當前位置:首頁 » 算力簡介 » 水的膨脹力怎麼算

水的膨脹力怎麼算

發布時間: 2021-05-14 15:34:27

㈠ 水結成冰體積會增加十分之一(理想環境);將產生膨脹力,這個力有多大如何計算

任何事物都是有極限的,可以做試驗來研究,無窮大是不科學的,有研究表明是在7兆帕左右!

㈡ 水的膨脹系數是多少

水的膨脹系數F與溫度t(℃)的關系為:F=0.9992+0.0002t。按水的溫度校正加水量,V校正=V×F。如配製總量為100萬ml的葡萄糖注射液,稀配桶水的溫度為95℃,則F=1.0182,加水量應為101.82萬ml,否則含量將偏高1.82%。
原子吸收光譜法測定水中錳的不確定度評定
摘要:目的介紹水中錳原子吸收光譜測定法的結果不確定度評定方法,為建立有效的質量控制方法提供科學依據。方法確定和計算測定過程各不確定度分量,最後整體合成。結果原子吸收分光光譜法直接測定水中錳的不確定度為0.011mg/L。結論本方法評定過程合理,步驟清晰,不重復和遺漏。關鍵詞:不確定度;原子吸收分光光譜法;錳
Evaluation on the uncertainty of manganese in water determined by atomic absorption spectrometry.WU Liu-jian.(HainanProvincialCenterfor Disease Control and Prevention,Haikou570203,Hainan,P.R.China)Abstract:Objective To introce a method for evaluation of the uncertainity of manganese in water by using atomic obsorption spectrometry and provide scientific basis for setting up of effective quality control. Methods The factors affecting the testing results were determined and the results were integrated. Results The uncertainty of the result of Mn in water tested by atomic absorption spectrometry is0.011mg/L. Conclusion The metho

㈢ 水的膨脹系數是多少謝謝。

e—水的膨脹率,即e=α△t,式中△t為系統內最大水溫差,α為水的膨脹系數(l/m3℃),知道系統水溫後,α可從有關手冊中查出。或一般稀釋水的膨脹系數為 0.025%/℃,故每 5℃ 的溫度變化可影響一般體積的測定。

㈣ 供暖系統,水膨脹量如何計算

很簡單:
水的膨脹量=系統總的水容量*(暖氣系統水的初始水溫時水的密度 — 鍋爐最高出水溫度時的水的密度)
說明:
——暖氣系統水的初始水溫時水的密度,常規取4攝氏度的水密度值:「1」.

㈤ 水的膨脹計算公式

PV=nRT
自己算
R=8.314

你要認識到第一個人回答的重要性

㈥ 水結冰的體積膨脹率怎麼算

不是,和其它東西一樣了,隨溫度下降體積縮小.縮小的比例不大.

㈦ 請問水結冰的膨脹力有多少

等於冰的機械強度。比如水缸結的是一薄層冰時,水缸安然無恙,而結的冰厚一點,水缸就會漲裂。這除了薄冰和厚冰尺寸不同脹力不同有關,也與不同溫度冰的機械強度不同有關,或者說更有關。比如0下30度的冰塊,其強度有的菜刀都奈它無何。所以結冰的膨脹力取決於結冰溫度。

㈧ 如何計算熱膨脹力

就碳鋼瞬時線性熱膨脹系數計算模型的建立為例:
當材料的溫度由Tref(基準的參考溫度)變化到T時,材料長度L的相對變化為:

(1)

根據密度ρ與L3成反比,可推導出εth與ρ間存在以下關系:

(2)

則瞬時線性熱膨脹系數定義為:

(3)

由此可見,欲求出瞬時線性熱膨脹系數,關鍵在於確定碳鋼在不同溫度下的密度值。
以〔C〕≤0.8 %的碳鋼為研究對象,根據其冷卻時凝固組織的特點(見圖1),按照碳含量分為以下4組:
Ⅰ.〔C〕<0.09 %:
L→L+δ→δ→δ+γ→γ→α+γ→α+Fe3C
Ⅱ.〔C〕=0.09 %~0.16 %:
L→L+δ→δ+γ→γ→α+γ→α+Fe3C
Ⅲ.〔C〕=0.16 %~0.51 %:
L→L+δ→L+γ→γ→α+γ→α+Fe3C
Ⅳ.〔C〕=0.51 %~0.80 %:
L→L+γ→γ→α+γ→α+Fe3C
碳鋼凝固組織為多相混合體系,其密度按照式(4)和式(5)確定,即:

(4)

f1+f2+…+fi=1 (5)

