算力時代
可以參考下面,根據一些網吧市場常用的顯卡,整理的一份相關顯卡的價格和算力以及預計回本期,大概可以做個參考:
Radeon RX 580顯卡
整機功耗:243W
計算力:22.4M
顯卡售價:1999元
每24小時挖ETH數量:0.015
每24小時產生收益:24.48元
預計回本時間:81.66天
Radeon RX 470顯卡
整機功耗:159W
計算力:24.3M
顯卡售價:1599元
每24小時挖ETH數量:0.017
每24小時產生收益:27.9元
預計回本時間:57.31天
Radeon RX 480顯卡
整機功耗:171W
計算力:24.4M
顯卡售價:1999元
每24小時挖ETH數量:0.017
每24小時產生收益:27.87元
預計回本時間:71.73天
(1)算力時代擴展閱讀:
顯卡(Video card,Graphics card)全稱顯示介面卡,又稱顯示適配器,是計算機最基本配置、最重要的配件之一。顯卡作為電腦主機里的一個重要組成部分,是電腦進行數模信號轉換的設備,承擔輸出顯示圖形的任務。
顯卡接在電腦主板上,它將電腦的數字信號轉換成模擬信號讓顯示器顯示出來,同時顯卡還是有圖像處理能力,可協助CPU工作,提高整體的運行速度。對於從事專業圖形設計的人來說顯卡非常重要。 民用和軍用顯卡圖形晶元供應商主要包括AMD(超微半導體)和Nvidia(英偉達)2家。現在的top500計算機,都包含顯卡計算核心。在科學計算中,顯卡被稱為顯示加速卡。
2. 算力作為新基建產業一環,未來將有多大空間
IDC此前發布的《2018-2019年中國人工智慧計算力發展評估報告》指出,到2022年,全球人工智慧市場中用於算力的投資將超過176億美元,未來五年(2018-2022),該市場的復合增長率將超過30%。而算力也將成為現代社會重要的基礎設施,並成為中國新基建戰略的重要組成部分。XnMatrix是全球化、去中心化的新一代雲計算平台,是Web3.0智能時代數字經濟領域的新型基礎設施。
3. 「算力」是什麼意思
算力是比特幣網路處理能力的度量單位。即為計算機計算哈希函數輸出的速度。比特幣網路必須為了安全目的而進行密集的數學和加密相關操作。 例如,當網路達到10Th/s的哈希率時,意味著它可以每秒進行10萬億次計算。
在通過「挖礦」得到比特幣的過程中,我們需要找到其相應的解m,而對於任何一個六十四位的哈希值,要找到其解m,都沒有固定演算法,只能靠計算機隨機的hash碰撞,而一個挖礦機每秒鍾能做多少次hash碰撞,就是其「算力」的代表,單位寫成hash/s,這就是所謂工作量證明機制POW。
(3)算力時代擴展閱讀
算力為大數據的發展提供堅實的基礎保障,大數據的爆發式增長,給現有算力提出了巨大挑戰。互聯網時代的大數據高速積累,全球數據總量幾何式增長,現有的計算能力已經不能滿足需求。據IDC報告,全球信息數據90% 產生於最近幾年。並且到2020年,40% 左右的信息會被雲計算服務商收存,其中1/3 的數據具有價值。
因此算力的發展迫在眉睫,否則將會極大束縛人工智慧的發展應用。我國在算力、演算法方面與世界先進水平有較大差距。算力的核心在晶元。因此需要在算力領域加大研發投入,縮小甚至趕超與世界發達國家差距。
算力單位
1 kH / s =每秒1,000哈希
1 MH / s =每秒1,000,000次哈希。
1 GH / s =每秒1,000,000,000次哈希。
1 TH / s =每秒1,000,000,000,000次哈希。
1 PH / s =每秒1,000,000,000,000,000次哈希。
1 EH / s =每秒1,000,000,000,000,000,000次哈希。
4. 什麼是算力
算力(也稱哈希率)是比特幣網路處理能力的度量單位。即為計算機(CPU)計算哈希函數輸出的速度。比特幣網路必須為了安全目的而進行密集的數學和加密相關操作。 例如,當網路達到10Th/s的哈希率時,意味著它可以每秒進行10萬億次計算。
在通過「挖礦」得到比特幣的過程中,我們需要找到其相應的解m,而對於任何一個六十四位的哈希值,要找到其解m,都沒有固定演算法,只能靠計算機隨機的hash碰撞,而一個挖礦機每秒鍾能做多少次hash碰撞,就是其「算力」的代表,單位寫成hash/s,這就是所謂工作量證明機制POW(Proof Of Work)。
日前,比特幣全網算力已經全面進入P算力時代(1P=1024T,1T=1024G,1G=1024M,1M=1024k),在不斷飆升的算力環境中,P時代的到來意味著比特幣進入了一個新的軍備競賽階段。
