ltc2263應用電路
1. 測試CPU主供電、核心電壓、問題
主板維修一般不涉及cpu核心供電影響開機的情況也是不會測的。一般會先歸結故障原因和類型來排查。cpu核心供電只是供電電路故障維修的一部分。一般檢測需要上cpu假負載用萬用表測量,如果幾個監測點電壓符合就說明cpu核心供電具備。另外電源管理晶元有很多型號,一般是在橋或電源附近長條型20腳左右的貼片晶元。
2. 低壓差線性穩壓器設計原理與應用的目錄
前言
第一章低壓差線性穩壓器概述
第一節低壓差線性穩壓器的術語
第二節線性穩壓器的原理及內部保護電路
一、線性穩壓器的原理
二、線性穩壓器的內部保護電路
第三節線性穩壓器典型產品的原理及典型應用
一、三端固定式穩壓器的原理及典型應用
二、三端可調式穩壓器的原理及典型應用
第四節低壓差線性穩壓器的原理
一、PNP型低壓差線性穩壓器(LDO)的原理
二、准低壓差線性穩壓器(QLDO)的原理
三、超低壓差線性穩壓器(VLDO)的原理
第五節低壓差線性穩壓器的主要特點及產品分類
一、低壓差線性穩壓器的主要特點
二、低壓差線性穩壓器的產品分類
三、低壓差線性穩壓器與其他穩壓器的性能比較
第六節低壓差線性穩壓器的應用領域及典型用法
一、低壓差線性穩壓器的應用領域
二、低壓差線性穩壓器的幾種典型用法
第七節低壓差線性穩壓器的選擇方法及使用注意事項
一、低壓差線性穩壓器的選擇方法
二、低壓差線性穩壓器的使用注意事項
第八節低壓差線性穩壓器典型產品的主要技術指標
第二章低壓差線性穩壓器設計軟體使用方法及設計實例
第一節低壓差線性穩壓器設計軟體的分類
第二節LDO-It設計軟體的工具欄及使用方法
一、LDO-It設計軟體的工具欄
二、LDO-It設計軟體的使用方法
第三節LDO-It設計軟體的應用實例
第四節利用WEBENCH軟體在線選擇低壓差線性穩壓器的方法
第三章低壓差線性穩壓器的原理與應用
第一節LM1117型准低壓差線性穩壓器
一、LN1117型准低壓差線性穩壓器的原理
二、LM1117型准低壓差線性穩壓器的應用
第二節SPX1117型准低壓差線性穩壓器
一、SPX1117型准低壓差線性穩壓器的原理
二、SPX1117型准低壓差線性穩壓器的應用
第三節LP2950/2951型低壓差線性穩壓器
一、LP2950/2951型低壓差線性穩壓器的原理
二、LP2951型低壓差線性穩壓器的應用
第四節LM2990/2991型負壓輸出式低壓差線性穩壓器
一、LM2990/2991型低壓差線性穩壓器的原理
二、LM2990型低壓差線性穩壓器的應用
三、LM2991型低壓差線性穩壓器的應用
第五節MIC68200型具有排序與跟蹤功能的低壓差線性穩壓器
一、MIC68200型低壓差線性穩壓器的原理
二、MIC68200型低壓差線性穩壓器的應用
第六節其他低壓差線性穩壓器的典型應用及使用技巧
一、LM2937型低壓差線性穩壓器的典型應用
二、MIC2941A型低壓差線性穩壓器的典型應用及使用技巧
三、NCV8675型低壓差線性穩壓器的典型應用
四、NCP1086型低壓差線性穩壓器的使用技巧
第四章超低壓差線性穩壓器的原理與應用
第一節TC10XX/20XX系列高精度超低壓差線性穩壓器
一、TC10XX/20XX系列超低壓差線性穩壓器的性能特點
二、TC10XX/20XX系列超低壓差線性穩壓器的原理與應用
三、使用注意事項
第二節MCP17XX/18XX系列高精度超低壓差線性穩壓器
一、MCP17XX/18XX系列超低壓差線性穩壓器的性能特點
二、MCP1700/1702超低壓差線性穩壓器的原理與應用
