tpu算力
1. 自動駕駛晶元市場火爆,科技巨頭搶灘,中國企業能否一戰
[汽車之家 新鮮技術解讀]? 自動駕駛系統,最關鍵的部件是什麼呢?是感測器?是控制軟體?還是處理晶元呢?我個人認為在目前這個階段來說,處理晶元是一個最關鍵的部件,它的性能直接影響自動駕駛系統的好壞。過去,頂尖的晶元技術一直是國外企業壟斷的,但隨著中國晶元企業近年的快速追趕,情況已經有所改觀。今天我們就來聊聊中國自動駕駛晶元究竟處於一個怎樣的水平?
● 自動駕駛晶元是干什麼用的?
雖然目前L3級別有條件自動駕駛車輛在中國尚未落地,但從一些帶有高階L2駕駛輔助系統的車輛上我們可以發現,這些車輛都帶有數量不少的感測器用以檢測車輛周圍的障礙物,從而為控制系統決策提供數據支持。這些感測器包括毫米波雷達、超聲波雷達、攝像頭等。這些感測器每秒鍾會產生數GB(1GB=1024MB=10242KB)的數據,自動駕駛晶元需要流暢地處理這些數據才能保證系統及時作出正確的決策,從而確保車輛的行駛安全。
可能大家對每秒數GB的數據沒有概念,這里舉一個生活中的例子。普通的USB3.0介面U盤,其讀取速度峰值接近200MB/s,要從這個U盤中讀取1GB的文件大約需要5秒左右的時間,足見每秒數GB的數據量是相當大的。
自動駕駛系統除了需要解決大流量數據傳輸問題,還需要解決的就是如何能快速處理這些海量數據,而強大的自動駕駛晶元正是那把正確的鑰匙。
● 國外的自動駕駛晶元處在怎樣的水平?
雖然本文主要是講中國自動駕駛晶元的,但知己知彼,百戰百勝,在審視本土狀況之前,我們還是先要來簡單了解國外的情況。國外自動駕駛晶元真正能夠大規模進入量產車市場的無非三家,英偉達、Mobileye(現已被英特爾收購)、特斯拉。
其中,走實用路線的Mobileye目前市場佔有率在70%以上,市場上的產品主要是應用於L2駕駛輔助系統的EyeQ3晶元(算力0.256TOPS,「TOPS」是每秒萬億次運算的意思,詳細介紹請看這篇文章相關介紹,本文標注的算力如無特別說明均指的是8位整數計算能力)以及具備L3級別自動駕駛能力的EyeQ4晶元(算力2.5TOPS)。像是小鵬G3、蔚來ES6/ES8、廣汽新能源Aion LX就採用了EyeQ4晶元作為其駕駛輔助系統的核心。
相較於英偉達上代自動駕駛平台旗艦之作DRIVE PX Pegasus 320TOPS的算力,新的DRIVE AGX Orin平台的旗艦配置實現了成倍的性能增長。此外,DRIVE AGX Orin平台的擴展柔性化程度相比以往平台進一步提升,能夠通過硬體配置的增減,滿足從一般駕駛輔助到L5級別完全自動駕駛等不同級別車輛的需求。
特斯拉Autopilot 1.0系統採用的是1顆英偉達Tegra3晶元+1顆Mobileye EyeQ3晶元;Autopilot 2.0系統採用的是1顆英偉達Tegra Parker晶元+1顆Pascal架構GPU晶元;Autopilot 2.5系統採用的是2顆英偉達Tegra Parker晶元+1顆Pascal架構GPU晶元。
已經搭載在最新下線特斯拉車型上的自研FSD晶元,單顆晶元算力為72TOPS,Full Self-Driving Computer集成有兩顆獨立工作的FSD晶元,一顆「掛了」,另外一顆馬上「頂上」,提升了整套系統的安全性和穩定性。
當然了,除了上面三家鋒芒畢露的企業,還有不少企業在垂涎自動駕駛晶元這塊蛋糕,其中包括高通、賽靈思、恩智浦等,但這些企業真正走向量產車的自動駕駛晶元還不成規模,限於篇幅,這里就不作介紹了。
● 迅速崛起的中國自動駕駛晶元企業
