當前位置:首頁 » 區塊鏈知識 » 區塊鏈中怎麼使用rsa

區塊鏈中怎麼使用rsa

發布時間: 2021-10-19 20:51:59

A. 什麼是區塊鏈加密演算法

區塊鏈加密演算法(EncryptionAlgorithm)
非對稱加密演算法是一個函數,通過使用一個加密鑰匙,將原來的明文文件或數據轉化成一串不可讀的密文代碼。加密流程是不可逆的,只有持有對應的解密鑰匙才能將該加密信息解密成可閱讀的明文。加密使得私密數據可以在低風險的情況下,通過公共網路進行傳輸,並保護數據不被第三方竊取、閱讀。
區塊鏈技術的核心優勢是去中心化,能夠通過運用數據加密、時間戳、分布式共識和經濟激勵等手段,在節點無需互相信任的分布式系統中實現基於去中心化信用的點對點交易、協調與協作,從而為解決中心化機構普遍存在的高成本、低效率和數據存儲不安全等問題提供了解決方案。
區塊鏈的應用領域有數字貨幣、通證、金融、防偽溯源、隱私保護、供應鏈、娛樂等等,區塊鏈、比特幣的火爆,不少相關的top域名都被注冊,對域名行業產生了比較大的影響。

B. 在區塊鏈中使用的是什麼方式確定其身份

在區塊鏈中,金窩窩集團認為四使用公鑰和私鑰來識別身份的。
公鑰和私鑰還可以保證分布式網路點對點新型傳遞的安全。
在區塊鏈信息傳遞中,信息傳遞雙方的公鑰和私鑰的加密與解密往往是不成對出現的。

C. 區塊鏈使用什麼網路協議

協議是管理網路的一組規則。區塊鏈協議通常包括共識、交易驗證和網路參與的規則。協議通常依賴於經濟激勵——這意味著協議取決於某項資產。
通常,協議級別的資產也可以作為協議的本地產品(無需平台!)比特幣就是一個很好的例子。Bitcoin(大寫B)是指協議。協議取決於本地資產:bitcoin(小寫字母b)。這個本地資產也被用作最終產品:它是用戶的支付手段,價值儲存,以及(說實話)一定程度上的炒作手段。請注意,比特幣並不真正提供一個平台。對於那些試圖在其上建立新產品的開發者來說,這並不是很友好。
另一方面,以太坊則存在著三個層次。這是一個協議,提供基本的規則。這是一個平台,使開發人員能夠在系統上構建新的產品。而且,因為它的協議中包含一項本地資產,所以它也得到了一個內置的產品(以ether以太幣的形式)。
區塊鏈的應用領域有數字貨幣、通證、金融、防偽溯源、隱私保護、供應鏈、娛樂等等,區塊鏈、比特幣的火爆,不少相關的top域名都被注冊,對域名行業產生了比較大的影響。

D. 怎麼使用RSATool

1、在「Number Base」組合框中選擇進制為 10 ;
2、單擊「Start」按鈕,然後隨意移動滑鼠直到提示信息框出現,以獲取一個隨機數種子;
3、在「KeySize(Bits)」編輯框中輸入 32 ;
4、單擊「Generate」按鈕生成;
5、復制「Prime(P)」編輯框中的內容到「Public Exp.(E)」編輯框;
6、在「Number Base」組合框中選擇進制為 16 ;
7、記錄下「Prime(P)」編輯框中的十六進制文本內容。
8、再次重復第 2 步;
9、在「KeySize(Bits)」編輯框中輸入您所希望的密鑰位數,從32到4096,位數越多安全性也高,但運算速度越慢,一般選擇1024位足夠了;
10、單擊「Generate」按鈕生成;
11、單擊「Test」按鈕測試,在「Message to encrypt」編輯框中隨意輸入一段文本,然後單擊「Encrypt」按鈕加密,再單擊「Decrypt」按鈕解密,看解密後的結果是否和所輸入的一致,如果一致表示所生成的RSA密鑰可用,否則需要重新生成;
12、到此生成完成,「Private Exp.(D)」編輯框中的內容為私鑰,第7步所記錄的內容為公鑰,「Molus (N)」編輯框中的內容為公共模數,請將上述三段十六進制文本保存起來即可。 大概就這樣的,我建議你下載一個漢化版的。

