區塊鏈L2是什意思
A. l2是什麼意思
知道 2 不~
B. 區塊鏈編號是什麼意思
—— 區塊鏈編號,即區塊鏈咨詢服務名稱及備案編號。區塊鏈沒有通用協議,多是獨立運作,對區塊鏈進行備案編號,是建立通用協議配套制度的工作之一。
C. 區塊鏈layer2是什麼意思
Layer2層所涉及的是鏈上與鏈下的協議,主要負責鏈上鏈下消息傳遞、智能合約編程以及應用相關功能。也就是在現有區塊鏈系統(Layer1)之上構建的輔助框架或協議。如果以法律架構來比喻,Layer1就像憲法,是所有法律的依據,法律的制定不能夠牴觸憲法。
由Layer2協議,區塊鏈事務的「狀態生成」可以獨立於Layer1之外進行,因此這些協議也可以稱「鏈下」擴容方案。使用鏈下擴容方案的主要優點之一是能夠降低Layer1的局限性,且不需要改變區塊鏈本身的協議。Layer2擴容方案盡可能在不犧牲區塊鏈網路安全性的情況下實現高吞吐量的狀態生成。
(3)區塊鏈L2是什意思擴展閱讀
應用方向:
1、支付:如在時間方面,傳統跨境匯款需要10分鍾或數日不等,而區塊鏈跨境匯款由於去中心化,可實現匯款秒到賬。在便捷性方面,傳統跨境匯款在19時以後需要等到次日才能轉賬,而區塊鏈跨境匯款只需一台手機即可實現全天候匯款。
2、共享病歷:醫療數據區塊鏈共享平台便可成就很多應用場景,病人歷史數據等信息可以上鏈,病史和影像資料可供進入系統的人員查看。這些醫療數據還可以用來建模和機器學習。
D. 區塊鏈是什麼意思
區塊鏈是一個共享資料庫,區塊鏈是分布式數據存儲、點對點傳輸、共識機制、加密演算法等計算機技術的新型應用模式。
主要特徵:
1、去中心化。區塊鏈技術不依賴額外的第三方管理機構或硬體設施,沒有中心管制,除了自成一體的區塊鏈本身,通過分布式核算和存儲,各個節點實現了信息自我驗證、傳遞和管理。
2、開放性。區塊鏈技術基礎是開源的,除了交易各方的私有信息被加密外,區塊鏈的數據對所有人開放,任何人都可以通過公開的介面查詢區塊鏈數據和開發相關應用。
3、獨立性。基於協商一致的規范和協議,整個區塊鏈系統不依賴其他第三方,所有節點能夠在系統內自動安全地驗證、交換數據,不需要任何人為的干預。
4、安全性。只要不能掌控全部數據節點的51%,就無法肆意操控修改網路數據,這使區塊鏈本身變得相對安全,避免了主觀人為的數據變更。
5、匿名性。除非有法律規范要求,單從技術上來講,各區塊節點的身份信息不需要公開或驗證,信息傳遞可以匿名進行。
(4)區塊鏈L2是什意思擴展閱讀
應用方向:
1、支付:如在時間方面,傳統跨境匯款需要10分鍾或數日不等,而區塊鏈跨境匯款由於去中心化,可實現匯款秒到賬。在便捷性方面,傳統跨境匯款在19時以後需要等到次日才能轉賬,而區塊鏈跨境匯款只需一台手機即可實現全天候匯款。
2、共享病歷:醫療數據區塊鏈共享平台便可成就很多應用場景,病人歷史數據等信息可以上鏈,病史和影像資料可供進入系統的人員查看。這些醫療數據還可以用來建模和機器學習。
參考資料來源:網路-區塊鏈
E. l2是什麼意思
L2,譯名L2線、廈門L2路,全稱廈門L2線,廈門快速公交,即廈門市快速公交系統(BRT),屬於廈門市快速公交運營有限公司。
2008年09月01日起,L2線開通投入運營(BRT思北站←→國貿新城站)環線。2008年11月12日起,暫停營運,並由相關線路代替。
線路走向:
BRT思北站始發,經湖濱西路、湖濱南路、故宮路、廈禾路、思明北路、大同路、思明東路、思明北路至BRT思北站。
(5)區塊鏈L2是什意思擴展閱讀:
公交系統規劃
廈門將建立一個現代化公交技術配合智能交通和運營管理,開辟公交專用道路和建造新式公交車站,實現軌道交通運營服務,達到輕軌服務水準的一種獨特的城市客運系統,廈門建設快速公交系統(簡稱廈門BRT)。
廈門市快速公交系統是國內快速公交系統建設中級別最高的公共交通項目,創下了多個全國首創紀錄:全國首創多形式組合、全國首創採取高架橋模式、全國首創一次成網。
廈門快速公交最大的特色是在島內鬧市區建設高架橋,島外新開發地段則規劃設置專用道,這樣就保證了快速公交擁有全程封閉的專有路權,克服了城市公交最難解決的與其他車輛及行人相互干擾的弊端。
由於一次性開通3條快速公交,優化公交線路,增設鏈接線,廈門快速公交是國內第一個一次成網的BRT系統。
F. L2是什麼意思
L1,L2,L3 指的都是CPU的緩存,他們比內存快,但是很昂貴,所以用作緩存,CPU查找數據的時候首先在L1,然後看L2,如果還沒有,就到內存查找
一些伺服器還有L3 Cache,目的也是提高速度。
具體的內容可以看下面的文章
http://www.itdoor.net/pages/27,21932,1,1076917028.html
小緩存里的大學問 我要評論
更新時間:04年2月16日 本文作者:劉昌勇
當前第1頁:小緩存里的大學問
當前第1頁:小緩存里的大學問 本文共 1 頁