好了,看完國外的情況,我們目光回到國內。自動駕駛晶元市場火爆,國外科技巨頭搶灘登陸,中國企業究竟實力怎麼樣呢?下面我們一起來看看。
◆ 寒武紀
中科寒武紀科技股份有限公司(下稱「寒武紀」)的前身是中國科學院計算技術研究所下,由陳雲霽和陳天石兩兄弟領導的一個課題組。該課題組在2008年開始研究神經網路演算法和晶元,並在2012年開始陸續發表研究成果。
2016年,上述課題組提出的深度學習處理器指令集DianNaoYu被ISCA2016所接受,實驗表明搭載該指令集的晶元相較於傳統執行X86指令集的晶元,在神經網路計算方面有兩個數量級的性能優勢。隨著課題組的研究成果趨於成熟,中科寒武紀科技股份有限公司正式成立,並著手將其晶元和指令集向商業領域轉化。也是在2016年,寒武紀發布了首款商用深度學習處理器寒武紀1A。
聊完這家公司的身世,下面我們來看看它的產品。目前寒武紀有兩款最新的人工智慧晶元IP授權,分別是Cambricon-1M和Cambricon-1H。性能指標最強的Cambricon-1M-4K在1GHz時鍾頻率下擁有8TOPS的算力;性能指標最弱的Cambricon-1H8mini在1GHz時鍾頻率下擁有0.5TOPS的算力。所有型號的詳細算力參數可以參看下錶。
Cambricon-1M和Cambricon-1H被定義為終端智能處理器IP。我們在手機或者汽車這些終端上出現的人臉識別、指紋識別、障礙物識別、路標識別等應用都能通過在晶元中集成上述處理器IP實現加速。
上面提到的「邊緣」一詞來自於「邊緣計算」。 邊緣計算是指在靠近智能設備(終端)或數據源頭(雲端)的一端,提供網路、存儲、計算、應用等能力,達到更快的網路服務響應,更安全的本地數據傳輸。邊緣計算可以滿足系統在實時業務、智能應用、安全隱私保護等方面的要求,為用戶提供本地的智能服務。思元220在邊緣計算中扮演著提高數據安全、降低處理延時以及優化帶寬利用的角色。
目前寒武紀高算力晶元產品被定義為智能加速卡,可用於伺服器中加速人工智慧運算。谷歌的AlphaGo人工智慧機器人打敗韓國世界圍棋冠軍李世石的新聞相信各位有所耳聞,AlphaGo人工智慧機器人的背後其實是谷歌自研的TPU晶元。寒武紀的高算力晶元產品的特性和應用也與谷歌TPU類似,當然它們之間也可以算是競爭對手了。
所不同的是思元270-S4採用的是被動散熱設計,最大熱設計功耗為70W,定位為高能效比人工智慧推理設計的數據中心加速卡。這也意味著該卡會有「功耗牆」設定,即當加速卡功耗達到閾值上限時會降低算力以保證較低的功耗和發熱。
思元270-F4相當於是「滿血版」 思元270-S4,最大熱設計功耗150W,採用渦輪風扇進行主動散熱。良好的散熱和充足的供電使得思元270-F4能夠發揮出思元270晶元的全部性能。該卡定位是為桌面環境提供數據中心級人工智慧計算力,簡而言之就是為台式機配的高性能人工智慧加速卡。
雖然思元270在製造工藝上只採用了台積電的16nm工藝,但整體能耗比還是做得比較不錯的。雖然單卡算力不及最新的英偉達旗艦計算卡,但5張思元270-S4/思元270-F4並行的話,峰值算力也能達到英偉達A100的水平。只是英偉達A100更先進的工藝應該在能耗比上面會有一定的優勢。
其中思元100-C搭載了視頻和圖像解碼單元,採用被動散熱方式,最大熱設計功耗為110W;思元100-D不搭載視頻和圖像解碼單元,採用被動散熱方式,最大熱設計功耗為75W。目前思元100系列產品已經於2019年在滴滴雲和金山雲上得到應用。其中滴滴雲採用思元100板卡加速彈性推理服務,該服務用於深度學習推理任務;而金山雲則採用思元100板卡加速語音、圖像、視頻等人工智慧應用。