三、MCP1725/1726/1727/1827/1827S超低壓差線性穩壓器的原理與應用
第三節SP62XX系列超低壓差線性穩壓器
一、SP62XX系列超低壓差線性穩壓器的性能特點
二、SP6200/6201型超低壓差線性穩壓器的原理與應用
三、SP6203/6205型超低壓差線性穩壓器的原理與應用
第四節TPS73XX系列具有延時復位功能的超低壓差線性穩壓器
一、TPS73XX系列超低壓差線性穩壓器的性能特點
二、TPS73XX系列超低壓差線性穩壓器的原理
三、TPS73XX系列超低壓差線性穩壓器的典型應用
第五節MAX483X系列具有軟啟動功能的超低壓差線性穩壓器
一、MAX483XX系列超低壓差線性穩壓器的原理
二、MAX483XX系列超低壓差線性穩壓器的典型應用
第六節HT71XX/72XX系列高輸入電壓的超低壓差線性穩壓器
一、HT71XX/72XX系列超低壓差線性穩壓器的原理
二、HT71XX系列超低壓差線性穩壓器的應用技巧
第七節其他超低壓差線性穩壓器的原理與應用
一、MAX1735型超低壓差線性穩壓器的原理與應用
二、MAX5005型超低壓差線性穩壓器的原理與應用
三、LP38851型超低壓差線性穩壓器的應用
第五章多路輸出式超低壓差線性穩壓器的原理與應用
第一節雙路輸出式超低壓差線性穩壓器
一、TC1301/1302系列雙路輸出式VLDO的原理
二、TC1301/1302系列雙路輸出式VLDO的典型應用
第二節三路輸出式超低壓差線性穩壓器
一、MIC2215型三路輸出式VLDO的原理
二、MIC2215型三路輸出式VLDO的典型應用
第三節一次性可編程四路輸出式超低壓差線性穩壓器
一、AS1352型可編程四路輸出式VLDO的原理
二、AS1352型可編程四路輸出式VLDO的典型應用
第四節帶串列介面的可編程五路輸出式超低壓差線性穩壓器
一、MAX1798/1799型帶串列介面的五路輸出式VLDO的原理
二、MAX1798/1799在CDMA數字行動電話中的應用
三、MAX1799的評估板及專用工具軟體
第五節其他多路輸出式低壓差、超低壓差線性穩壓器的原理與應用
一、LM2935型雙路輸出式LDO的原理與應用
二、CAT6221型雙路輸出式VLDO的原理與應用
三、LP2966型雙路輸出式VLDO的原理與應用
四、R5320X系列三路輸出式VLDO的原理與應用
第六章大電流輸出式低壓差線性穩壓器的原理與應用
第一節1.5A低壓差、超低壓差線性穩壓器
一、MSK5101型1.5A大電流LDO的原理與應用
二、LTC3026型升壓變換式1.5A大電流VLDO的原理與應用
第二節3A低壓差、超低壓差線性穩壓器
一、LP38501-ADJ/38503-ADJ型3A大電流VLDO的原理與應用
二、SPX1582型3A大電流LDO的原理與應用
第三節適用於USB系統的3A低壓差線性穩壓器
一、MIC29311型3A大電流LDO的原理
二、MIC29311型3A大電流LDO的典型應用
第四節5A低壓差線性穩壓器
一、LMS1585A型5A大電流LD0的典型應用
二、DF1084型5A大電流LDO的典型應用
三、SPX1585型5A大電流LDO的典型應用
第五節7.5A/8A低壓差線性穩壓器
一、MIC2971X/2975X系列7.5A大電流LDO的原理與應用
二、SPX1584型8A大電流LDO的典型應用
第七章特種低壓差線性穩壓器的原理與應用
第一節高壓輸入式低壓差線性穩壓器
一、MAX8718/8719型28v高壓輸入式LDO的原理與應用
二、LT3012/3014型80V高壓輸入式LDO的原理與應用
