选。交通条件和矿区地形是选点时必须考虑的问题,在当前技术经济条件下,石灰岩矿床应在通航河道两侧或在铁路沿线20km的范围内,以便于矿石及其制品的运输,降低成本。由于石灰岩矿床易于风化溶蚀,一般地形比较复杂,这样,矿床的地形条件就关系到能否被开采利用,因此,选点时必须考虑前矿床开采时采场的安排,厂房的修建场地等因素。另外,还必须注意石灰岩的用途。不同的用途,对石灰岩的质量、产状、规模、形态、硬度、花纹甚至工作方法都有不同的要求。如选择溶剂用石灰岩的原料基地时,应偏重于厚度大,岩石成分均匀的石灰岩矿床,只要它能供给大批开采而不需加以选分,镁含量可稍高一些。选择水泥用石灰岩时,纯灰岩矿床最为理想,石灰岩和白云岩互层时.由于需剔除白云岩层,对矿床开采不利。厚度小而倾角陡的石灰岩层一般不宜做大型的原料基地,但当石灰岩质纯,开采条件好时,可做电石用石灰岩开采。具有一定层理和节理的石灰岩矿床有利于开采石材,坚硬的结晶石灰岩宜做建筑用碎石,在评价饰面用石灰岩时,最重要的因素是石灰岩的颜色、花纹、裂隙、节理的形态和大小。

(2)白云岩化问题

这是水泥用石灰岩矿床勘查地质工作中的一个重要问题,它影响石灰岩矿床评价及开采利用。如四川江油天井山石灰岩矿山,在地质勘查初期阶段由于对白云岩化问题不够重视,经深入勘探后发现白云岩化使矿床复杂化,以至不能开发利用,浪费了勘查投资。

(3)岩溶

岩溶是石灰岩矿床的特殊问题,必须注意研究。对岩溶发育的矿床要用各种手段如物探、钻探来摸清大型溶洞的位置和大小,了解一般溶洞的大小,形态、充填情况及其分布规律,统计岩溶系数,以判断岩溶对矿床开采的影响程度,以免造成不应有的损失。如武山吉子坪石灰岩矿床,因对岩溶没有足够的重视,一个规模达33万m3的溶洞没有被发现,致使采准工作面200余m 无法正常采矿,被迫再行补充勘探,修改采矿设计。可见,岩溶研究是勘查石灰岩矿床的一项不可忽视的工作。

(4)综合利用

石灰岩是一种多用途的工业岩石,在地质勘查评价时,一定要注意综合评价,综合利用,以提高矿床的工业价值,最大限度地利用矿产资源。

(5)矿床经济评价

影响石灰岩矿床经济评价的因素主要为质量、开采技术条件、运输条件和储量。石灰岩质量是矿床评价的前提。不同用途的石灰岩对质量要求不同,如石灰岩中由于磷或硫含量过高,不宜用于冶金熔剂,但却是烧石灰的优良原料。不适合生产水泥的石灰岩,却可能完全符合建筑工业的要求如做毛石等。因此,必须根据需要来确定石灰岩的质量是否合乎要求,从而对矿床做出评价。

开采技术条件是矿山能否经济合理地被利用的前提。有的白灰岩的量很大,质也很好,但由于开采技术条件不符合要求而难以作为矿床来加以开采。对石灰岩来讲,过厚的覆盖层、过厚的夹层、过多的侵入体而导致局部剥采比过大或总剥采比过大是矿山不能利用的最主要原因。另外,过分发育并有粘土充填的岩溶洞隙,影响机械化开采,巨大的溶洞不但影响采矿的作业,而且可能引起机械和作业人员的突然陷落事故。地形也影响到矿床评价,陡峻山区的石灰岩层,由于采场展开及场内运输等困难,也不能作为石灰岩矿床来开采。我国目前大都采用露天法开采石灰岩,因此,地面下埋深过大的石灰岩也难以成为矿床。