前面講的盡是伺服器級的計算卡,這是不是偏離了我們應該聊的自動駕駛晶元話題呢?其實不然。前面也提到了,寒武紀目前是一家專注於人工智慧晶元開發的企業,自動駕駛領域確實涉足不深,但通過和其他國內友商的聯合還是有一些建樹的。
WiseADCU CN1自動駕駛運算域控制器提供了L3或以上級別自動駕駛系統所需的算力以及感測器連接數量需求,實現了模擬、模型、系統、架構、編碼、加速、演算法七個關鍵控制點的自主可控。
實際上威盛集團由於處理器產品性能競爭力弱,早就退出了主流X86處理器市場的競爭,市場中就剩下英特爾和AMD在角力。兆芯成立後,吃透了威盛的X86技術,並在威盛當時最新的處理器架構基礎上進行全面的改進和優化,先後推出了ZX-A、ZX-C以及ZX-C+等處理器產品。
6月2日,科創板上市委發布2020年第33次審議會議結果公告,寒武紀上市獲得通過,從受理到審批通過,寒武紀只用了68天,刷新了科創板審核速度。寒武紀上市後成為A股中唯一一家人工智慧晶元公司,該領域的市場空間在2022年有望超過500億美元,發展潛力巨大。打通了A股融資渠道的寒武紀究竟能否憑借其獨特的技術優勢進一步發展壯大呢?這誰都說不準,但可以確定的是,寒武紀的成功上市讓很多投身於該領域的公司贏得了信心,看到了希望,中國人工智慧晶元時代或將由此開啟。
◆ 地平線機器人
好了,聊完寒武紀,我們來聊聊另外一家人工智慧晶元企業——地平線機器人技術研發有限公司(下簡稱「地平線」)。地平線是由前網路深度學習研究院常務副院長余凱於2015年創立的,專注於自動駕駛與人工智慧晶元的一家公司。余凱也是網路自動駕駛的發起人。
余凱建立的地平線,一直以來堅持的是軟體和硬體相結合的方向。他認為,演算法、晶元和雲計算將構成自動駕駛的三個核心支點。相比起前面介紹的寒武紀注重打造高性能硬體晶元,地平線的商業模式是把以「演算法+晶元」為核心的嵌入式人工智慧解決方案,提供給下游廠商。打個比方比較好理解,如果說寒武紀賣的是處理器晶元,那麼地平線賣的就是安裝了操作系統的整機。產品方面,相較寒武紀從終端到雲端的晶元產品布局,地平線雖然自研晶元,但更偏重的是以產品功能來劃分產品線。
硬體上,征程二代晶元內部集成了兩個Cortex A53核心、兩個自研的BPU(Brain Processing Unit,可用於加速人工智慧演算法)核心、DDR4內存控制器以及輸入輸出控制器,算力達到4TOPS,典型功耗為2W,這比起目前主流的Mobileye EyeQ4晶元的算力和能耗比都更優秀。
這些智能音箱有較強的自然語義識別功能,能夠識別人們發出的語音命令,結合物聯網技術,人們通過簡單的語音命令除了能夠讓音箱播放在線音頻資源外,還能夠控制各種家電,如開關、燈泡、風扇、空調等。這就是AIoT的一個最簡單的應用例子。
從硬體方面看,旭日二代晶元內部集成了兩個ARM Cortex A53核心、兩個自研的BPU核心、DDR4內存控制器以及輸入輸出控制器,算力達到4TOPS,典型功耗為2W。從參數上看,旭日二代和征程二代好像沒什麼差別,實際上征程二代可以看做是旭日二代的車規版,它滿足AEC-Q100標准,在工作溫度、電磁輻射等標准上會更高一些。雖然征程二代和旭日二代均採用台積電28nm工藝製造,但旭日二代晶元尺寸為14x14mm,比征程二代晶元17x17mm的尺寸更小,更有利於內嵌到AIoT設備當中。