第二節具有峰值電流輸出能力的低壓差線性穩壓器
一、MIC5216型具有峰值輸出能力的LD0的原理與應用
二、峰值電流輸出的應用實例
第三節單路輸出式低壓差和超低壓差線性穩壓控制器
一、LT1123型低壓差線性穩壓控制器的原理與應用
二、MIC5156型超低壓差線性穩壓控制器的原理與應用
第四節多路輸出式超低壓差線性穩壓控制器
一、MAX8563/8564型超低壓差線性穩壓控制器的原理
二、MAX8563/8564型超低壓差線性穩壓控制器的典型應用
第五節帶DC/DC變換器的復合式低壓差和超低壓差線性穩壓器
一、LTC3448型復合式低壓差線性穩壓器的原理與應用
二、TC1304型復合式超低壓差線性穩壓器的原理與應用
第六節帶超低壓差線性穩壓器的可編程鋰離子電池充電器
一、帶vIDO的可編程鋰離子電池充電器的原理
二、帶VLDO的可編程鋰離子電池充電器的典型應用
第七節LM2984/2984C型基於LDO的微處理器電源系統
一、LM2984/2984C型微處理器電源系統的原理
二、LM2984/2984C型微處理器電源系統的典型應用
第八章低壓差線性穩壓器的電路設計
第一節低壓差線性穩壓器的設計要點
一、低壓差線性穩壓器的基本類型
二、低壓差線性穩壓器電路設計要點
三、低壓差線性穩壓器的布局
四、低壓差線性穩壓器及散熱器的裝配技術
第二節低壓差線性穩壓器關鍵外圍元器件的選擇
一、輸入電容器、輸出電容器及旁路電容器的選擇
二、外部取樣電阻及電流檢測電阻的選擇
三、外部功率MOSFET的選擇
四、低壓差線性穩壓器封裝形式的選擇
第三節低壓差線性穩壓器常見故障分析
一、低壓差線性穩壓器常見故障一覽表
二、低壓差線性穩壓器常見故障分析
第四節提高低壓差線性穩壓器輸出電壓精度的方法
一、影響LDO輸出電壓精度的主要因素
二、提高LDO輸出電壓精度的方法
第五節減小浪涌電流及改善瞬態響應的方法
一、減小LDO浪涌電流的方法
二、改善LDO瞬態響應的方法
三、LDO瞬態響應的測試方法
第六節可編程低壓差線性穩壓器的電路設計
一、數字電位器的原理
二、可編程低壓差線性穩壓器的電路設計
第九章低壓差線性穩壓器的使用技巧
第一節提高低壓差線性穩壓器輸入電壓的方法
第二節利用外部雙極型晶體管擴展LDO負載電流的方法
一、MAX8863型超低壓差線性穩壓器的原理與應用
二、利用晶體管擴展MAX8863負載電流的方法
第三節利用外部場效應晶體管擴展LDO負載電流的方法
一、MIC5158型低壓差線性穩壓控制器的基本應用
二、利用場效應晶體管擴展MIC5158負載電流的方法
第四節低壓差線性穩壓器的並聯使用方法
第五節能從零伏起調的低壓差線性穩壓器應用電路
一、可調式低壓差線性穩壓器的典型應用電路
二、能實現低壓差線性穩壓器從零伏起調的兩種方法
第六節由低壓差線性穩壓器構成恆流源的方法
一、由低壓差線性穩壓器構成的簡易恆流源
二、由超低壓差線性穩壓控制器構成的恆流源
第十章低壓差線性穩壓器的應用實例
第一節低壓差線性穩壓器在計算機電源中的應用
一、對計算機電源的設計要求
二、5V/3.3V低壓差電源變換器的設計方案
三、獲取其他輸出電壓標稱值的簡便方法
四、多路輸出式低壓差線性穩壓器的設計方案
第二節低壓差線性穩壓器在攜帶型電子產品中的應用
一、對攜帶型電子產品電源的設計要求
二、減小低壓差線性穩壓器互相干擾的方法
第三節低壓差線性穩壓器在精密數控基準電壓源中的應用
一、MAX5130A的原理
二、精密數控基準電壓源的電路設計
第十一章低壓差線性穩壓器的散熱器設計
第一節散熱器的基本工作原理與安裝方法