交通运输条件是石灰岩矿床的一个极为重要的评价因素。以水泥石灰岩为例,由于石灰石矿石和水泥都是廉价而需要量大的产品,所以水泥厂都建于矿山近旁,尽量减少内部运输距离以降低生产成本。工厂生产的水泥,必须就近运往销售市场,并且运输的价格要便宜。因此水泥厂必须靠近通航江河或铁路愈近愈好,以免修筑过长的运水泥专用铁路线或人工河渠,增加基建投资。

储量的多少影响矿山和水泥厂的规模,因而也影响机械装备和采矿成本。储量大,矿山开采的年限长,工厂企业的规模也大,矿山的机械化程度相应也高,采矿成本就低。就水泥石灰岩而言,在我国一般要求大中型矿山的服务年限为50年,小型矿山的服务年限为30年。

7. 页岩气储层矿物组分及有机碳含量测井评价方法研究——以鄂西渝东建南构造东岳庙段为例

路 菁1,2 李 军1

(1.中国石化石油勘探开发研究院,北京 100083;

2.中国石油大学(北京)博士后流动站,北京 102249)

摘 要 鄂西渝东地区下侏罗统为四川盆地典型的陆相页岩气藏,储层矿物组分及有机碳含量是确定该类气藏工程开采难度与有效性的重要指标。为突破常规储层测井评价方法在复杂矿物储层评价中存在的多解性问题,本研究充分挖掘常规测井资料中蕴含的地质信息,以非线性反演与最优化算法为核心思想,综合评价包含有机碳在内的页岩岩石组分与含量,取得了较好的测井评价结果。研究结果完善了页岩气储层测井评价手段,为推进页岩气勘探开发相关技术发展起到了积极的作用。

关键词 常规测井响应 矿物组分 有机碳含量 非线性反演 最优化方法 测井评价

Logging Evaluation of Mineralogical Constituent and

Total Organic Contents for Gas Shale

LU Jing1,2,LI Jun1

(1.Exploration and Proction Research Institute,SINOPEC,Beijing 100083,China;

2.Postdoctoral Center,China University of Petroleum,Beijing 102249,China)

Abstract Formation of lower Jurassic in the western Hubei and East Chongqing is an typical continental facies shale gas reservoir in Sichuan Province.The mineral constituents and total organic contents(TOC)are important indicator of the engineering difficulty and its effectiveness for such gas reservoir.To breakthrough the problem of multi -solutions,that always occur when the conventional reservoir logging evaluation methods are used to solve the gas shale reservoir evaluation,this study fully tap the geological information concealed in conventional logging response,use the nonlinear joint inversion and optimization as the core ideas,to evaluate both the mineralogical constituent contents and TOC for gas shale,and achieve a desirable result .This research supplements the logging evaluation methods for gas shale and play a positive role in related technology developments for gas shale exploration and development.

Key words conventional logging;mineralogical constituent;TOC;nonlinear joint inversion;optimization; logging evaluation

鄂西渝东地区是四川盆地周缘页岩气藏有利目标区之一。建南构造位于四川盆地川东褶皱带石柱复向斜中北部,下侏罗统自流井组发育的深湖-半深湖页岩属于典型的陆相页岩气藏。该套页岩区域分布稳定、厚度大、埋藏浅,但相较于海相页岩具有更加频繁的相变特征,储层矿物组分复杂多变。准确把握页岩气储层矿物组分与有机碳含量是后续储层关键参数——脆性与含气性评价的重要基础,也是页岩气测井评价亟待攻克的重点及难点问题。依靠固定的解释模型,采用少部分测井曲线确定储层矿物含量的评价方法,在岩性及矿物较为单一的常规储层中评价效果较好,却无法妥善解决页岩气储层复杂矿物组分与含量的多解性问题。笔者通过深入挖掘各项常规测井资料中蕴含的丰富地质信息,分析建立储层矿物组分模型,以非线性反演与最优化算法评价包含有机碳在内的复杂岩石组分含量,突破了常规测井储层评价的思想,拓展了非常规页岩气储层矿物组分与有机碳含量的测井评价方法,通过实验室岩心全岩组分数据验证,该方法已取得了较好的评价效果。