E. 如何使用RSA密鑰登陸ssh

設置root密碼

1
使用原密鑰登陸遠程主機,默認登陸用戶為ubuntu
得到遠程機IP
如果是aws,在EC2控制台查看一下實例的公有 IP,復制一下
cmd
ssh -i 密鑰 [email protected]
2
空密碼不讓登陸的,所以要給root一個新密碼
su
passwd root
輸入兩次新密碼就可以了
END
修改/etc/ssh/sshd_config

修改
vi /etc/ssh/sshd_config

密碼登陸

PermitRootLogin yes
StrictModes no
PermitEmptyPasswords yes
PasswordAuthentication yes

密鑰登陸

HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_rsa1_key
HostKey /etc/ssh/ssh_host_dsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key
HostKey /etc/ssh/ssh_host_ed25519_key
RSAAuthentication yes
PubkeyAuthentication yes
AuthorizedKeysFile %h/.ssh/authorized_keys

如果不想一個個改,也可以復制粘貼

全文如下
#/etc/ssh/sshd_config
# Package generated configuration file
# See the sshd_config(5) manpage for details

# What ports, IPs and protocols we listen for
Port 22
# Use these options to restrict which interfaces/protocols sshd will bind to
#ListenAddress ::
#ListenAddress 0.0.0.0
Protocol 2
# HostKeys for protocol version 2
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_rsa1_key
HostKey /etc/ssh/ssh_host_dsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key
HostKey /etc/ssh/ssh_host_ed25519_key
#Privilege Separation is turned on for security
UsePrivilegeSeparation yes

# Lifetime and size of ephemeral version 1 server key
KeyRegenerationInterval 3600
ServerKeyBits 1024

# Logging
SyslogFacility AUTH
LogLevel INFO

# Authentication:
LoginGraceTime 120
PermitRootLogin yes
StrictModes no

RSAAuthentication yes
PubkeyAuthentication yes
AuthorizedKeysFile %h/.ssh/authorized_keys

# Don't read the user's ~/.rhosts and ~/.shosts files
IgnoreRhosts yes
# For this to work you will also need host keys in /etc/ssh_known_hosts
RhostsRSAAuthentication no
# similar for protocol version 2
HostbasedAuthentication no
# Uncomment if you don't trust ~/.ssh/known_hosts for RhostsRSAAuthentication
#IgnoreUserKnownHosts yes

# To enable empty passwords, change to yes (NOT RECOMMENDED)
PermitEmptyPasswords yes

# Change to yes to enable challenge-response passwords (beware issues with
# some PAM moles and threads)
no

# Change to no to disable tunnelled clear text passwords
PasswordAuthentication yes

# Kerberos options
#KerberosAuthentication no
#KerberosGetAFSToken no
#KerberosOrLocalPasswd yes
#KerberosTicketCleanup yes

# GSSAPI options
#GSSAPIAuthentication no
#GSSAPICleanupCredentials yes

X11Forwarding yes
X11DisplayOffset 10
PrintMotd no
PrintLastLog yes
TCPKeepAlive yes
#UseLogin no

#MaxStartups 10:30:60
#Banner /etc/issue.net

# Allow client to pass locale environment variables
AcceptEnv LANG LC_*

Subsystem sftp /usr/lib/openssh/sftp-server

# Set this to 'yes' to enable PAM authentication, account processing,
# and session processing. If this is enabled, PAM authentication will
# be allowed through the and
# PasswordAuthentication. Depending on your PAM configuration,
# PAM authentication via may bypass
# the setting of "PermitRootLogin without-password".
# If you just want the PAM account and session checks to run without
# PAM authentication, then enable this but set PasswordAuthentication
# and to 'no'.
UsePAM yes
生成私鑰
ssh-keygen -t dsa /etc/ssh/ssh_host_dsa_key
ssh-keygen -t ecdsa /etc/ssh/ssh_host_ecdsa_key
ssh-keygen -t ed25519 /etc/ssh/ssh_host_ed25519_key
ssh-keygen -t rsa /etc/ssh/ssh_host_rsa_key
ssh-keygen -t rsa1 /etc/ssh/ssh_host_rsa1_key

chmod 600 /etc/ssh/*key
復制公鑰到authorized_keys

cat /etc/ssh/ssh*pub>>/home/ubuntu/.ssh/authorized_keys
cat /home/ubuntu/.ssh/authorized_keys >/root/.ssh/authorized_keys
chmod 644 /root/.ssh/authorized_keys