一、LD0的工作壽命與最高結溫的關系
二、散熱器的基本工作原理
三、塑料封裝式LDO的散熱器安裝方法
第二節平板式散熱器的設計
一、平板式散熱器的設計方法
二、印製板式散熱器的設計方法
第三節成品散熱器的熱參數與熱參數計算
一、成品散熱器的熱參數
二、成品散熱器的熱參數計算
第四節大電流輸出式LDO的散熱器設計
一、大電流輸出式LDO的散熱曲線圖
二、大電流輸出式LDO的散熱器設計示例
第五節在風冷條件下的散熱器設計
一、在風冷條件下的散熱器選擇
二、散熱器的特性曲線
三、利用功率分配電阻來減小散熱器尺寸的方法
第六節不同封裝的LDO散熱器設計實例
第七節多片LDO並聯使用散熱器的設計實例
第八節設計散熱器的常用工具軟體
一、設計線性穩壓器散熱器的通用工具軟體
二、設計低壓差線性穩壓器散熱器的專用工具軟體
參考文獻
3. 誰有用USB輸出穩壓電源
USB是5v的,按USB協議標准最多可以取得100ma電流(500ma需要通過匯流排枚舉後才能得到,台式機一般不遵守這一條,但有的筆記本的確是這樣)。Vcc和GND之間濾波電容允許值是0.1uf-10uf。
升壓電路可以用mc34063,比較便宜,功率也合適,晶元資料上有一些應用電路。不過注意它用的電感是功率電感,就是繞在鐵芯上的那種。
4. 交流220V電流檢測電路,電流只有十幾個毫安,怎麼搭建電路
10幾毫安已經很大了。這種情況用互感器,體積大、一致性差。建議你採用雙向的光耦來檢測。推薦TLP620。
5. 讀懂晶元IC的datasheet
做電子設計,難免要讀datasheet,而優質的中文版可遇不可求,還是要下功夫讀懂datasheet。但是強調下,這是一篇如何讀懂datasheet的文章,而不是怎麼選擇器件的文章,選型後續再寫。
以下先從一個用過的晶元LTC3429開始,了解datasheet的整體撰寫框架,核心內容所在。
常用datasheet網站:
個人理解,第一頁是廣告頁,版面有限,把最關鍵的信息都呈現出來,同時畢竟是技術文件,不會有什麼花俏的語句,都是一些核心性能的呈現。以下兩個圖的順序是特意調換的,第一眼可能先看「典型應用」的電路。
最常用應用場景的電路圖,可以從圖中看出很多關鍵的性能了,比如:
已經把很多核心的feature呈現出來了。
看完第一頁基本知道怎麼用這個晶元了,最粗暴的,就按照typical application直接畫圖,但是為了避免踩坑,還是詳細看看後續的內容吧。
有以下要點吧:
其實pin function要好好看看,各個引腳的注意點。
以這個晶元為例,焊接了電路,SHDN拉低後,Vout死活都是2.4V左右,被逼瘋了一個星期,最後 民間葯方 搭救。
6. 如何提高差分放大器的共模抑制比這個方法要掌握
在諸多應用領域中,採用模擬技術時都需要使用差分放大器電路。例如測量技術,根據其應用的不同,可能需要極高的測量精度。為了達到這一精度,盡可能減少典型誤差源(例如失調和增益誤差,以及雜訊、容差和漂移)至關重要。為此,需要使用高精度運算放大器。放大器電路的外部元件選擇也同等重要,尤其是電阻,它們應該具有匹配的比值,而不能任意選擇。
圖 1. 傳統的差分放大器電路。
理想情況下,差分放大器電路中的電阻應仔細選擇,其比值應相同 (R2/R1 = R4/R3)。這些比值有任何偏差都將導致不良的共模誤差。差分放大器抑制這種共模誤差的能力以共模抑制比(CMRR) 來表示。它表示輸出電壓如何隨相同的輸入電壓(共模電壓)而變化。