和寒武紀一樣,地平線同樣擁有自研的人工智慧加速晶元技術。所不同的是,地平線更注重軟體和硬體的整合,從而為下游廠商提供成熟的解決方案。在資本市場,地平線同樣受到追捧,其投資者眾多,其中包括了世界半導體行業巨頭英特爾和SK海力士以及國內的一線汽車集團等。未來地平線是否會和寒武紀一樣登錄科創板目前還不得而知,但CEO余凱對於在科創板上市是持積極態度的。我個人是支持有更多像地平線這樣的企業登錄科創板,更充分的競爭可以避免壟斷同時促進該領域的加速發展。
◆ 西井科技
西井科技創辦於2015年,它起初是一家做類腦晶元的廠商。所謂的類腦晶元簡單來說就是以人腦的工作方式設計製造出來的晶元。目前大行其道的馮?諾依曼結構處理器晶元,其計算模塊和存儲單元是分離的,晶元工作的過程中需要通過數據匯流排來連接計算模塊和存儲單元,數據傳輸上的開銷太大從而限制著這類晶元的工作效率和能耗比的提升。
類腦晶元模仿的是大腦神經元的工作形式,大腦的處理單元是神經元,內存就是突觸。神經元和突觸是物理相連的,所以每個神經元計算都是本地的,而從全局來看神經元們是分布式在工作。類腦晶元由於具有本地計算和分布式工作的特點,所以在工作效率和能耗上相比馮?諾依曼結構處理器晶元更有優勢。
雖然這種類腦晶元看著和普通的處理器晶元在外觀上沒有什麼不同,但其實內部運作原理與傳統的處理器晶元有著本質的區別。國內除了西井科技開發出了類腦晶元,像是清華開發的天機(TianJic)晶元和浙大開發的達爾文(DARWIN)晶元都是類腦晶元。所不同的是,西井科技的DeepSouth晶元是全球首塊可商用5000萬類腦「神經元」晶元。
西井科技這艘大船拿著投資人動輒過億的投資款,肯定是要追求盈利的。不管公司的技術有多超前,無法商業化在逐利的資本市場必然是無法接受的。隨著人工智慧和自動駕駛產業的興起,西井科技找到了技術商業化的契機。
相比起我們前面兩個廠商動輒上百TOPS算力的產品,西井這兩款產品的算力確實有點拿不出手。但西井科技的這兩款晶元能夠實現片上學習,可以隨時新增樣本進行增量訓練來提升推理准確率。
可能大家看到這里還是沒看懂西井科技這兩塊晶元的優勢所在,我在這里稍微解析一下大家就能夠明白。目前的自動駕駛演算法都是通過高性能伺服器進行模型訓練(讓計算機去看攝像頭或激光雷達等感測器獲取的環境數據,學習目標判斷方法),然後將訓練好的模型再部署到車載硬體之中(把機器學習到的高效目標判斷方法固化到車載自動駕駛系統之中)。
在實際應用方面,西井科技並沒有一頭沖進乘用車自動駕駛系統領域,而是在智能港口和智能礦場干出了自己的一片天地,並把觸角伸向了智慧醫療和智慧物流領域。2017年10月,公司與全球知名港機巨頭振華重工建立長期合作夥伴關系,這是西井科技進軍智能港口的重要一步。
自動駕駛卡車要在港區自動裝卸集裝箱,需要自動駕駛系統精細的車輛控制、敏銳的環境識別以及准確的定位,這些都需要港區高清地圖配合。西井科技的無人集裝箱卡車定位精度在5cm以內,這是實現集裝箱自動裝卸的關鍵。全球首輛港區作業無人集裝箱卡車作業成功,充分展現了西井科技在卡車自動駕駛系統以及高精度地圖繪制領域的實力。
除了自動駕駛和高清地圖繪制外,西井科技還為企業打包了一整套智能港口和智能礦場解決方案,利用人工智慧技術提升港口和礦場的運作效率,同時能夠進一步降低其運營成本。深挖行業中存在的機遇,逐步築起行業壁壘是西井科技面對人工智慧晶元市場激烈競爭的重要策略。
作為全球最早落地行業應用的自動駕駛團隊,西井科技旗下自動駕駛品牌Qomolo逐路目前涵蓋了無人駕駛跨運車、無人駕駛新能源集卡和無人駕駛礦卡三大項目。
面對乘用車自動駕駛晶元領域的激烈競爭,我認為短期內西井科技不會進入該領域。相反它會通過深耕已有的智能港口、智能礦場以及無人駕駛重卡市場,進一步築高上述市場的壁壘,擴大自身的行業影響力和競爭力。但不能忽視的是,西井科技掌握的類腦晶元技術或有可能成為未來自動駕駛晶元領域的一個風口。