使用ubuntu的私鑰就可以登陸了

也可以把/etc/ssh/下的key復制粘貼過來
/etc/ssh/ssh_host_dsa_key
/etc/ssh/ssh_host_ecdsa_key
/etc/ssh/ssh_host_ed25519_key
/etc/ssh/ssh_host_rsa_key

重啟遠程機

就可以直接用root登陸了
使用密碼
ssh [email protected]

或者使用密鑰

ssh -i ssh_host_dsa_key root@ip
ssh -i ssh_host_ecdsa_key root@ip
ssh -i ssh_host_ed25519_key root@ip
ssh -i ssh_host_rsa_key root@ip
ssh -i ssh_host_rsa1_key root@ip

F. 如何使用RSA簽名給給信息加密和解密

{
publicstaticfinalStringKEY_ALGORITHM="RSA";
_ALGORITHM="MD5withRSA";

_KEY="RSAPublicKey";
_KEY="RSAPrivateKey";

/**
*用私鑰對信息生成數字簽名
*
*@paramdata
*加密數據
*@paramprivateKey
*私鑰
*
*@return
*@throwsException
*/
publicstaticStringsign(byte[]data,StringprivateKey)throwsException{
//解密由base64編碼的私鑰
byte[]keyBytes=decryptBASE64(privateKey);

//構造PKCS8EncodedKeySpec對象
=newPKCS8EncodedKeySpec(keyBytes);

//KEY_ALGORITHM指定的加密演算法
KeyFactorykeyFactory=KeyFactory.getInstance(KEY_ALGORITHM);

//取私鑰匙對象
PrivateKeypriKey=keyFactory.generatePrivate(pkcs8KeySpec);

//用私鑰對信息生成數字簽名
Signaturesignature=Signature.getInstance(SIGNATURE_ALGORITHM);
signature.initSign(priKey);
signature.update(data);

returnencryptBASE64(signature.sign());
}

/**
*校驗數字簽名
*
*@paramdata
*加密數據
*@parampublicKey
*公鑰
*@paramsign
*數字簽名
*
*@return校驗成功返回true失敗返回false
*@throwsException
*
*/
publicstaticbooleanverify(byte[]data,StringpublicKey,Stringsign)
throwsException{

//解密由base64編碼的公鑰
byte[]keyBytes=decryptBASE64(publicKey);

//構造X509EncodedKeySpec對象
X509EncodedKeySpeckeySpec=newX509EncodedKeySpec(keyBytes);

//KEY_ALGORITHM指定的加密演算法
KeyFactorykeyFactory=KeyFactory.getInstance(KEY_ALGORITHM);

//取公鑰匙對象
PublicKeypubKey=keyFactory.generatePublic(keySpec);

Signaturesignature=Signature.getInstance(SIGNATURE_ALGORITHM);
signature.initVerify(pubKey);
signature.update(data);

//驗證簽名是否正常
returnsignature.verify(decryptBASE64(sign));
}

/**
*解密<br>
*用私鑰解密
*
*@paramdata
*@paramkey
*@return
*@throwsException
*/
publicstaticbyte[]decryptByPrivateKey(byte[]data,Stringkey)
throwsException{
//對密鑰解密
byte[]keyBytes=decryptBASE64(key);

//取得私鑰
=newPKCS8EncodedKeySpec(keyBytes);
KeyFactorykeyFactory=KeyFactory.getInstance(KEY_ALGORITHM);
KeyprivateKey=keyFactory.generatePrivate(pkcs8KeySpec);

