ltc2283電路
1. 測試CPU主供電、核心電壓、問題
主板維修一般不涉及cpu核心供電影響開機的情況也是不會測的。一般會先歸結故障原因和類型來排查。cpu核心供電只是供電電路故障維修的一部分。一般檢測需要上cpu假負載用萬用表測量,如果幾個監測點電壓符合就說明cpu核心供電具備。另外電源管理晶元有很多型號,一般是在橋或電源附近長條型20腳左右的貼片晶元。
2. 如何提高差分放大器的共模抑制比這個方法要掌握
在諸多應用領域中,採用模擬技術時都需要使用差分放大器電路。例如測量技術,根據其應用的不同,可能需要極高的測量精度。為了達到這一精度,盡可能減少典型誤差源(例如失調和增益誤差,以及雜訊、容差和漂移)至關重要。為此,需要使用高精度運算放大器。放大器電路的外部元件選擇也同等重要,尤其是電阻,它們應該具有匹配的比值,而不能任意選擇。
圖 1. 傳統的差分放大器電路。
理想情況下,差分放大器電路中的電阻應仔細選擇,其比值應相同 (R2/R1 = R4/R3)。這些比值有任何偏差都將導致不良的共模誤差。差分放大器抑制這種共模誤差的能力以共模抑制比(CMRR) 來表示。它表示輸出電壓如何隨相同的輸入電壓(共模電壓)而變化。
在最佳情況下,輸出電壓不應該改變,因為它只取決於兩個輸入電壓之間的差值(最大 CMRR);但是,實際使用中情況會有所不同。CMRR 是差分放大器電路的重要特性,通常以 dB 來表示。
對於圖 1 所示的差分放大器電路,CMRR 取決於放大器本身以及外部連接的電阻。對於後者,取決於電阻的 CMRR 在本文下述部分以下標"R"表示,並利用下式計算:
例如,在放大器電路中,所需增益 G = 1 且使用容差為 1%、匹配精度為 2% 的電阻產生的共模抑制比為
在 34 dB時,CMRRR相對較低。在這種情況下,即使放大器具有非常好的 CMRR,也無法實現高精度,因為鏈路的精度總是取決於其精度最差的環節。因此,對於精密的測量電路而言,必須非常精確地選擇電阻。
實際使用中傳統電阻的阻值並不恆定。它們會受機械負載和溫度的影響。根據需求的不同,可以使用具有不同容差的電阻或匹配電阻對(或網路),其大部分使用薄膜技術製造並具有精確的比值穩定性。利用這些匹配的電阻網路(如LT5400 四通道匹配電阻網路),可以大幅提高放大器電路的整體 CMRR。 LT5400 電阻網路在整個溫度范圍內具有出色的匹配性,結合差分放大器電路使用則匹配性更佳,因而可確保 CMRR 比分立電阻提高兩倍。
圖 2. 帶有 LT5400 的差分放大器電路。
LT5400 提供 0.005% 的匹配精度,從而使 CMRRR達到 86 dB。然而,放大器電路的總共模抑制比 (CMRRTotal) 由電阻 CMRR 和運算放大器共模抑制比 CMRROP 的組合構成。對於差分放大器,可利用公式 3 計算:
例如, LT1468提供的 CMRROP 典型值為 112 dB,採用 LT5400 的增益為 G = 1,其 CMRRTotal的值為 85.6 dB。
或者,可以使用集成式差分放大器,如LTC6363。這種放大器在單晶元中內置放大器和最佳匹配電阻。它幾乎消除了上述所有問題,同樣也可提供最大精度,其 CMRR 值達 90 dB 以上。
THE END
在設計中必須根據差分放大器電路的精度要求仔細選擇外部電阻電路,以便實現系統的高性能。或者,可以使用集成式差分放大器,如在單晶元中集成了匹配電阻的 LTC6363。
3. 用什麼電路可以代替LTC3588-1,輸出3.6v電壓,能夠將很小的電流放大。
手焊為啥不可以用LTC3588呢~MAX666和TPS63030你可以試試看
4. 求助索尼筆記本主板MBX-49開機電路(LTC1628)
樓主的電路圖是自己根據板子上的樣子畫出來的(主板都是4層及以上的,看板畫圖是不太可能的)???還是哪兒來的??