上文詳細介紹中國3家知名自動駕駛晶元公司及其產品,相信大家應該對目前國內自動駕駛晶元現狀有了一個更深了解。除了這三家公司,數字地圖供應商四維圖新通過收購傑發科技也布局自動駕駛晶元市場,但量產晶元目前尚未落地。網路的昆侖晶元以150W的功耗實現了260TOPS的算力,競爭力很強,但其定位為雲端全功能人工智慧晶元,主要用在伺服器之上。網路在自動駕駛領域的亮點還是在於其Apollo自動駕駛軟體平台。
● 全文總結:
寒武紀、地平線、西井科技這三家公司都有著各自的特色和亮點。寒武紀專注於晶元研發,產品算力最強;地平線除了研發晶元,還提供完整的自動駕駛軟體方案,對主機廠開發更友好;西井科技掌握獨特的類腦晶元設計,在智能港口、智能礦場以及無人駕駛卡車領域已經站穩了陣腳。整體來看,中國自動駕駛晶元在性能和功耗上和外國晶元相比並不差,如何在中國開放L3級別有條件自動駕駛車輛落地這個時間節點用產品和服務先發制人是中國自動駕駛晶元企業的制勝關鍵。究竟鹿死誰手,讓我們拭目以待吧,好戲即將上演!(圖/文/汽車之家 常慶林?部分圖片源於網路)
2. 自研晶元,算力遠超英偉達谷歌的晶元巨頭是哪一個
必須是華為,華為現在正在自研晶元,採取的是最新的技術,目前的成功品在運算速度上已經超過同期其他晶元產品了。
3. 給人工智慧提供算力的晶元有哪些類型
給人工智慧提供算力的晶元類型有gpu、fpga和ASIC等。
GPU,是一種專門在個人電腦、工作站、游戲機和一些移動設備(如平板電腦、智能手機等)上圖像運算工作的微處理器,與CU類似,只不過GPU是專為執行復雜的數學和幾何計算而設計的,這些計算是圖形渲染所必需的。
FPGA能完成任何數字器件的功能的晶元,甚至是高性能CPU都可以用FPGA來實現。 Intel在2015年以161億美元收購了FPGA龍 Alter頭,其目的之一也是看中FPGA的專用計算能力在未來人工智慧領域的發展。
ASIC是指應特定用戶要求或特定電子系統的需要而設計、製造的集成電路。嚴格意義上來講,ASIC是一種專用晶元,與傳統的通用晶元有一定的差異。是為了某種特定的需求而專門定製的晶元。谷歌最近曝光的專用於人工智慧深度學習計算的TPU其實也是一款ASIC。
(3)tpu算力擴展閱讀:
晶元又叫集成電路,按照功能不同可分為很多種,有負責電源電壓輸出控制的,有負責音頻視頻處理的,還有負責復雜運算處理的。演算法必須藉助晶元才能夠運行,而由於各個晶元在不同場景的計算能力不同,演算法的處理速度、能耗也就不同在人工智慧市場高速發展的今天,人們都在尋找更能讓深度學習演算法更快速、更低能耗執行的晶元。
4. AI伺服器的優勢有哪些
從伺服器的硬體架構來看,AI伺服器是採用異構形式的伺服器,在異構方式上可以根據應用的范圍採用不同的組合方式,如CPU+GPU、CPU+TPU、CPU+其他的加速卡等。與普通的伺服器相比較,在內存、存儲、網路方面沒有什麼差別,主要在是大數據及雲計算、人工智慧等方面需要更大的內外存,滿足各種數據的收集與整理。
我們都知道普通的伺服器是以CPU為算力的提供者,採用的是串列架構,在邏輯計算、浮點型計算等方面很擅長。因為在進行邏輯判斷時需要大量的分支跳轉處理,使得CPU的結構復雜,而算力的提升主要依靠堆砌更多的核心數來實現。