//對數據解密
Ciphercipher=Cipher.getInstance(keyFactory.getAlgorithm());
cipher.init(Cipher.DECRYPT_MODE,privateKey);

returncipher.doFinal(data);
}

/**
*解密<br>
*用私鑰解密
*
*@paramdata
*@paramkey
*@return
*@throwsException
*/
publicstaticbyte[]decryptByPublicKey(byte[]data,Stringkey)
throwsException{
//對密鑰解密
byte[]keyBytes=decryptBASE64(key);

//取得公鑰
X509EncodedKeySpecx509KeySpec=newX509EncodedKeySpec(keyBytes);
KeyFactorykeyFactory=KeyFactory.getInstance(KEY_ALGORITHM);
KeypublicKey=keyFactory.generatePublic(x509KeySpec);

//對數據解密
Ciphercipher=Cipher.getInstance(keyFactory.getAlgorithm());
cipher.init(Cipher.DECRYPT_MODE,publicKey);

returncipher.doFinal(data);
}

/**
*加密<br>
*用公鑰加密
*
*@paramdata
*@paramkey
*@return
*@throwsException
*/
publicstaticbyte[]encryptByPublicKey(byte[]data,Stringkey)
throwsException{
//對公鑰解密
byte[]keyBytes=decryptBASE64(key);

//取得公鑰
X509EncodedKeySpecx509KeySpec=newX509EncodedKeySpec(keyBytes);
KeyFactorykeyFactory=KeyFactory.getInstance(KEY_ALGORITHM);
KeypublicKey=keyFactory.generatePublic(x509KeySpec);

//對數據加密
Ciphercipher=Cipher.getInstance(keyFactory.getAlgorithm());
cipher.init(Cipher.ENCRYPT_MODE,publicKey);

returncipher.doFinal(data);
}

/**
*加密<br>
*用私鑰加密
*
*@paramdata
*@paramkey
*@return
*@throwsException
*/
publicstaticbyte[]encryptByPrivateKey(byte[]data,Stringkey)
throwsException{
//對密鑰解密
byte[]keyBytes=decryptBASE64(key);

//取得私鑰
=newPKCS8EncodedKeySpec(keyBytes);
KeyFactorykeyFactory=KeyFactory.getInstance(KEY_ALGORITHM);
KeyprivateKey=keyFactory.generatePrivate(pkcs8KeySpec);

//對數據加密
Ciphercipher=Cipher.getInstance(keyFactory.getAlgorithm());
cipher.init(Cipher.ENCRYPT_MODE,privateKey);

returncipher.doFinal(data);
}

/**
*取得私鑰
*
*@paramkeyMap
*@return
*@throwsException
*/
(Map<String,Object>keyMap)
throwsException{
Keykey=(Key)keyMap.get(PRIVATE_KEY);

returnencryptBASE64(key.getEncoded());
}

/**
*取得公鑰
*
*@paramkeyMap
*@return
*@throwsException
*/
(Map<String,Object>keyMap)
throwsException{
Keykey=(Key)keyMap.get(PUBLIC_KEY);

returnencryptBASE64(key.getEncoded());
}

/**
*初始化密鑰
*
*@return
*@throwsException
*/
publicstaticMap<String,Object>initKey()throwsException{
KeyPairGeneratorkeyPairGen=KeyPairGenerator
.getInstance(KEY_ALGORITHM);
keyPairGen.initialize(1024);

KeyPairkeyPair=keyPairGen.generateKeyPair();

//公鑰
RSAPublicKeypublicKey=(RSAPublicKey)keyPair.getPublic();

//私鑰
RSAPrivateKeyprivateKey=(RSAPrivateKey)keyPair.getPrivate();

Map<String,Object>keyMap=newHashMap<String,Object>(2);

keyMap.put(PUBLIC_KEY,publicKey);
keyMap.put(PRIVATE_KEY,privateKey);
returnkeyMap;
}
}

