當前位置:首頁 » 算力簡介 » cpu與gpu的算力區別

cpu與gpu的算力區別

發布時間: 2021-05-07 23:22:20

⑴ cpu和gpu的區別有哪些

CPU即中央處理器,GPU即圖形處理器。其次,要解釋兩者的區別,要先明白兩者的相同之處:兩者都有匯流排和外界聯系,有自己的緩存體系,以及數字和邏輯運算單元。兩者都為了完成計算任務而設計。
CPU和GPU之所以大不相同,是由於其設計目標的不同,它們分別針對了兩種不同的應用場景。CPU需要很強的通用性來處理各種不同的數據類型,而GPU面對的則是類型高度統一的、相互無依賴的大規模數據和不需要被打斷的純凈的計算環境。
兩者的區別在於存在於片內的緩存體系和數字邏輯運算單元的結構差異:CPU雖然有多核,但總數沒有超過兩位數,每個核都有足夠大的緩存和足夠多的數字和邏輯運算單元,並輔助有很多加速分支判斷甚至更復雜的邏輯判斷的硬體;GPU的核數遠超CPU,被稱為眾核(NVIDIA Fermi有512個核)。每個核擁有的緩存大小相對小,數字邏輯運算單元也少而簡單(GPU初始時在浮點計算上一直弱於CPU)。從結果上導致CPU擅長處理具有復雜計算步驟和復雜數據依賴的計算任務,如分布式計算,數據壓縮,人工智慧,物理模擬,以及其他很多很多計算任務等。GPU由於歷史原因,是為了視頻游戲而產生的(至今其主要驅動力還是不斷增長的視頻游戲市場),在三維游戲中常常出現的一類操作是對海量數據進行相同的操作,如:對每一個頂點進行同樣的坐標變換,對每一個頂點按照同樣的光照模型計算顏色值。GPU的眾核架構非常適合把同樣的指令流並行發送到眾核上,採用不同的輸入數據執行。在2003-2004年左右,圖形學之外的領域專家開始注意到GPU與眾不同的計算能力,開始嘗試把GPU用於通用計算(即GPGPU)。之後NVIDIA發布了CUDA,AMD和Apple等公司也發布了OpenCL,GPU開始在通用計算領域得到廣泛應用,包括:數值分析,海量數據處理(排序,Map-Rece等),金融分析等等。
簡而言之,當程序員為CPU編寫程序時,他們傾向於利用復雜的邏輯結構優化演算法從而減少計算任務的運行時間,即Latency。當程序員為GPU編寫程序時,則利用其處理海量數據的優勢,通過提高總的數據吞吐量(Throughput)來掩蓋Lantency。目前,CPU和GPU的區別正在逐漸縮小,因為GPU也在處理不規則任務和線程間通信方面有了長足的進步。另外,功耗問題對於GPU比CPU更嚴重。
總的來講,GPU和CPU的區別是個很大的話題,甚至可以花一個學期用32個學時十幾次講座來講,所以如果提問者有更具體的問題,可以進一步提出。我會在我的知識范圍內嘗試回答。

⑵ 「cpu」和「GPU」之間的區別有什麼不一樣

GPU概念

GPU英文全稱Graphic Processing Unit,中文翻譯為「圖形處理器」。GPU是相對於CPU的一個概念,由於在現代的計算機中(特別是家用系統,游戲的發燒友)圖形的處理變得越來越重要,需要一個專門的圖形的核心處理器。

GPU的作用

GPU是顯示卡的「大腦」,它決定了該顯卡的檔次和大部分性能,同時也是2D顯示卡和3D顯示卡的區別依據。2D顯示晶元在處理3D圖像和特效時主要依賴CPU的處理能力,稱為「軟加速」。3D顯示晶元是將三維圖像和特效處理功能集中在顯示晶元內,也即所謂的「硬體加速」功能。顯示晶元通常是顯示卡上最大的晶元(也是引腳最多的)。現在市場上的顯卡大多採用NVIDIA和ATI兩家公司的圖形處理晶元。
於是NVIDIA公司在1999年發布GeForce 256圖形處理晶元時首先提出GPU的概念。GPU使顯卡減少了對CPU的依賴,並進行部分原本CPU的工作,尤其是在3D圖形處理時。GPU所採用的核心技術有硬體T&L、立方環境材質貼圖和頂點混合、紋理壓縮和凹凸映射貼圖、雙重紋理四像素256位渲染引擎等,而硬體T&L技術可以說是GPU的標志。
簡單說GPU就是能夠從硬體上支持T&L(Transform and Lighting,多邊形轉換與光源處理)的顯示晶元,因為T&L是3D渲染中的一個重要部分,其作用是計算多邊形的3D位置和處理動態光線效果,也可以稱為「幾何處理」。一個好的T&L單元,可以提供細致的3D物體和高級的光線特效;只不過大多數PC中,T&L的大部分運算是交由CPU處理的(這就也就是所謂的軟體T&L),由於CPU的任務繁多,除了T&L之外,還要做內存管理、輸入響應等非3D圖形處理工作,因此在實際運算的時候性能會大打折扣,常常出現顯卡等待CPU數據的情況,其運算速度遠跟不上今天復雜三維游戲的要求。即使CPU的工作頻率超過1GHz或更高,對它的幫助也不大,由於這是PC本身設計造成的問題,與CPU的速度無太大關系。