但是在大數據、雲計算、人工智慧及物聯網等網路技術的應用,充斥在互聯網中的數據呈現幾何倍數的增長,這對以CPU為主要算力來源的傳統服務提出了嚴重的考驗,並且在目前CPU的製程工藝、單個CPU的核心數已經接近極限,但數據的增加卻還在持續,因此必須提升伺服器的數據處理能力。因此在這種大環境下,AI伺服器應運而生。
現在市面上的AI伺服器普遍採用CPU+GPU的形式,因為GPU與CPU不同,採用的是並行計算的模式,擅長梳理密集型的數據運算,如圖形渲染、機器學習等。在GPU上,NVIDIA具有明顯優勢,GPU的單卡核心數能達到近千個,如配置16顆NVIDIA Tesla V100 Tensor Core 32GB GPUs的核心數可過10240個,計算性能高達每秒2千萬億次。且經過市場這些年的發展,也都已經證實CPU+GPU的異構伺服器在當前環境下確實能有很大的發展空間。
但是不可否認每一個產業從起步到成熟都需要經歷很多的風雨,並且在這發展過程中,競爭是一直存在的,並且能推動產業的持續發展。AI伺服器可以說是趨勢,也可以說是異軍崛起,但是AI伺服器也還有一條較長的路要走,以上就是浪潮伺服器分銷平台十次方的解答。
5. 金融科技(fintech)就業的前景以及所涉崗位是什麼
金融科技(fintech)就業的前景廣闊,是未來發展的重要方向,並且所涉崗位比較多,例如產品經理、數據專家等,具體介紹如下:
金融科技就業前景:
在金融機構、金融科技企業、第三方金融服務機構、金融監管部門及相關企事業單位、政府部門從事金融科技產品開發、運營和管理等相關工作。
與傳統金融相比,金融科技憑借在許多方面有著更大的優勢,在處理風險和獲客上的效率都大大提升,成為風投界的新興寵兒。
金融科技就業崗位:
1、區塊鏈開發人員
市場對區塊鏈編程人才的需求猛增。根據自由職業人才市場Upwork的統計,區塊鏈已成為金融技能需求增長最快的技能之一。
2、開發人員
FINTECH應用程序市場在過去幾年中取得了驚人的增長。根據最近的報道,全球應用下載和消費者支出已達到創紀錄水平。
由於受到精通技術的年輕一代消費者的需求的推動,移動支付解決方案和個人理財的需求在極速增長。
3、金融/財務分析師
財務分析師負責根據收入預測來管理預算。根據公司的規模,您可以是單個部門或整個公司的分析師。
4、產品經理
產品經理將設計,架構和開發一個去中心化的區塊鏈網路,以實現強大的數據安全性,對數據的強大控制,易於集成,創建新的利潤中心並降低成本。
5、合規專家
隨著FINTECH的監管負擔增加,這些金融公司中將有更多的合規專家,合規官和合規分析師在工作。根據華爾街日報,合規官是該國最熱門的工作之一。
6、網路安全分析師
網路作為在線小偷和黑客總是去賺錢的地方。金融服務將永遠是主要目標。根據IBM X-Force研究小組的研究,自2016年以來,金融服務行業遭受的攻擊比任何行業都多。故此,對於網路安全分析師的需求居高不下。
7、定量分析師
「 Quants」是撰寫大型,復雜財務模型必不可缺的專業人才。他們是在大型投資銀行和對沖基金進行交易證券和分析風險的數據驅動交易技術的驅動著。
隨著大數據的持續增長,量化在FINTECH中變得越來越重要,以設計能夠對大量數據進行分類並使其自動化的模型,從而使交易可以成為一個主要的自動化過程。
8、業務發展經理
業務開發經理在FINTECH組織中非常重要,因為他們有助於產生新的收入並幫助許多新興公司成長。業務開發經理正在尋找新市場,新業務夥伴關系以及開發現有市場的新方法。
9、數據專家
隨著客戶越來越多地使用Internet和數字技術,客戶變得越來越主動,並希望新的金融服務公司為他們提供更多根據其需求量身定製的服務。