不管怎麼來的,圖都是錯的。vin是5.2---28v的輸入端,sw1,sw2是5v---36v轉換電壓輸出端。
你的電路畫的太簡單了,要是看板畫圖,基本是不可能的,電腦主板都是好幾層的pcb板。你的問題還是找供電問題,元器件問題後晶元問題,這樣的順序排除故障。
你看看這個應用電路也許對你有點幫助
5. 三洋ltc32ca-50五分鍾自動關機,再開10秒關機5v12v24v電壓偏高,
三洋電視,不定期自動關機,關機後再開機又工作一段時間,又自動關機。
電路特點分析:
(1)開關電源電路採用自激式並聯輸出型電路,並通過開關變壓器主機芯與交流輸入電路相隔離,即“冷機芯”電路;
(2)取樣電路採用由取樣繞組和整流濾波組成的間接取樣方式:
(3)由V733可控硅、V734穩壓管等構成的過壓保護電路,採用開關管基極與啟動電阻短地的方式,使開關管停止工作。主機電源開,關機受微處理器M50436-560SP⑧腳與介面驅動電路V1007控制,控制方式為繼電器通/斷交流電源輸入式。
檢修技法:
(1)監視過壓保護電路可控硅V733控制柵極電壓,判斷保護電路是否動作。發現自動關機時V733
G極電壓變為0.7V,說明過壓保護電路已動作,故障的直接原因是過壓保護電路起控所致;
(2)採用斷開行負載、接假負載的方法試機。此時,當出現自動關機故障時,主電源115V
升高為125V左右,當超過125V以上時,V733可控硅觸發導通,燈滅,說明故障出在開關電源電路中;
(3)通過檢測取樣穩壓控制電路工作點的方法來發現異常部位,並發現當表筆觸到C745
取樣電壓濾波電容時,突然自動關機,說明取樣電壓有異常。表筆觸到C745,相當於在取樣電路R745、R746、R747上並聯表內阻,使提供給誤差放大管基極的取樣電流減少,使V745
c
極電壓減小,減少了流向電容C742的電流,使V725、V726導通電流減少,開關管V720截止時刻滯後,導通時間增加,從而使儲能增加,輸出電壓上升,造成保護電路動作故障。
用萬用表檢查,發現C745兩端電壓比正常值21V偏低且不穩,表明C745有漏電現象,但仍有充放電作用。由於萬用表很難准確判斷電容好壞(對電容性能不良更無能為力).因此,採用同規格電容並聯法試機。把一隻47uF電容並聯到C745上時故障消失,更換C745後故障排除。
故障原因分析(三洋電視維修):故障系因C745取樣電容漏電變值,使取樣電壓下降,流入V745誤差放
大器基極偏流減小→V745
c極電壓↓→V725
b極電壓↓→V725
c極電壓↑→V726
b極電壓
↑→V726
e極電流↓→V720
b極注入電流↓→增加V720的飽和導通時間→l15V輸出電壓
上升→過壓保護電路V733觸發導通→V720
b極短地而停止工作所致。
6. 您好,我想問一下,延時5S左右的可調延時電路,有哪些具體可行的電路呢用3.3V、5V、6V或者12V電壓。
最簡單的就是555晶元,嫌電路製作麻煩可以買個時間繼電器,如果要精確定時,可以考慮使用單片機。
7. 用汽車12V電壓1A電流充7.4V鋰電池用什麼方案
可以用串電阻及電流表的方式降壓並檢測充電電流。
看了你的補充,辦法還有:
1、在電源加一個調壓變壓器,降低充電器變壓器初級電壓,輸出電壓也就改降低了。
2、在電源加可控硅調壓電路,降低充電器變壓器初級電壓,輸出電壓也就改降低了
3、改變變壓器結構,減少次級匝數。
4、在次級加可控硅調壓電路。
5、做穩壓電路
8. 筆記本保護隔離電路常見故障
如果筆記本電腦接上電源適配器,測試公共點上沒有16V左右的電壓,這時需要檢修保護隔離電路。
1.檢測輸入電壓