關於CPU和GPU的相關問題

第一個問題:
GPU的競爭遠比CPU的競爭來得激烈。通用PC的CPU就只有英特爾和AMD兩家大廠。而在GPU方面領先的是N記和A記兩家廠商,但能生產中低端產品的還有英特爾、3S等好幾家廠商。它們的產品雖然不如前兩家,但在很多應用方面也能滿足用戶的需要,所以N記和A記只有拚命往前跑才不會死掉。CPU廠商沒有採用GPU的先進工藝是因為CPU廠商都有自己投資的生產線,不可能一下把原來的生產線都淘汰了上新的生產線,那樣做可能連當初投入的資金都難以收回。而GPU廠商由於種種原因,一般都是自己設計由別人代工的,比如找台積電代工。代工廠商為了能接到業務,只有不停升級自己的生產設備,這樣才能生存下來。所以造成以上原因。
第二個問題
就如你所說的一樣,CPU除了處理游戲的AI,情節等方面的數據外,對於有些圖像方面也是由它完成的。當微軟每次發布新的DX時,並不是每款GPU都能支持DX新的特性,所以有些圖像方面的任務還得由CPU來完成。還有有些特性比如重力特性以前是由CPU來完成,現在有些GPU也能支持了,這些任務就由GPU來完成了。
第三個問題
GPU相當於專用於圖像處理的CPU,正因為它專,所以它強,在處理圖像時它的工作效率遠高於CPU,但是CPU是通用的數據處理器,在處理數值計算時是它的強項,它能完成的任務是GPU無法代替的,所以不能用GPU來代替CPU。
另外
現在AMD收購了A記顯卡晶元的設計廠商,AMD看到今後CPU和GPU只有走一條融合的道路才能地競爭中佔得先機。CPU和GPU如何配合默契才能最大地提高工作效率是AMD現在考慮的問題,也是英特爾的問題。
第四個問題
微軟發布windows7 其中一個顯著特性就是 聯合GPU和CPU的強大實力,提升GPU在硬體使用的價值,在Windows7中,CPU與GPU組成了協同處理環境。CPU運算非常復雜的序列代碼,而GPU則運行大規模並行應用程序。微軟利用DirectX Compute將GPU作為操作系統的核心組成部分之一。DirectX Compute。它讓開發人員能夠利用 GPU的大規模並行計算能力,創造出引人入勝的消費級和專業級計算應用程序。簡單的說,DirectX Compute就是微軟開發的GPGPU通用計算介面,欲統一GPU通用計算標准。也就是說windows7 以後GPU的硬體地位將僅次於CPU,發揮出更大的效用。

⑶ CPU 和 GPU 在物理結構和設計上有何區別

首先需要解釋CPU(Central Processing Unit)和GPU(Graphics Processing Unit)這兩個縮寫分別代表什麼。CPU即中央處理器,GPU即圖形處理器。其次,要解釋兩者的區別,要先明白兩者的相同之處:兩者都有匯流排和外界聯系,有自己的緩存體系,以及數字和邏輯運算單元。一句話,兩者都為了完成計算任務而設計。

先直觀地上個示意圖:

從圖中可以看到,CPU和GPU均有自己的存儲(橙色部分,實際的存儲體系比圖示更為復雜),控制邏輯(黃色部分)和運算單元(綠色部分),但區別是CPU的控制邏輯更復雜,而GPU的運算單元雖然較小但是眾多,GPU也可以提供更多的寄存器和程序猿可控的多級存儲資源。