在最佳情況下,輸出電壓不應該改變,因為它只取決於兩個輸入電壓之間的差值(最大 CMRR);但是,實際使用中情況會有所不同。CMRR 是差分放大器電路的重要特性,通常以 dB 來表示。
對於圖 1 所示的差分放大器電路,CMRR 取決於放大器本身以及外部連接的電阻。對於後者,取決於電阻的 CMRR 在本文下述部分以下標"R"表示,並利用下式計算:
例如,在放大器電路中,所需增益 G = 1 且使用容差為 1%、匹配精度為 2% 的電阻產生的共模抑制比為
在 34 dB時,CMRRR相對較低。在這種情況下,即使放大器具有非常好的 CMRR,也無法實現高精度,因為鏈路的精度總是取決於其精度最差的環節。因此,對於精密的測量電路而言,必須非常精確地選擇電阻。
實際使用中傳統電阻的阻值並不恆定。它們會受機械負載和溫度的影響。根據需求的不同,可以使用具有不同容差的電阻或匹配電阻對(或網路),其大部分使用薄膜技術製造並具有精確的比值穩定性。利用這些匹配的電阻網路(如LT5400 四通道匹配電阻網路),可以大幅提高放大器電路的整體 CMRR。 LT5400 電阻網路在整個溫度范圍內具有出色的匹配性,結合差分放大器電路使用則匹配性更佳,因而可確保 CMRR 比分立電阻提高兩倍。
圖 2. 帶有 LT5400 的差分放大器電路。
LT5400 提供 0.005% 的匹配精度,從而使 CMRRR達到 86 dB。然而,放大器電路的總共模抑制比 (CMRRTotal) 由電阻 CMRR 和運算放大器共模抑制比 CMRROP 的組合構成。對於差分放大器,可利用公式 3 計算:
例如, LT1468提供的 CMRROP 典型值為 112 dB,採用 LT5400 的增益為 G = 1,其 CMRRTotal的值為 85.6 dB。
或者,可以使用集成式差分放大器,如LTC6363。這種放大器在單晶元中內置放大器和最佳匹配電阻。它幾乎消除了上述所有問題,同樣也可提供最大精度,其 CMRR 值達 90 dB 以上。
THE END
在設計中必須根據差分放大器電路的精度要求仔細選擇外部電阻電路,以便實現系統的高性能。或者,可以使用集成式差分放大器,如在單晶元中集成了匹配電阻的 LTC6363。
7. 筆記本電腦維修教程
隨著互聯網時代的快速到來,電腦已經不知不覺地進入了我們的生活,成為不可或缺的電器設備。自從有了互聯網和電腦,我們可以在家裡買股票、購物、與人交流、工作等等。隨著人們需求的不斷增加,我們的互聯網從有限變成了無線,台式電腦逐漸變成了攜帶型筆記本電腦。電腦對我們生活的影響不言而喻。可想而知,如果壞了該怎麼辦,怎麼修。
筆記本電腦的電源系統是繼CPU、其主板、顯示屏之後的第三個關鍵部件。該系統包括電源適配器、充電電池和電源管理系統。不要以為電源適配器是高科技產品。事實上,筆記本電腦電源適配器現在已經是一個技術成熟的產品。南方一些地方的小作坊可以生產出質量相對較高的產品。筆記本電腦電源適配器雖然是低技術含量的產品,但是問題很多。除非另有說明,以下電源適配器均指筆記本電腦電源適配器。
再來看看筆者的IBM 600E筆記本電腦出故障了。最近發現筆記本電腦在使用外接電源時無法開機,但使用電池時可以流暢使用。
本著「由易到難,由外向內」的原則,筆者首先用萬用表測試了電源線,也就是圖1中的八角線。經過測試,筆者發現電源線處於開路狀態。筆者想了很多,覺得拆修這種電源線意義不大(主要是考慮到會嚴重影響電源線的外觀,破壞筆記本電腦的整體協調性),於是考慮尋找替代品,意外發現這種線和收音機上的差不多,可以說是完全通用的。所以我找了一個正常的穿上。