G. RSA加密與對稱加密如何使用呢他們的混合應用又應該怎麼用呢

RSA演算法是第一個能同時用於加密和數字簽名的演算法。RSA演算法能生成公私鑰對。
假設A、B要通信,那麼他們需要彼此知道對方的公鑰,如果a向b發送信息,a先用自己的私鑰對信息進行加密(即簽名),然後用b的公鑰進行加密。當
b收到消息時,先用自己的私鑰進行解密,然後用a的公用進行解密(即驗證簽名),即可看到a發送的明文信息。
若是用對稱密鑰進行加密,則雙方公用一個密鑰,這個密鑰需要絕對保密,不能讓別人知道。a在向b發送信息前,先用這個密鑰對信息進行加密,然後把加密的信息發送給b,之後再把密鑰通過另一通道發送給b(要保證密鑰傳輸的安全,不被其他人截獲),b收到密文和密鑰後,再用這個密鑰進行解密,就可以得到原文。
若混合使用,假設還是a向b發送信息,a先用自己的私鑰進行簽名,然後再用雙方公用的對稱密鑰(即會話密鑰)進行加密,得到加密後的密文,然後用b的公鑰對雙方的會話密鑰進行加密,得到加密的會話密鑰,然後把加密的密文和加密的會話密鑰一起發給b,b收到後先用自己的私鑰對加密的會話密鑰進行解密,得到會話密鑰,再用會話密鑰對加密的密文進行解密,得到簽名的信息,然後用a的公鑰對簽名進行驗證,便可得到原始信息。

H. 如何使用rsa演算法實現數字簽名

什麼是RSA? RSA是一種非對稱加密演算法,用它可以產生公私鑰對,就是一個公鑰和一個私鑰。

什麼是數字簽名? 數字簽名就是 用私鑰對數據進行加密。

有了RSA產生的私鑰,然後再用RSA加密演算法時行加密,才能產生數字簽名。

明白?

當然,除了RSA,還有ECC等好多其它非對稱演算法。

I. RSA加密與對稱加密如何使用呢他們的混合應用又應該怎麼用呢

RSA演算法是第一個能同時用於加密和數字簽名的演算法。RSA演算法能生成公私鑰對。
假設A、B要通信,那麼他們需要彼此知道對方的公鑰,如果a向b發送信息,a先用自己的私鑰對信息進行加密(即簽名),然後用b的公鑰進行加密。當 b收到消息時,先用自己的私鑰進行解密,然後用a的公用進行解密(即驗證簽名),即可看到a發送的明文信息。

若是用對稱密鑰進行加密,則雙方公用一個密鑰,這個密鑰需要絕對保密,不能讓別人知道。a在向b發送信息前,先用這個密鑰對信息進行加密,然後把加密的信息發送給b,之後再把密鑰通過另一通道發送給b(要保證密鑰傳輸的安全,不被其他人截獲),b收到密文和密鑰後,再用這個密鑰進行解密,就可以得到原文。

若混合使用,假設還是a向b發送信息,a先用自己的私鑰進行簽名,然後再用雙方公用的對稱密鑰(即會話密鑰)進行加密,得到加密後的密文,然後用b的公鑰對雙方的會話密鑰進行加密,得到加密的會話密鑰,然後把加密的密文和加密的會話密鑰一起發給b,b收到後先用自己的私鑰對加密的會話密鑰進行解密,得到會話密鑰,再用會話密鑰對加密的密文進行解密,得到簽名的信息,然後用a的公鑰對簽名進行驗證,便可得到原始信息。