1 东岳庙段含气页岩岩性及岩石矿物学特征

目标层下侏罗统自流井组东岳庙段泥页岩,区域横向分布稳定,厚度较大,暗色泥页岩厚约60~100m。储层岩性以含灰泥页岩为主,多见灰色粉砂质泥页岩、介壳泥页岩与介壳灰岩夹层(图1);储层矿物成分以黏土矿物、石英及方解石为主(平均含量分别为22.49%、55.95%、17.5%),同时含有少量长石与黄铁矿。自生矿物的存在,表明东岳庙段所处的沉积环境为有利于有机质富集与保存的还原环境,实验室分析结果显示,储层有机碳以Ⅱ型干酪根为主,平均含量2%~3%;储层孔隙结构以矿物粒间孔为主,同时发育少量粒内孔及溶蚀裂隙,大量因有机质热解产生的纳米孔隙,使储层具有较好的天然气吸附与储集性能。

图1 研究区东岳庙段泥页岩典型岩性

2 常规测井响应评价储层岩石组分

测井响应是被测地层物理特性的宏观表现[1],在排除井眼与泥浆侵入等影响的情况下,测井响应本质是测井仪器探测范围内所有岩石微观组分物理特性的综合表现,故各类测井响应实际上涵盖了被测地层所有组分的岩石物理信息。充分挖掘、利用常规测井响应中蕴藏的储层信息评价页岩岩石组分,提供了一条除实验室分析和元素俘获能谱(ECS)测井之外的储层评价思路,同时,弥补了岩心实验室分析无法全井段连续、ECS测井数据采集与解释评价成本高昂等问题[2,3]

2.1 常规曲线非线性联合最优化反演算法

2.1.1 目标函数

区别于利用单一或少数测井曲线与储层某一矿物含量建立函数关系、用以评价其含量的方法,利用常规测井信息开展非线性联合最优化反演评价储层矿物组分的方法与步骤,可简要概括如下:首先,需要对实测响应进行预处理,以期得到接近原始储层真实物理特性的校正测井响应;其次,依据岩心观察与常规评价结果得到的初步认识,圈定解释评价井段内存在的岩石组分类型,并确定其初始含量,形成完整的基于原始假设的储层岩石物理体积模型;再次,依据地区经验或理论参数合理选取各组分的测井响应骨架值,以非线性测井响应方程正演各个常规测井响应,并计算关于校正曲线与正演模拟曲线如式(1)所示的目标函数T(Xj);最后,通过反复迭代调整各矿物组分含量,使目标函数T(X)达到最小值,并将此时的岩石组分与含量模型作为反演的最终结果,即通过解决图2所示的最优化问题,达到求解复杂矿物储层岩石组分与含量问题的目的[4]

油气成藏理论与勘探开发技术(五)

图2 非线性联合最优化反演算法简图

式中:loggings为第j次迭代后产生的正演曲线组;loggingc为实测曲线经校正产生的校正曲线组;Xj为第j次迭代确定的各个岩石组分含量;W为各测井曲线在目标函数中的权重;α为迭代稳定性控制参数;T(Xj)为反映正演曲线与校正曲线相似程度的目标函数,当该函数达到最小值时,表明正演曲线已逼近校正曲线,此时,即可认为模型求解得到的岩石组分与含量与地层真实情况最为接近。需要说明的是,采用更丰富的测井响应信息,以及岩心分析、常规储层评价取得的地层初步认识等,能够在更大的程度上降低反演算法的多解性。

2.1.2 共轭梯度最优化算法

从上述分析可知,求解页岩复杂岩石组分的测井评价问题,已被转化为求解目标函数T(Xj)最小值的最优化问题。本研究综合考虑目标函数属于多元函数,且测井响应的非线性关系决定了目标函数的非线性特性,故采用共轭梯度法解决目标函数的最优化问题[5]

对目标函数T(Xj),在极值点X*处作Taylor展开,忽略高效项时,有

油气成藏理论与勘探开发技术(五)

式中:H=▽2T(X*)为T(X)在X*处的二阶偏导数矩阵。因为X*为极值点,故▽T(X*)=0,因而

油气成藏理论与勘探开发技术(五)

可见,任何次的函数T(X)在其极值点附近具有二次函数的特征。设T(X)可以表示为如下所示二次函数

油气成藏理论与勘探开发技术(五)