算力是衡量在一定的網路消耗下生成新塊的單位的總計算能力。每個硬幣的單個區塊鏈隨生成新的交易塊所需的時間而變化。
5. 每一個階段計算機的計算能力
計算機的歷史
現代計算機的誕生和發展 現代計算機問世之前,計算機的發展經歷了機械式計算機、機電式計算機和萌芽期的電子計算機三個階段。
早在17世紀,歐洲一批數學家就已開始設計和製造以數字形式進行基本運算的數字計算機。1642年,法國數學家帕斯卡採用與鍾表類似的齒輪傳動裝置,製成了最早的十進制加法器。1678年,德國數學家萊布尼茲製成的計算機,進一步解決了十進制數的乘、除運算。
英國數學家巴貝奇在1822年製作差分機模型時提出一個設想,每次完成一次算術運算將發展為自動完成某個特定的完整運算過程。1884年,巴貝奇設計了一種程序控制的通用分析機。這台分析機雖然已經描繪出有關程序控制方式計算機的雛型,但限於當時的技術條件而未能實現。
巴貝奇的設想提出以後的一百多年期間,電磁學、電工學、電子學不斷取得重大進展,在元件、器件方面接連發明了真空二極體和真空三極體;在系統技術方面,相繼發明了無線電報、電視和雷達……。所有這些成就為現代計算機的發展准備了技術和物質條件。
與此同時,數學、物理也相應地蓬勃發展。到了20世紀30年代,物理學的各個領域經歷著定量化的階段,描述各種物理過程的數學方程,其中有的用經典的分析方法已根難解決。於是,數值分析受到了重視,研究出各種數值積分,數值微分,以及微分方程數值解法,把計算過程歸結為巨量的基本運算,從而奠定了現代計算機的數值演算法基礎。
社會上對先進計算工具多方面迫切的需要,是促使現代計算機誕生的根本動力。20世紀以後,各個科學領域和技術部門的計算困難堆積如山,已經阻礙了學科的繼續發展。特別是第二次世界大戰爆發前後,軍事科學技術對高速計算工具的需要尤為迫切。在此期間,德國、美國、英國部在進行計算機的開拓工作,幾乎同時開始了機電式計算機和電子計算機的研究。
德國的朱賽最先採用電氣元件製造計算機。他在1941年製成的全自動繼電器計算機Z-3,已具備浮點記數、二進制運算、數字存儲地址的指令形式等現代計算機的特徵。在美國,1940~1947年期間也相繼製成了繼電器計算機MARK-1、MARK-2、Model-1、Model-5等。不過,繼電器的開關速度大約為百分之一秒,使計算機的運算速度受到很大限制。
電子計算機的開拓過程,經歷了從製作部件到整機從專用機到通用機、從「外加式程序」到「存儲程序」的演變。1938年,美籍保加利亞學者阿塔納索夫首先製成了電子計算機的運算部件。1943年,英國外交部通信處製成了「巨人」電子計算機。這是一種專用的密碼分析機,在第二次世界大戰中得到了應用。
1946年2月美國賓夕法尼亞大學莫爾學院製成的大型電子數字積分計算機(ENIAC),最初也專門用於火炮彈道計算,後經多次改進而成為能進行各種科學計算的通用計算機。這台完全採用電子線路執行算術運算、邏輯運算和信息存儲的計算機,運算速度比繼電器計算機快1000倍。這就是人們常常提到的世界上第一台電子計算機。但是,這種計算機的程序仍然是外加式的,存儲容量也太小,尚未完全具備現代計算機的主要特徵。
新的重大突破是由數學家馮·諾伊曼領導的設計小組完成的。1945年3月他們發表了一個全新的存儲程序式通用電子計算機方案—電子離散變數自動計算機(EDVAC)。隨後於1946年6月,馮·諾伊曼等人提出了更為完善的設計報告《電子計算機裝置邏輯結構初探》。同年7~8月間,他們又在莫爾學院為美國和英國二十多個機構的專家講授了專門課程《電子計算機設計的理論和技術》,推動了存儲程序式計算機的設計與製造。
1949年,英國劍橋大學數學實驗室率先製成電子離散時序自動計算機(EDSAC);美國則於1950年製成了東部標准自動計算機(SFAC)等。至此,電子計算機發展的萌芽時期遂告結束,開始了現代計算機的發展時期。
在創制數字計算機的同時,還研製了另一類重要的計算工具——模擬計算機。物理學家在總結自然規律時,常用數學方程描述某一過程;相反,解數學方程的過程,也有可能採用物理過程模擬方法,對數發明以後,1620年製成的計算尺,己把乘法、除法化為加法、減法進行計算。麥克斯韋巧妙地把積分(面積)的計算轉變為長度的測量,於1855年製成了積分儀。
19世紀數學物理的另一項重大成就——傅里葉分析,對模擬機的發展起到了直接的推動作用。19世紀後期和20世紀前期,相繼製成了多種計算傅里葉系數的分析機和解微分方程的微分分析機等。但是當試圖推廣微分分析機解偏微分方程和用模擬機解決一般科學計算問題時,人們逐漸認識到模擬機在通用性和精確度等方面的局限性,並將主要精力轉向了數字計算機。