然而,新的問題很快又出現了。故障說明筆記本電腦經常沒電,性能時好時壞。有時,即使是機器的輕微移動也可能導致機器斷電。使用過程中,屏幕經常閃爍。綜合兩種情況,在排除液晶屏本身故障的前提下,筆者初步判定電源電路有問題,於是將目光轉向了電源適配器。一般來說,筆記本電腦中的電源電路不容易出問題,電源電路有問題,但一般問題還是出在電源適配器上。
卸下筆記本電腦電池的步驟:
1.首先從筆記本電腦上取下電池。取下筆記本電腦時,請注意電池和筆記本電腦之間的連接。
鎖緊裝置,不要用蠻力,以免損壞電池和介面。
2.觀察筆記本電腦電池外殼,看是用卡扣還是螺絲固定,確定固定方式後打開電池外殼。打開電池盒後,您可以看到內部電池單元和
電路。
3.取出電芯,發現每個電芯都是通過焊片焊接在一起的。此時此刻
計算機的拆卸已經完成。
筆記本電腦電源電路的維修步驟:
1.當筆記本電腦打開時,沒有顯示。首先,檢查電源電池。如果開機後顯示屏沒有顯示,但指示燈亮了,說明電池正常;如果電池指示燈不亮,檢查電池是很重要的。
2.電池的安裝非常重要。每台筆記本電腦都有鎖來鎖住電池。如果電池安裝不正確,有縫隙,鎖扣就不能鎖住電池。當電池正確安裝在筆記本中時
當你在這台電腦上時,鎖會自動顯示正常狀態。。
3.電池通過tZl連接到筆記本電腦上,這個介面的良好狀態是電池正常給筆記本電腦供電的主要條件。如有變形,應進行調整或更換。
4.還可以用更換的方法來判斷筆記本電池是否正常。如果故障筆記本電腦的電池安裝在同型號的其他機器上,說明電池在可以供電的情況下是好的,故障應該出現在筆記本電腦主板的電源管理模塊;如果不能供電,說明筆記本電腦無故障,通電了。
游泳池被損壞了。
如果筆記本電腦電池正常,無法開機,檢查電源開關。筆記本電腦的電源開關採用微動開關。
1、檢查電源開關電路,除了檢查電源開關的性能是否良好,還要
檢查外圍電路中的元件是否損壞。
2.如果電池可以給筆記本電腦供電,但是不能正常充電,或者電源不能正常使用。
匹配,那麼你應該檢查筆記本電腦的電源介面電路和外圍元件。
3.電源管理模塊通常由集成電路控制,如LTCl628、LTCl 539和LTC3728L。
3.LTCl628是一款兩相高效同步降壓開關調節器。圖6.57顯示了LTCl628的內部電路圖。LTCl 628由時鍾驅動,使兩個通道異相工作,從而將輸入電容的允許電流降低50%。因此廣泛應用於5V和3.3V筆記本電腦。
在電源電路中。
4.當筆記本電腦處於待機狀態時(即開機鍵未按下時,系統電源會有3.3V和5V電壓),LTCl628的控制腳①和⑤會有6.8V電壓,⑥腳為O.65V啟動電壓腳。如果上述三個引腳的電壓異常,筆記本電腦將無法啟動。
目前筆記本電腦電源適配器的功率在六七十瓦左右,內部產生的熱量主要通過塑料外殼傳導和輻射。適配器的表面溫度仍然很高。適配器裡面是標準的火爐,估計80℃是少不了的。所以我建議大家在使用筆記本電腦的時候,盡量不要在電源適配器上堆放東西,尤其是易燃物品。
5.電容特寫:注意引腳,這是作者用它操作的結果。以前的電容已經有點鼓了。在高溫下,電解電容器的壽命很短。有文章說,溫度每升高10℃,電解電容器的壽命就會縮短一半。從實際情況來看,電容並不影響使用,但畢竟是定時炸彈,有一天可能會燒壞筆記本電腦主板上的電源電路。所以筆者找了一個容量稍微大一點的,換掉了。我手藝不太好,也沒有點焊機。所以焊接效果差,但絕對強。
6.電阻引腳
如今,電源適配器中已經使用了大量的SMD元件。一旦部件出了問題,維修起來會更加困難。適配器的功率也與日俱增,使得電子元器件的測試越來越嚴峻。如果電源適配器使用的電子元器件質量差,PCB布線不當,很可能會增加故障概率。以下是筆者在維護過程中的經驗總結,希望對大家有所幫助。