J. 區塊鏈安全問題應該怎麼解決

區塊鏈項目(尤其是公有鏈)的一個特點是開源。通過開放源代碼,來提高項目的可信性,也使更多的人可以參與進來。但源代碼的開放也使得攻擊者對於區塊鏈系統的攻擊變得更加容易。近兩年就發生多起黑客攻擊事件,近日就有匿名幣Verge(XVG)再次遭到攻擊,攻擊者鎖定了XVG代碼中的某個漏洞,該漏洞允許惡意礦工在區塊上添加虛假的時間戳,隨後快速挖出新塊,短短的幾個小時內謀取了近價值175萬美元的數字貨幣。雖然隨後攻擊就被成功制止,然而沒人能夠保證未來攻擊者是否會再次出擊。
當然,區塊鏈開發者們也可以採取一些措施
一是使用專業的代碼審計服務,
二是了解安全編碼規范,防患於未然。
密碼演算法的安全性
隨著量子計算機的發展將會給現在使用的密碼體系帶來重大的安全威脅。區塊鏈主要依賴橢圓曲線公鑰加密演算法生成數字簽名來安全地交易,目前最常用的ECDSA、RSA、DSA 等在理論上都不能承受量子攻擊,將會存在較大的風險,越來越多的研究人員開始關注能夠抵抗量子攻擊的密碼演算法。
當然,除了改變演算法,還有一個方法可以提升一定的安全性:
參考比特幣對於公鑰地址的處理方式,降低公鑰泄露所帶來的潛在的風險。作為用戶,尤其是比特幣用戶,每次交易後的余額都採用新的地址進行存儲,確保有比特幣資金存儲的地址的公鑰不外泄。
共識機制的安全性
當前的共識機制有工作量證明(Proof of Work,PoW)、權益證明(Proof of Stake,PoS)、授權權益證明(Delegated Proof of Stake,DPoS)、實用拜占庭容錯(Practical Byzantine Fault Tolerance,PBFT)等。
PoW 面臨51%攻擊問題。由於PoW 依賴於算力,當攻擊者具備算力優勢時,找到新的區塊的概率將會大於其他節點,這時其具備了撤銷已經發生的交易的能力。需要說明的是,即便在這種情況下,攻擊者也只能修改自己的交易而不能修改其他用戶的交易(攻擊者沒有其他用戶的私鑰)。
在PoS 中,攻擊者在持有超過51%的Token 量時才能夠攻擊成功,這相對於PoW 中的51%算力來說,更加困難。
在PBFT 中,惡意節點小於總節點的1/3 時系統是安全的。總的來說,任何共識機制都有其成立的條件,作為攻擊者,還需要考慮的是,一旦攻擊成功,將會造成該系統的價值歸零,這時攻擊者除了破壞之外,並沒有得到其他有價值的回報。
對於區塊鏈項目的設計者而言,應該了解清楚各個共識機制的優劣,從而選擇出合適的共識機制或者根據場景需要,設計新的共識機制。
智能合約的安全性
智能合約具備運行成本低、人為干預風險小等優勢,但如果智能合約的設計存在問題,將有可能帶來較大的損失。2016 年6 月,以太坊最大眾籌項目The DAO 被攻擊,黑客獲得超過350 萬個以太幣,後來導致以太坊分叉為ETH 和ETC。
對此提出的措施有兩個方面:
一是對智能合約進行安全審計,
二是遵循智能合約安全開發原則。
智能合約的安全開發原則有:對可能的錯誤有所准備,確保代碼能夠正確的處理出現的bug 和漏洞;謹慎發布智能合約,做好功能測試與安全測試,充分考慮邊界;保持智能合約的簡潔;關注區塊鏈威脅情報,並及時檢查更新;清楚區塊鏈的特性,如謹慎調用外部合約等。
數字錢包的安全性
數字錢包主要存在三方面的安全隱患:第一,設計缺陷。2014 年底,某簽報因一個嚴重的隨機數問題(R 值重復)造成用戶丟失數百枚數字資產。第二,數字錢包中包含惡意代碼。第三,電腦、手機丟失或損壞導致的丟失資產。
應對措施主要有四個方面:
一是確保私鑰的隨機性;
二是在軟體安裝前進行散列值校驗,確保數字錢包軟體沒有被篡改過;
三是使用冷錢包;
四是對私鑰進行備份。

熱點內容
納斯達克區塊鏈投票 發布:2025-06-29 15:09:06 瀏覽:306
trx訓練帶背部肌肉 發布:2025-06-29 13:56:48 瀏覽:33
我們不要只看到區塊鏈有多牛 發布:2025-06-29 13:56:39 瀏覽:551
trx幣估值 發布:2025-06-29 13:42:09 瀏覽:37
usdt開賬戶 發布:2025-06-29 13:40:46 瀏覽:48
奧斯陸市中心去機場 發布:2025-06-29 13:37:06 瀏覽:110
usdt查詢上個地址 發布:2025-06-29 13:02:05 瀏覽:537
怎麼租用礦機 發布:2025-06-29 12:37:11 瀏覽:237
區塊鏈游戲十二星座官網 發布:2025-06-29 12:35:52 瀏覽:34
比特幣已跌 發布:2025-06-29 12:32:41 瀏覽:948