其中,fi為體系中組分i的質量分數,可利用相圖,根據杠桿規則由程序計算確定。組分i(i為L、δ、γ、α或Fe3C)的密度為溫度和碳含量的函數:ρ〔T,(i)〕=ρi(T,C),其值取自文獻〔6〕。
計算線性熱膨脹系數時,選固相線溫度為基準參考溫度。熱膨脹系數由固相線處的數值線性地降低到零強度溫度(即固相分率fs=0.8對應的溫度)處的零值,在零強度溫度以上范圍,熱膨脹系數保持為零。這樣,就可以避免液相區產生熱應力。

圖1 鐵碳相圖
Fig.1 Fe-C phase diagram

1.2 鑄坯熱—彈—塑性應力模型簡介
利用有限元法,先計算鑄坯溫度場,然後將計算結果以熱載荷的形式引入應力場。
1.2.1 鑄坯溫度場的計算
忽略拉坯方向傳熱,並根據對稱性,取鑄坯1/4斷面薄片,其四邊形4節點等參單元網格如圖2所示。非穩態二維傳熱控制方程為:

圖2 計算域及鑄坯單元網格示意圖

Fig.2 Simulation domain and FEM meshused for analysis

(6)

初始溫度為澆鑄溫度,鑄坯表面散熱熱流採用現場實測值:q=2 688-420 t1/2 kW/m2,中心對稱線處為絕熱邊界。模型中採用的熱物理性能參數均隨溫度而變化,並且利用等效比熱容c來考慮潛熱的影響。另外,液相區對流效果通過適當放大液相區導熱系數來實現。
1.2.2 鑄坯應力場的計算
為利用溫度場計算結果,採用與溫度場一致的鑄坯網格劃分方法。體系中結晶器銅板為剛性接觸邊界,通過控制其運動軌跡(包括運動方向和速度)來表徵結晶器錐度。若鑄坯表面某個節點與銅板間距離小於規定的接觸判據,則認為在此處發生接觸,對該節點施加接觸約束(避免節點穿越銅板表面),否則按自由邊界處理。
計算時將液、固區域作為一個整體,對高於液相線溫度的材料的力學參數作特殊處理,使液相區應力狀態保持均勻的靜壓力狀態,且施加在外部的鋼水靜壓力可基本保持原值地傳遞到固態坯殼內側。根據對稱性,應在中心對稱線上施加垂直方向的固定位移約束,但由於只關心坯殼的位移場,且坯殼厚度一般不會超過15 mm,所以只在距表面15 mm的范圍內施加約束。超出15 mm的范圍基本上為液相區,在其外邊緣(對稱線處)施加鋼水靜壓力(壓力值正比於離彎月面的距離)。
上述體系的力平衡方程為:

(7)

式中,〔K〕為系統的總剛矩陣;{δi}為節點位移列陣;{Rexter}為系統外力(鋼水靜壓力和結晶器銅壁的接觸反力)引起的等效節點載荷列陣;{Rε0}為熱應變引起的等效節點載荷列陣。考慮包晶相變的影響,在計算{Rε0}時採用前面計算出的碳鋼線性熱膨脹系數曲線。
計算採用熱—彈—塑性模型,假定鑄坯斷面處於廣義平面應變狀態,服從Mises屈服准則和等向強化規律,其硬化曲線為分段線性〔7〕。
2 計算結果及討論
以碳含量為0.045 %、0.100 %和0.200 %的3種碳鋼作為計算對象,採用相同的計算條件,即:鑄坯斷面尺寸為:150 mm×150 mm, 拉 坯 速 度1.5 m/min,澆鑄溫度1 550 ℃,結晶器長700 mm、錐度0.8 %,彎月面距結晶器上口距離100 mm。
2.1 3種碳鋼的瞬時熱膨脹系數
圖3為計算出的碳鋼的瞬時線性熱膨脹系數曲線。可以看出:當〔C〕=0.045 %時,熱膨脹系數在固相線溫度以下區域突然變化。這是因為鋼液凝固後發生初生的δ相→γ相的轉變,並伴隨有比容變化,使得熱膨脹系數急劇上升;當〔C〕=0.100 %時,熱膨脹系數從兩相區開始發生突變。這是因為鋼液凝固時,液相和δ相發生包晶反應,轉變成γ相,剩餘的δ相繼續向γ相轉變。轉變過程中的比容變化也引起熱膨脹系數的急劇上升。