可以证明具有N阶正定矩阵A的n元二次函数,最多可在n维空间中找到n个彼此关于A的共轭方向(向量),且从任意的初始点出发,依次沿这n个共轭方向作不超过n次的一维搜索,就可以求得目标函数T(X)在n维空间内的极小点。采用上述共轭梯度算法回避了因牛顿法及其改进算法需要计算二阶偏导数矩阵的逆矩阵而带来的巨大运算量,且克服了最速下降法在接近极小点时收敛速度很慢的缺陷,妥善地解决了研究建立的非线性反演算法的求解问题。

2.2 东岳庙段页岩岩石组分反演

2.2.1 初始模型假设

图3为研究区某井东岳庙段泥页岩常规测井响应,该井含气页岩岩石组分评价的目的在于,明确包括有机碳在内的岩石重要组分的具体含量。初始模型假设的建立,需要分别确定待求解的储层岩石组分及其初始含量,以及参与岩石组分评价的测井曲线。

依据上节所述实验室全岩分析结果(图3),初始模型假设页岩中不存在除干酪根之外的其他固体有机碳;脆性矿物包括石英、方解石、长石,塑性矿物即为黏土;另外,由于相关研究表明,页岩成岩过程中自生的黄铁矿常结晶于储层层理界面之间,在一定程度上有利于水力压裂形成网状缝,且黄铁矿物具有极好的导电特性、极高的光电俘获截面指数以及较高的密度,即使含量较小,对电阻率、光电截面指数与体积密度等测井响应的影响也十分明显,因此,作为影响页岩力学性质与岩石物理特性的重要矿物,黄铁矿在岩石组分模型中不可忽略;最后,由于该段泥页岩黏土矿物含量较高、有效孔隙度较低,且地层水矿化度不高,自由水对测井响应影响不大,故模型仅考虑黏土束缚水存在且假设页岩储层有效孔隙全部被游离气占据的情况。综合上述考虑,最终确定该井东岳庙段泥页岩需要反演计算的岩石组分如图4所示,依次包含黏土(含黏土束缚水)、石英、方解石、长石、黄铁矿、孔隙(游离气)与有机碳(干酪根)。

图3 建南地区某井东岳庙段泥页岩常规测井响应特征与岩心分析结果

图4 页岩岩石体积模型

综合考查本井可参考的测井曲线条数,以及上述页岩岩石体积模型需要涵盖的组分种类,确定利用光电截面指数(PEF)、自然伽马(GR)、中子孔隙度(NPHI )、体积密度(DEN)、声波时差(DT)、浅侧向电阻率(LLS)、深侧向电阻率(LLD)、铀(URAN)、钍(TH)共9条曲线(图3),反演8种岩石(图4中)组分的含量。可以注意到,如不考虑欠定求解,参加非线性反演的测井曲线条数理论上最多可处理10种岩石组分含量的求解问题,此数大于本模型求解的岩石组分数量,故模型求解结果属于非线性超定解,能够有效降低评价结果的多解性,确保评价结果更加接近页岩气储层的真实情况。

依靠常规储层评价方法,如自然伽马泥质含量Vsb评价方法[6]、密度中子孔隙度Phi评价方法[7]、Pessay有机碳TOC含量评价方法等[8],可以取得黏土、孔隙度、干酪根含量的初步评价结果,对本井岩石组分初始含量 进行赋值, 剩余组分的初始含量——石英含量 根据实验室岩心分析确定的平均含量(石英55.9%、方解石17.5%、长石7.2%、黄铁矿4.5%)按比例分配,结果如图5第2~8道内实线所示。可以注意到,各岩石组分初始含量(棕色实线)与岩心分析结果(黑色圆点)相比,均存在不同程度的偏差。其中方解石、长石两种矿物含量的偏差最为明显;利用中子-密度孔隙度评价的孔隙度结果也明显偏高;此外,利用自然伽马泥质含量评价方法计算的黏土矿物含量,以及电阻率-声波重叠Passey法计算的有机碳含量,在局部深度上还存在一定误差。本研究将通过随后的反演计算逐步降低这些误差,以得到最接近真实地层岩石组分的评价结果。