因此,將需要數據科學家,首席數據官,財務數據分析師和數據分析經理來篩選可以提供更多有關其市場洞察力的信息。
金融科技的興起過程:
以大數據、雲計算、人工智慧、區塊鏈以及移動互聯為引領的新的工業革命與科技革命,會導致金融學科的邊界、研究範式不斷被打破和被重構。
本輪科學技術的爆發導致金融行業傳統發展模式受到顛覆性沖擊的主要原因有以下兩方面:
一方面是全球數據積累存量已達到引爆新一輪行業變革的規模和水平,全球數據正以每年40%左右的速度快速增長。
2017年全球的數據總量為21.6ZB(1個ZB等於十萬億億位元組),金融數據在其中佔比很高,此外金融市場天然擁有海量標准化大數據,適合前沿科技落地生根。
另一方面是人工智慧等前沿科技在演算法、算力方面的使用,以及諸如GPU、TPU以及NPU等硬體技術的革命性突破,逐漸使已穩定50年之久的「摩爾定律」迎來終結。
科技深刻地改變了金融業態,並開始成為未來金融發展的制高點。金融科技正在傳統金融行業的各個領域積極布局,已然成為新的風口。
6. 為何說傳統的處理器已老態龍鍾了
據報道,日前美國公布的《2016—2045年新興科技趨勢報告》將人工智慧作為最值得關注的科技發展趨勢之一,隨著人工智慧快速發展,傳統計算機晶元「算力」不足問題日益凸顯,研製更能滿足人工智慧計算需求的新一代計算機晶元成為當務之急。
人工智慧的快速發展,對晶元的要求越來越高。人工智慧所採用的深度學習模式,本質上是多層次的人工神經網路演算法。這種演算法主要從輸入的海量數據中自發總結相關規律,這就需要對海量數據進行大量的計算處理。
人工智慧晶元設計的「初心」,就是加速深度學習演算法,從底層架構上更好地模擬人腦的神經特徵,進而實現更加智能的計算。這種人工智慧晶元將更能滿足深度學習系統進行數據計算的需求,同時還能對海量參數進行調整,將成為人工智慧發展應用的「催化劑」。
希望人工智慧技術可以取得更大的成就!
7. 蘋果iPhone11鏡頭設計與華為Mate20Pro相似,誰的拍照效果更勝一籌
華為Mate 20 Pro很不錯,參數如下:
1.屏幕:屏幕尺寸:6.39英寸,屏幕色彩1670萬色,解析度:2k+,1440 x 3120 像素。屏幕清晰,手感出色。
2.拍照:後置攝像頭:後置徠卡三攝:4000萬像素(廣角,f/1.8光圈)+2000萬像素(超廣角,f/2.2光圈)+800萬像素(長焦,f/2.4光圈),支持自動對焦(激光對焦/相位對焦/反差對焦),支持AIS防抖。前置單攝:支持3D 深度感知相機2400萬像素,f/2.0光圈,支持固定焦距。超廣角矩陣式布,帶來更寬廣的拍攝視角。
3.電池:電池容量:4200mAh(典型值),標配充電器支持10V/4A或9V/2A或5V/2A輸出,理論充電時間約1.25小時,長時間續航。
4.性能:採用HUAWEI Kirin 980(麒麟980)八核處理器,強大高效的運行,智慧、智能、感知系統給您帶來快捷和便利的生活。
5.系統:採用基於安卓9.0深度定製的EMUI9.0智慧系統,賦予用戶更高的人工智慧使用體驗。
您可登陸華為商城官網查看更多參數,進行選擇。
8. 華為發布全球最快 AI 運算集群 Atlas900,會對 AI 領域帶來什麼變化
9月18日,華為發布一款重量級的產品——Atlas 900,這款產品匯聚了華為幾十年的技術沉澱,是當前全球最快的AI訓練集群,由數千顆升騰處理器組成。在衡量AI計算能力的金標准ResNet-50模型訓練中,Atlas 900隻用了59.8秒就完成了訓練,這比原來的世界記錄還快了10秒。