電子數字計算機問世以後,模擬計算機仍然繼續有所發展,並且與數字計算機相結合而產生了混合式計算機。模擬機和混合機已發展成為現代計算機的特殊品種,即用在特定領域的高效信息處理工具或模擬工具。
20世紀中期以來,計算機一直處於高速度發展時期,計算機由僅包含硬體發展到包含硬體、軟體和固件三類子系統的計算機系統。計算機系統的性能—價格比,平均每10年提高兩個數量級。計算機種類也一再分化,發展成微型計算機、小型計算機、通用計算機(包括巨型、大型和中型計算機),以及各種專用機(如各種控制計算機、模擬—數字混合計算機)等。
計算機器件從電子管到晶體管,再從分立元件到集成電路以至微處理器,促使計算機的發展出現了三次飛躍。
在電子管計算機時期(1946~1959),計算機主要用於科學計算。主存儲器是決定計算機技術面貌的主要因素。當時,主存儲器有水銀延遲線存儲器、陰極射線示波管靜電存儲器、磁鼓和磁心存儲器等類型,通常按此對計算機進行分類。
6. 十次方算力租賃平台是怎樣產生的
為什麼會出現這樣一個平台?隨著大數據、人工智慧這樣一個時代的到來,數據的處理就已經成了重要的生產力,而數據的生產力就是需要算力來做支撐。十次方的算力平台,就是提供這種算力支持的平台。
7. 什麼是算力
在通過「挖礦」得到比特幣的過程中,我們需要找到其相應的解m,而對於任何一個六十四位的哈希值,要找到其解m,都沒有固定演算法,只能靠計算機隨機的hash碰撞,而一個挖礦機每秒鍾能做多少次hash碰撞,就是其「算力」的代表,單位寫成hash/s,這就是所謂工作量證明機制POW(Proof Of Work)。
日前,比特幣全網算力已經全面進入P算力時代(1P=1024T,1T=1024G,1G=1024M,1M=1024k),在不斷飆升的算力環境中,P時代的到來意味著比特幣進入了一個新的軍備競賽階段。這是算力的含義,想知道更多推薦去挖鏈網看看。(親 請採納)
8. 在智慧時代,算力就是核心競爭力,那麼浪潮AI是如何支撐算力發展的
浪潮AI多年來一直打造人工智慧基礎措施。在算力生產層面,浪潮打造了業內最強最全的AI計算產品陣列。
其中,浪潮自研的新一代人工智慧伺服器NF5488A5在2020年一舉打破MLPerf AI推理&訓練基準測試19項世界紀錄;
在算力調度層面,浪潮AIStation人工智慧開發平台能夠為AI模型開發訓練與推理部署提供從底層資源到上層業務的全平台全流程管理支持,幫助企業提升資源使用率與開發效率90%以上,加快AI開發應用創新;
在聚合算力方面,浪潮AI持續打造更高效率更低延遲硬體加速設備與優化軟體棧;
在算力釋放上,浪潮AutoML Suite為人工智慧客戶與開發者提供快速高效開發AI模型的能力,開啟 AI 全自動建模新方式,加速產業化應用。
9. 算力平台的發展與應用有哪些
我們生活在數據化的時代,一切數據化的服務都離不開算力的支持,算力平台的應用領域挺廣的,我給你發2張圖看看你就知道了。
10. 算力是什麼意思
算力是比特幣網路處理能力的度量單位。即為計算機計算哈希函數輸出的速度。比特幣網路必須為了安全目的而進行密集的數學和加密相關操作。 例如,當網路達到10Th/s的哈希率時,意味著它可以每秒進行10萬億次計算。
在通過「挖礦」得到比特幣的過程中,我們需要找到其相應的解m,而對於任何一個六十四位的哈希值,要找到其解m,都沒有固定演算法,只能靠計算機隨機的hash碰撞,而一個挖礦機每秒鍾能做多少次hash碰撞,就是其「算力」的代表,單位寫成hash/s,這就是所謂工作量證明機制POW。
(10)算力時代擴展閱讀
算力為大數據的發展提供堅實的基礎保障,大數據的爆發式增長,給現有算力提出了巨大挑戰。互聯網時代的大數據高速積累,全球數據總量幾何式增長,現有的計算能力已經不能滿足需求。據IDC報告,全球信息數據90% 產生於最近幾年。並且到2020年,40% 左右的信息會被雲計算服務商收存,其中1/3 的數據具有價值。
因此算力的發展迫在眉睫,否則將會極大束縛人工智慧的發展應用。我國在算力、演算法方面與世界先進水平有較大差距。算力的核心在晶元。因此需要在算力領域加大研發投入,縮小甚至趕超與世界發達國家差距。
算力單位
1 kH / s =每秒1,000哈希
1 MH / s =每秒1,000,000次哈希。
1 GH / s =每秒1,000,000,000次哈希。
1 TH / s =每秒1,000,000,000,000次哈希。
1 PH / s =每秒1,000,000,000,000,000次哈希。
1 EH / s =每秒1,000,000,000,000,000,000次哈希。