圖3 碳鋼的瞬時線性熱膨脹系數曲線
3條曲線中,非零值起始點為零強度溫度對應點;
A、B、C為固相線溫度對應點

Fig.3 Instant linear thermal expansion

coefficient of carbon steel
另外,〔C〕=0.045 %的δ相→γ相轉變溫度區間較窄,轉變較快(見圖1),因此線性熱膨脹系數突變值較大。相比之下,〔C〕=0.100 %的熱膨脹系數突變值要小一些。雖然如此,但由於後者的相變溫度區間較寬,其熱膨脹系數突變的溫度區間也較寬。由此可推斷,〔C〕=0.100 %時發生的包晶相變對初生坯殼凝固收縮的影響將大於〔C〕=0.045 %時發生的δ相→γ相轉變的影響。
〔C〕=0.200 %鋼的熱膨脹系數沒有發生突變。這是因為,雖然也有包晶相變發生,但它只發生在某個溫度水平上(約1 495 ℃),故對熱膨脹系數的影響很小。
2.2 鑄坯表面收縮量
圖4示出〔C〕=0.045 %、0.100 %和0.200 % 3種鋼的鑄坯表面收縮量沿拉坯方向和橫斷面方向的變化情況 ( 其中底部的空間斜平面為結晶器銅板

圖4 鑄坯表面收縮量
(a) 〔C〕=0.045 %; (b) 〔C〕=0.100 %; (c) 〔C〕=0.200 %
Fig.4 Surface shrinkage of billet

內壁面)。從圖中可以看出:鑄坯角部在凝固的初期就收縮並脫離結晶器銅板,而靠近中間處幾乎始終與銅板接觸(只有〔C〕=0.100 %的鋼在靠近出口處才保持分離)。越靠近角部收縮脫離越早,收縮量也越大。
在鋼水靜壓力作用下,收縮的坯殼會被壓回結晶器銅板,從而使坯殼收縮發生波動〔收縮面曲面圖呈犬牙狀(見圖4)〕。靠近彎月面區域坯殼較薄,波動現象較為明顯。另外,越靠近角部波動也越明顯。初生坯殼的這種收縮波動會導致應力集中,容易誘發裂紋等表面缺陷。
比較3種碳鋼鑄坯的表面收 縮 量 可 知:〔C〕=0.100 %鋼的收縮最顯著,收縮波動最大(彎月面區域),且波動沿橫斷面方向擴展最廣;〔C〕=0.200 %鋼的收縮量最小。
2.3 彎月面區域角部初生坯殼收縮狀況
圖5示出3種碳鋼的鑄坯角部在靠近彎月面區域的收縮情況。可以看出:在離彎月面20 mm范圍內,鑄坯角部就脫離了結晶器銅板,其中〔C〕=0.045 %鋼脫離最早,這是因為該鋼種的固相線溫度最高,最早凝固形成坯殼;〔C〕=0.100 %鋼在形成初生坯殼後發生強烈收縮,但在離彎月面50 mm處被增大的鋼水靜壓力壓回,然後又繼續收縮。該鋼種初生坯殼收縮最顯著,收縮波動也最大,因此最容易誘發鑄坯表面缺陷;〔C〕=0.045 %鋼的初生坯殼收縮量和收縮波動程度明顯地降低;〔C〕=0.200 %鋼的初生坯殼收縮量和收縮波動程度最小。

圖5 彎月面區域初生坯殼角部收縮量

Fig.5 Shrinkage of initial shell ofbillet corner at meniscus

3 結 論
(1)對於碳含量在0.1 %附近的包晶鋼,其初生坯殼在結晶器上部和靠近角部區域的收縮很不規則,容易誘發鑄坯表面缺陷。
(2)坯殼不規則收縮主要集中在彎月面下100 mm范圍內。由此可知,結晶器上部的錐度並不適合坯殼收縮。因此,應通過優化結晶器錐度來提高拉坯速度。一個重要的指導原則是在結晶器上部採用較大錐度,以促使坯殼與銅板良好接觸。

㈨ 水結冰後,膨脹力有多大

1克水結冰時膨脹力為960kg/cm2
可以根據水的質量計算膨脹力

熱點內容
德國btc交易所有哪些 發布:2025-05-06 05:37:35 瀏覽:458
trx如何兌換eth 發布:2025-05-06 05:30:40 瀏覽:838
台灣比特幣atm機 發布:2025-05-06 05:24:07 瀏覽:617
2020年3月灰度持倉比特幣 發布:2025-05-06 05:21:59 瀏覽:973
數字貨幣的發展優缺點 發布:2025-05-06 05:21:54 瀏覽:986
btc什麼時候開始的 發布:2025-05-06 05:14:01 瀏覽:808
區塊鏈加密技術有哪些公司有 發布:2025-05-06 05:13:18 瀏覽:350
shib哪裡開發的 發布:2025-05-06 05:12:26 瀏覽:605
農業銀行比特幣 發布:2025-05-06 05:11:44 瀏覽:398
區塊鏈惡意信息傳播 發布:2025-05-06 05:09:19 瀏覽:947