兩者的區別在於存在於片內的緩存體系和數字邏輯運算單元的結構差異:CPU雖然有多核,但總數沒有超過兩位數,每個核都有足夠大的緩存和足夠多的數字和邏輯運算單元,並輔助有很多加速分支判斷甚至更復雜的邏輯判斷的硬體;GPU的核數遠超CPU,被稱為眾核(NVIDIA Fermi有512個核)。每個核擁有的緩存大小相對小,數字邏輯運算單元也少而簡單(GPU初始時在浮點計算上一直弱於CPU)。從結果上導致CPU擅長處理具有復雜計算步驟和復雜數據依賴的計算任務,如分布式計算,數據壓縮,人工智慧,物理模擬,以及其他很多很多計算任務等。

GPU由於歷史原因,是為了視頻游戲而產生的(至今其主要驅動力還是不斷增長的視頻游戲市場),在三維游戲中常常出現的一類操作是對海量數據進行相同的操作,如:對每一個頂點進行同樣的坐標變換,對每一個頂點按照同樣的光照模型計算顏色值。GPU的眾核架構非常適合把同樣的指令流並行發送到眾核上,採用不同的輸入數據執行。在2003-2004年左右,圖形學之外的領域專家開始注意到GPU與眾不同的計算能力,開始嘗試把GPU用於通用計算(即GPGPU)。之後NVIDIA發布了CUDA,AMD和Apple等公司也發布了OpenCL,GPU開始在通用計算領域得到廣泛應用,包括:數值分析,海量數據處理(排序,Map-Rece等),金融分析等等。

簡而言之,當程序員為CPU編寫程序時,傾向於利用復雜的邏輯結構優化演算法從而減少計算任務的運行時間,即Latency。當程序員為GPU編寫程序時,則利用其處理海量數據的優勢,通過提高總的數據吞吐量(Throughput)來掩蓋Lantency。目前,CPU和GPU的區別正在逐漸縮小,因為GPU也在處理不規則任務和線程間通信方面有了長足的進步。另外,功耗問題對於GPU比CPU更嚴重。

⑷ 電腦的CPU和GPU有什麼區別

首先需要解釋CPU和GPU這兩個縮寫分別代表什麼。CPU即中央處理器,GPU即圖形處理器。其次,要解釋兩者的區別,要先明白兩者的相同之處:兩者都有匯流排和外界聯系,有自己的緩存體系,以及數字和邏輯運算單元。一句話,兩者都為了完成計算任務而設計。

兩者的區別在於存在於片內的緩存體系和數字邏輯運算單元的結構差異:CPU雖然有多核,但總數沒有超過兩位數,每個核都有足夠大的緩存和足夠多的數字和邏輯運算單元,並輔助有很多加速分支判斷甚至更復雜的邏輯判斷的硬體;GPU的核數遠超CPU,被稱為眾核(NVIDIA Fermi有512個核)。每個核擁有的緩存大小相對小,數字邏輯運算單元也少而簡單(GPU初始時在浮點計算上一直弱於CPU)。從結果上導致CPU擅長處理具有復雜計算步驟和復雜數據依賴的計算任務,如分布式計算,數據壓縮,人工智慧,物理模擬,以及其他很多很多計算任務等。GPU由於歷史原因,是為了視頻游戲而產生的(至今其主要驅動力還是不斷增長的視頻游戲市場),在三維游戲中常常出現的一類操作是對海量數據進行相同的操作,如:對每一個頂點進行同樣的坐標變換,對每一個頂點按照同樣的光照模型計算顏色值。GPU的眾核架構非常適合把同樣的指令流並行發送到眾核上,採用不同的輸入數據執行。在2003-2004年左右,圖形學之外的領域專家開始注意到GPU與眾不同的計算能力,開始嘗試把GPU用於通用計算(即GPGPU)。之後NVIDIA發布了CUDA,AMD和Apple等公司也發布了OpenCL,GPU開始在通用計算領域得到廣泛應用,包括:數值分析,海量數據處理(排序,Map-Rece等),金融分析等等。
簡而言之,當程序員為CPU編寫程序時,他們傾向於利用復雜的邏輯結構優化演算法從而減少計算任務的運行時間,即Latency。當程序員為GPU編寫程序時,則利用其處理海量數據的優勢,通過提高總的數據吞吐量(Throughput)來掩蓋Lantency。目前,CPU和GPU的區別正在逐漸縮小,因為GPU也在處理不規則任務和線程間通信方面有了長足的進步。另外,功耗問題對於GPU比CPU更嚴重。

⑸ 電腦中的CPU和GPU是什麼意思

CPU :中央處理器,是一塊超大規模的集成電路,是一台計算機的運算核心(Core)和控制核心( Control Unit)。它的功能主要是解釋計算機指令以及處理計算機軟體中的數據。