在檢修筆記本電腦的時候先拔掉筆記本電腦電池,接上可調電源,測量筆記本電腦主板電源介面是否有15-24V的電壓輸入,監測整機電流,同時判斷電源適配器是否正常。
2.檢測輸出電壓
找到主板的公共點。以目前採用最多的MAX1632的第22腳為公共點,LTC1628的22腳是公共點,或者測試該晶元的電源濾波電容兩端的電壓,以及高端場效管的D級電壓。
測量主板公共點的電壓是否正常。如果電壓正常說明整個保護隔離電路是良好的,其他部位有故障;如果公共點沒有電壓,則需要檢修保護隔離電路。
筆記本電腦的電路比較緊密,不容易查找,在測試過程中,選擇標志性的元件。
3.檢查輸入與輸出電路之間的元件
當確定保護隔離電路有故障時,從電源介面開始跑電路,找出電源介面和公共點之問的電子元件。保護隔離電路的元件很少,關鍵性元件最多不超過五個,典型電路如下圖所示。
保護隔離電路的測量方法。
(1)用萬用表1?Ω擋測量公共點和電源介面對地電阻,判斷是否短路,如電阻接近或等於0Ω,說明有電路有短路故障,首先排除短路元件。
(2)從電源介面依次測量電壓,如共模濾波器、保險管、隔離二極體和場效應管,哪一個元件有電壓輸入、沒有輸出,說明該元件可能有故障。
(3)如果場效應管有電壓輸入、沒有輸出,斷電後判斷場管為N溝通還是P溝道,確定場管的G極為高電平導通還是低電平導通,然後加電測試場管的G極控制電壓是否正常,如控制條件滿足但場效應管不工作,說明場效應管損壞,需要更換場效應管,如G極沒有相應的電平,不符合場效應管導通條件,按下開機鍵測量是否能工作,否則應檢修場管G極相連接的控制電路。
N溝通場效應管的柵極為高電平時場效應管導通,P溝道場效應管的柵極為低電平時場效應管導通。
9. 交流220V電流檢測電路,電流只有十幾個毫安,怎麼搭建電路
10幾毫安已經很大了。這種情況用互感器,體積大、一致性差。建議你採用雙向的光耦來檢測。推薦TLP620。
10. 充電電路原理圖解釋
上圖為充電器原理圖,下面介紹工作原理。
1.恆流、限壓、充電電路。該部分由02、R6、R8、ZD2、R9、R10和R13等元件組成。當接通市電叫,開關變壓器T1次級感應出交流電壓。經D4、C4整流濾波後提供約12.5V直流電壓。一路通過R6、R1l、R14、LED3(FuL飽和指示燈)和R15形成迴路,LED3點亮,表示待充狀態:另一路電壓通過R8限流,ZD2(5V1)穩壓,再由並聯的R9、R10和R13分壓為Q2b極提供偏置,使Q2處於導通預充狀態。恆流源機構由Q2與其基極分壓電阻和ZD2等元件組成。當裝入被充電池時12.5V電壓即通過R6限流,經Q2的c—e極對電池恆流充電。這時由於Ul(Ul為軟封裝IC型號不詳)與R6並聯。R6兩端的電壓降使其①腳電位高於③腳,②腳就輸出每秒約兩個負脈沖。
使LED2(CH充電指示燈)頻頻閃爍點亮,表示正在正常充電。隨著被充電池端電壓的逐漸升高,即Q2 e極電位升高,升至設定的限壓值(4.25V)時,由於Q2的b極電位不變,使Q2轉入截止,充電結束。這時Q2c極懸空,Ul的③腳呈高電位,U1的②腳輸出高電平,LED2熄滅。這時電流就通過R6、R11、R14限流對電池涓流充電,並點亮LED3。LED3作待充、飽和、涓流充電三重指示。
2.極性識別電路。此部分由R12和LEDl(TEST紅色極性指示燈)構成。保護電路由Q3和R7等元件構成。假設被充電池極性接反了。
LED1就正偏點亮,警告應切換開關K,才能正常充電。如果電池一旦接反,Q3的I)極經R7獲得正偏置,Q3導通,Q2的b極電位被下拉短路而截止,阻斷了電流輸出(否則電池就會被反充而報廢),從而保護了電池和充電器兩者的安全。