高速緩沖存儲器Cache是位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。在Cache中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從Cache中調用,從而加快讀取速度。由此可見,在CPU中加入Cache是一種高效的解決方案,這樣整個內存儲器(Cache+內存)就變成了既有Cache的高速度,又有內存的大容量的存儲系統了。Cache對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與Cache間的帶寬引起的。
高速緩存的工作原理
1. 讀取順序
CPU要讀取一個數據時,首先從Cache中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入Cache中,可以使得以後對整塊數據的讀取都從Cache中進行,不必再調用內存。
正是這樣的讀取機制使CPU讀取Cache的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在Cache中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先Cache後內存。
2. 緩存分類
前面是把Cache作為一個整體來考慮的,現在要分類分析了。Intel從Pentium開始將Cache分開,通常分為一級高速緩存L1和二級高速緩存L2。
在以往的觀念中,L1 Cache是集成在CPU中的,被稱為片內Cache。在L1中還分數據Cache(I-Cache)和指令Cache(D-Cache)。它們分別用來存放數據和執行這些數據的指令,而且兩個Cache可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。
在P4處理器中使用了一種先進的一級指令Cache——動態跟蹤緩存。它直接和執行單元及動態跟蹤引擎相連,通過動態跟蹤引擎可以很快地找到所執行的指令,並且將指令的順序存儲在追蹤緩存里,這樣就減少了主執行循環的解碼周期,提高了處理器的運算效率。
以前的L2 Cache沒集成在CPU中,而在主板上或與CPU集成在同一塊電路板上,因此也被稱為片外Cache。但從PⅢ開始,由於工藝的提高L2 Cache被集成在CPU內核中,以相同於主頻的速度工作,結束了L2 Cache與CPU大差距分頻的歷史,使L2 Cache與L1 Cache在性能上平等,得到更高的傳輸速度。L2Cache只存儲數據,因此不分數據Cache和指令Cache。在CPU核心不變化的情況下,增加L2 Cache的容量能使性能提升,同一核心的CPU高低端之分往往也是在L2 Cache上做手腳,可見L2 Cache的重要性。現在CPU的L1 Cache與L2 Cache惟一區別在於讀取順序。
3. 讀取命中率
CPU在Cache中找到有用的數據被稱為命中,當Cache中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有2級Cache的CPU中,讀取L1 Cache的命中率為80%。也就是說CPU從L1 Cache中找到的有用數據占數據總量的80%,剩下的20%從L2 Cache讀取。由於不能准確預測將要執行的數據,讀取L2的命中率也在80%左右(從L2讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。在一些高端領域的CPU(像Intel的Itanium)中,我們常聽到L3 Cache,它是為讀取L2 Cache後未命中的數據設計的—種Cache,在擁有L3 Cache的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。
為了保證CPU訪問時有較高的命中率,Cache中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出Cache,提高Cache的利用率。
緩存技術的發展
總之,在傳輸速度有較大差異的設備間都可以利用Cache作為匹配來調節差距,或者說是這些設備的傳輸通道。在顯示系統、硬碟和光碟機,以及網路通訊中,都需要使用Cache技術。但Cache均由靜態RAM組成,結構復雜,成本不菲,使用現有工藝在有限的面積內不可能做得很大,不過,這也正是技術前進的源動力,有需要才有進步!
G. 區塊鏈是什麼意思
區塊鏈是一個信息技術領域的術語。
從本質上講,它是一個共享資料庫,存儲於其中的數據或信息,具有「不可偽造」「全程留痕」「可以追溯」「公開透明」「集體維護」等特徵。基於這些特徵,區塊鏈技術奠定了堅實的「信任」基礎,創造了可靠的「合作」機制,具有廣闊的運用前景。
區塊鏈是分布式數據存儲、點對點傳輸、共識機制、加密演算法等計算機技術的新型應用模式。
區塊鏈的起源
區塊鏈起源於比特幣,2008年11月1日,一位自稱中本聰(Satoshi Nakamoto)的人發表了《比特幣:一種點對點的電子現金系統》一文,闡述了基於P2P網路技術、加密技術、時間戳技術、區塊鏈技術等的電子現金系統的構架理念,這標志著比特幣的誕生。
兩個月後理論步入實踐,2009年1月3日第一個序號為0的創世區塊誕生。幾天後2009年1月9日出現序號為1的區塊,並與序號為0的創世區塊相連接形成了鏈,標志著區塊鏈的誕生。