图5 建南地区某井东岳庙段泥页岩非线性反演初始模型

2.2.2 模型反演结果

经过非线性反演计算,最终确定该井岩石组分的含量如图6所示,图中第2~8道依次为黏土矿物(含黏土束缚水)、石英、方解石、长石、黄铁矿、孔隙及有机碳含量的评价结果(实线)与对应组分实验室分析结果(黑色圆点),图中第9与第10道分别为页岩岩石组分非线性反演结果与岩心实验室分析结果。

图6 建南地区某井东岳庙段泥页岩岩石组分非线性反演成果图

通过图7各组分初始评价结果(黑色方块)与非线性反演计算结果(三角)的对比分析可以发现,非线性反演结果与实验室分析结果具有更好的线性相关性,与初始评价结果相比更集中于45°对角线附近。图6与图7均显示,非线性反演算法显著提高了石英与方解石含量的评价精度;使孔隙度评价结果更加接近实验室分析结果;此外,黏土矿物与有机碳含量各自在局部位置上的误差也得到了较好的修正;在初始模型中,以平均含量为依据粗略估算的长石与黄铁矿含量,这里也得到了进一步细化,评价结果与实验室分析结果在整体趋势上更为吻合。至此,本研究利用建立的非线性反演方法,同时完成了研究区东岳庙段页岩气储层复杂矿物组分与有机碳含量测井评价两个问题,且取得了较高的评价精度,本研究将进一步定量分析测井评价结果,以验证该方法的可靠性与有效性。

2.2.3 非线性反演结果分析

考虑到各项实测测井响应其本质是被测储层岩石组分反映在各类物理场中的宏观物理特性,因此,为验证非线性反演算法及其反演结果的可靠性与有效性,本研究同时分析了非线性反演结果并在反演结果下模拟了测井响应的误差。

图8展示了非线性反演结果下的模拟测井响应(虚线)与环境校正后的测井响应(黑色实线),涉及的测井项目依次为自然伽马GR、铀Uran、钍Th、中子孔隙度Nphi、体积密度DEN、宏观截面指数U、声波时差DT、冲洗带电导率CXO与原状地层电导率CT。从两组测井响应的对比看,非线性反演结果下的模拟测井响应与实测测井响应具有良好的一致性。表1中定量评分析了两组测井响应间的相关系数,各项测井响应的相关系数在0.867~0.996之间,相关系数均值达到0.921,充分反映了反演结果下的岩石组分宏观物理特性与真实储层物理特性的相似性,即说明通过非线性反演得到的岩石组分及其含量已十分接近页岩气储层的实际情况。此外,以实验室分析结果为标准,表2分别统计分析了图8中初始评价结果与非线性反演结果对实验室结果的相关系数,两组相关系数的对比可以说明,本研究建立的非线性反演算法明显提高了页岩各岩石组分评价的精确度。因此,上述两方面分析充分证明,本研究建立的非线性反演算法在解决页岩储层复杂岩石组分与含量评价问题方面的可靠性与有效性。

该方法能够同时解决页岩气储层岩石矿物组分与有机碳含量评价的两大问题,这两项问题的顺利解决对于后续储层脆性、吸附气含量等重要储层参数评价提供了科学的依据与技术保障。

图7 页岩岩石组分初始评价结果与非线性反演计算结果对比

表1 模拟测井响应与实测响应相关系数

图8 建南地区某井东岳庙段泥页岩复杂岩石组分反演质量控制

表2 初始评价及非线性反演评价较岩心分析结果的相关性对比

3 结论

本研究以非线性反演与最优化算法为核心思想建立的页岩气储层岩石组分测井评价方法,在鄂西渝东建南构造东岳庙段的页岩气储层评价中取得了较好的评价效果。该方法充分挖掘了常规测井资料中蕴含的丰富地质信息,同时解决了页岩储层重要矿物与有机碳含量评价两大问题,弥补了岩心分析深度不连续、ECS测井代价高昂的弊端,且极大地提高了测井评价结果的精度,为后续储层脆性与含气性的综合评价提供了科学的依据与重要的技术保障。

参考文献

[1]洪有密.测井原理与综合解释.东营:石油大学出版社,1993:1 ~365.