GPU:圖形處理器,又稱顯示核心、視覺處理器、顯示晶元,是一種專門在個人電腦、工作站、游戲機和一些移動設備(如平板電腦、智能手機等)上圖像運算工作的微處理器。

CPU和GPU它們分別針對了兩種不同的應用場景

1、CPU需要很強的通用性來處理各種不同的數據類型,同時又要邏輯判斷又會引入大量的分支跳轉和中斷的處理。這些都使得CPU的內部結構異常復雜。

2、GPU面對的則是類型高度統一的、相互無依賴的大規模數據和不需要被打斷的純凈的計算環境。

(5)cpu與gpu的算力區別擴展閱讀

CPU和GPU應用的方向

1、CPU所擅長的像操作系統這一類應用,需要快速響應實時信息,需要針對延遲優化,所以晶體管數量和能耗都需要用在分支預測、亂序執行、低延遲緩存等控制部分。

2、GPU適合對於具有極高的可預測性和大量相似的運算以及高延遲、高吞吐的架構運算。

⑹ cpu和GPU有什麼區別。

CPU和GPU主要區別:

1、CPU是電腦的中央處理器。

2、GPU是電腦的圖形處理器。

3、CPU是一塊超大規模的集成電路,其中包含ALU算術邏輯運算單元、Cache高速緩沖存儲器以及Bus匯流排。

4、CPU是一台計算機的控制和運算核心,它的主要功能便是解釋計算機發出的指令以及處理電腦軟體中的大數據。

5、GPU是圖像處理器的縮寫,它是一種專門為PC或者嵌入式設備進行圖像運算工作的微處理器。

6、GPU的工作與上面說過的CPU類似,但又不完全像是,它是專為執行復雜的數學和幾何計算而生的,而這游戲對這方面的要求很高,因此不少游戲玩家也對GPU有著很深的感情。

所以,CPU和GPU是兩個完全不一樣的東西,他們只是名字聽起來差不多。

(6)cpu與gpu的算力區別擴展閱讀:

CPU和GPU因為最初用來處理的任務就不同,所以設計上有不小的區別,而某些任務和GPU最初用來解決的問題比較相似,所以用GPU來算了,GPU的運算速度取決於雇了多少小學生,CPU的運算速度取決於請了多麼厲害的教授,教授處理復雜任務的能力是碾壓小學生的,但是對於沒那麼復雜的任務,還是頂不住人多。

當然現在的GPU也能做一些稍微復雜的工作了,相當於升級成初中生高中生的水平,但還需要CPU來把數據喂到嘴邊才能開始幹活,究竟還是靠CPU來管的。

⑺ GPU, GPGPU ,CPU 有什麼區別

GPGPU,帶CPU處理能力的GPU。主要是GPU的工作,GPU的能力,可以有協助CPU的運算的能力,(通用圖形處理)超出GPU的能力范圍,甚至完全具備通用的數據處理。能否成為CPU看是否放在主板上。

GPU,用於圖形處理的晶元。(GPU也是一種CPU,,相對於顯卡)早期顯卡是沒有專門用做圖形處理的GPU的,不支持3D。

CPU,用於數據處理的晶元(圖形也可以認為是數據)。中央處理器,一種相對的概念。潛移默化被認定是放在主板上的那顆東西,通過向GPU傳送指令,控制GPU。其實也就是一種微處理器。

AMD-APU,加速處理器。集成GPU核心的CPU,並且融合。不同於Intel I系智能(GPU CPU獨立工作)。

熱點內容
去自我中心化幾歲 發布:2025-05-15 12:35:01 瀏覽:127
名人朋友圈怎麼卡圈幣 發布:2025-05-15 12:29:50 瀏覽:400
比特幣礦機怎麼挖幣 發布:2025-05-15 12:09:28 瀏覽:661
eth轉出一直未確認 發布:2025-05-15 11:51:58 瀏覽:601
比特幣礦機生產商曹 發布:2025-05-15 11:51:05 瀏覽:169
去錫滬路家藝中心坐車 發布:2025-05-15 11:46:41 瀏覽:395
杭州區塊鏈補貼政策 發布:2025-05-15 11:45:54 瀏覽:759
eth和btc在哪裡購買 發布:2025-05-15 11:36:53 瀏覽:233
志願者區塊鏈平台 發布:2025-05-15 11:30:23 瀏覽:186
17年6月份比特幣價格行情 發布:2025-05-15 11:28:48 瀏覽:589