1.纏繞電源線時盡量注意,避免內部電纜斷裂形成開路。如果外接電源沒有通電,此時可以插上電池。如果機器能正常啟動,可能是電源線或適配器有問題。然後用萬用表檢查一下,看電源線是否有問題,這樣可以簡化維修難度。開始時不要試圖打開適配器外殼。打開適配器外殼真的太難了。
2.如果原適配器有問題,無法修復或者無法及時修復,可以先用其他適配器更換,只要輸出電壓和功率大致相當即可。筆記本電腦內部有穩壓電路,不用太擔心輸出電壓不匹配。3.曾經在網上看到有朋友提到適配器有問題,電腦主板燒壞了。估計這種情況很少見。如果是這樣的話,我估計是筆記本電腦內部的穩壓電路損壞了。
4.盡量不要損壞外殼。外殼損壞後會出現電磁輻射加強等問題,影響機器的穩定性。如果外殼損壞,嘗試修復。打開外觀和屏蔽層後,最好先檢查焊腳,用肉眼觀察。電路是間歇性的,通常是接觸不良。
5.檢查電容、電阻和電感是否有問題。如果電容出現鼓包,最好及時更換,以免留下隱患。
8. 求助索尼筆記本主板MBX-49開機電路(LTC1628)
樓主的電路圖是自己根據板子上的樣子畫出來的(主板都是4層及以上的,看板畫圖是不太可能的)???還是哪兒來的??
不管怎麼來的,圖都是錯的。vin是5.2---28v的輸入端,sw1,sw2是5v---36v轉換電壓輸出端。
你的電路畫的太簡單了,要是看板畫圖,基本是不可能的,電腦主板都是好幾層的pcb板。你的問題還是找供電問題,元器件問題後晶元問題,這樣的順序排除故障。
你看看這個應用電路也許對你有點幫助
9. 求全雙工RS485電路,8腳的晶元怎麼控制,如SP3077,LTC490,SN75179等等的晶元,求一電路圖
這3個晶元就是全雙工RS485匯流排用的,不用控制什麼哪,直接用啊。
10. 充電電路原理圖解釋
上圖為充電器原理圖,下面介紹工作原理。
1.恆流、限壓、充電電路。該部分由02、R6、R8、ZD2、R9、R10和R13等元件組成。當接通市電叫,開關變壓器T1次級感應出交流電壓。經D4、C4整流濾波後提供約12.5V直流電壓。一路通過R6、R1l、R14、LED3(FuL飽和指示燈)和R15形成迴路,LED3點亮,表示待充狀態:另一路電壓通過R8限流,ZD2(5V1)穩壓,再由並聯的R9、R10和R13分壓為Q2b極提供偏置,使Q2處於導通預充狀態。恆流源機構由Q2與其基極分壓電阻和ZD2等元件組成。當裝入被充電池時12.5V電壓即通過R6限流,經Q2的c—e極對電池恆流充電。這時由於Ul(Ul為軟封裝IC型號不詳)與R6並聯。R6兩端的電壓降使其①腳電位高於③腳,②腳就輸出每秒約兩個負脈沖。
使LED2(CH充電指示燈)頻頻閃爍點亮,表示正在正常充電。隨著被充電池端電壓的逐漸升高,即Q2 e極電位升高,升至設定的限壓值(4.25V)時,由於Q2的b極電位不變,使Q2轉入截止,充電結束。這時Q2c極懸空,Ul的③腳呈高電位,U1的②腳輸出高電平,LED2熄滅。這時電流就通過R6、R11、R14限流對電池涓流充電,並點亮LED3。LED3作待充、飽和、涓流充電三重指示。
2.極性識別電路。此部分由R12和LEDl(TEST紅色極性指示燈)構成。保護電路由Q3和R7等元件構成。假設被充電池極性接反了。
LED1就正偏點亮,警告應切換開關K,才能正常充電。如果電池一旦接反,Q3的I)極經R7獲得正偏置,Q3導通,Q2的b極電位被下拉短路而截止,阻斷了電流輸出(否則電池就會被反充而報廢),從而保護了電池和充電器兩者的安全。