[2]Pemper R R,Sommer A,Guo P,et al.A new pulsed neutron sonde for derivation of formation lithology and mineralogy.SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,2006:1~13.

[3]Sondergeld C H,Newsham K E,Comisky J T,et al.Petrophysical considerations in evaluating and procing shale gas resources.SPE Unconventional Gas Conference,Pittsburgh,Pennsylvania,USA,2010:1~34.

[4]Heidari Z,Torres-Verd C,Preeg W E.Quantitative method for estimating total organic carbon and porosity,and for diagnosing mineral constituents from well logs in shale-gas formations.2011:1 ~15.

[5]雍世和.最优化测井解释.东营:石油大学出版社,1995:87~119.

[6]潘仁芳,伍媛,宋争.页岩气勘探的地球化学指标及测井分析方法初探.中国石油勘探.2009,3:6~28.

[7]朱华,姜文利,边瑞康,等.页岩气资源评价方法体系及其应用——以川西坳陷为例.天然气工业.2009,29(12):130~134.

[8]Passey Q R,Creaney S,Kulla J B,et al.A practical model for organic richness from porosity and resistivity logs.AAPG Bulletin.1990,74:1777~1794.

8. 金矿床工业指标

工业指标是评价矿床的工业价值、圈定矿体、估算矿产资源/储量的标准和依据。工业指标因矿产地质特征不同而有较大差别。具体矿床的工业指标应单独编制。详查、勘探地质报告所采用的工业指标则应在其勘查工作中,通过多个方案进行经济技术比较确定。

工业指标也是变数,是诸多因素(地质、科技、经济、社会等)的函数。例如,紫金山金矿1992年提交详查储量5.45t,平均品位4.24×10-6。1997~1999年通过扩大生产规模,用堆浸法选矿,改为露天开采,调整工业指标(边界0.5×10-6,工业1.0×10-6),这样一来,该金矿由原40多个小矿变为一个巨大矿体,可供利用储量达138.2t(平均品位1.23×10-6),成为超大型金矿床(王科强等,2008)。

金矿预查、普查资源量估算可参照国家标准来确定。

岩金工业指标参考表1-6,岩金矿共生(铜、铅、锌)矿产工业指标一般要求见表1-7,岩金矿伴生组分评价参考表1-8。

表1-6 岩金矿工业指标参考表

表1-7 岩金矿共生(铜、铅、锌)矿产工业指标

表1-8 岩金矿伴生组分评价参考

9. 岩矿光谱数据

多年来使用红外智能光谱仪(IRIS)对大量的岩矿样品进行了野外和实验室光谱特性测试,并对岩矿光谱的特性、形成机理以及光谱特征数据处理分析与应用有一定程度的认识和理解,为本次深入研究岩矿光谱特性及其变异性分析奠定了基础。在此基础上,对新疆东天山试验区、山东招远试验区进行了野外(ASD FR-Pro光谱仪)和室内(IRIS)的岩矿光谱测试分析,同时也利用河北张家口的崇礼-赤城地区的岩矿样品进行了光谱测试分析。使用了美国地质调查局(USGS)和美国宇航局(NASA)喷气推进实验室(JPL)的标准矿物光谱数据库。

热点内容
zcb矿机 发布:2025-07-12 19:11:25 浏览:505
游族网络是不是元宇宙 发布:2025-07-12 19:07:07 浏览:235
6月21日数字货币监管政策 发布:2025-07-12 19:06:18 浏览:217
BTC是以下哪个的简称 发布:2025-07-12 18:56:25 浏览:646
区块链运用新闻 发布:2025-07-12 18:56:23 浏览:633
矿池动池 发布:2025-07-12 18:56:15 浏览:13
元宇宙奇点大爆炸 发布:2025-07-12 18:39:04 浏览:698
比特币pc被st 发布:2025-07-12 18:20:16 浏览:228
s9蚂蚁矿机上网流量 发布:2025-07-12 18:18:33 浏览:40
南京有没有矿机机房 发布:2025-07-12 18:15:53 浏览:647