「ImageNet-1k 數據集」 包含 128 萬張圖片,精度為 75.9%,在同等精度下,其他兩家業界主流廠家測試成績分別是 70.2s 和 76.8s,Atlas 900 AI 訓練集群比第 2 名快 15%。胡厚昆表示:Atlas 900 的強大算力,可廣泛應用於科學研究和商業創新。比如天文探索、石油勘探等領域,都需要進行龐大的數據計算和處理,原來可能花費好幾個月的工作,現在交給 Atlas 900,就是幾秒鍾的事情。Atlas 900 集成的數千顆升騰處理器,正是前段時間正式商用的升騰 910。
9. 為何說智能晶元具有無限的可能
據報道,日前美國公布的《2016—2045年新興科技趨勢報告》將人工智慧作為最值得關注的科技發展趨勢之一,隨著人工智慧快速發展,傳統計算機晶元「算力」不足問題日益凸顯,研製更能滿足人工智慧計算需求的新一代計算機晶元成為當務之急。
人機圍棋大戰中,谷歌「阿爾法狗」大約使用了170個GPU和1200個CPU,且專門佔用了一間機房並配備了大功率空調,如果將它換成人工智慧晶元,只要一個盒子大小的空間就可以取代它們了。目前,已出現了類腦計算人工智慧晶元的雛形。
分析人士表示,IBM研製的Truenorh晶元包含了100萬個數字神經元陣列和2.56億個通信電突觸,基本能模擬出人腦神經元的數據處理過程。同時,以脈沖神經網路晶元DeepSouth和深度學習類腦神經元晶元DeepWell等為代表的新概念晶元,也預示著人工智慧晶元未來的發展方向。
希望人能智能技術可以取得更大的成就!
10. 自動駕駛「芯」戰爭
今年,新冠疫情的爆發、經濟的下滑、國際政治環境的惡化,讓汽車產業充滿了巨大的不確定。多家咨詢機構預計,今年全球汽車銷量將面臨10%-20%的下滑。
然而,在不確定中,汽車行業對未來的方向又十分篤定。自動駕駛集中出現了幾則大新聞——
6月23日,剛剛與寶馬在自動駕駛領域宣布和平分手的賓士,宣布與晶元供應商英偉達達成合作,將使用後者的Orin晶元,開發下一代車載計算系統,為賓士量產車型2024年將全面搭載的L2-L3級自動駕駛功能,以及最高可達L4級的自動泊車功能提供算力支持。
6月25日,沃爾沃汽車集團宣布,沃爾沃將與谷歌旗下自動駕駛公司Waymo達成戰略合作夥伴關系,在一個全新的電動汽車平台上,進行L4級自動駕駛技術的合作,探索自動駕駛網約車等商業場景。
6月26日,亞馬遜正式收購美國自動駕駛公司Zoox,亞馬遜為此付出超過12億美元。
6月27日,滴滴自動駕駛網約車載人示範運營在上海正式啟動,央視對其全過程進行了直播。從這一天開始,滴滴在上海嘉定的自動駕駛測試車將面向公眾開放,滴滴在APP中上線了「未來出行」頁面,供公眾申請自動駕駛網約車試乘。
一時間,大公司近乎開啟了一場自動駕駛軍備競賽。毫無疑問,參與其中的企業都意識到,未來的汽車,將是跑在輪子上的超級計算機。高性能的計算晶元,在這場軍備競賽中至關重要的地位,愈發凸顯。
一、賓士另結新歡,只是因為它?
6月23日,在與寶馬的自動駕駛合作宣告暫停後4天,賓士向晶元供應商英偉達投懷送抱,雙方達成合作,為賓士將在2024年量產的自動駕駛車型開發計算平台。
在幾天前的公告中,雙方還表示,「鑒於建立共享技術平台所需的費用,以及當前的商業和經濟狀況,現在並不是成功實施合作的一個合適的時機。」太燒錢,看起來是讓雙方決定暫停技術合作的關鍵原因。
不過,賓士隨後與英偉達光速結伴的舉動,倒是指向了錢以外的因素。通常來說,車企與車企之間的合作,並不會對車企與供應商的合作產生影響,但賓士與寶馬之間的合作不同。在與賓士達成合作之前,寶馬已經與全球最大的ADAS系統供應商Mobileye組建了一個自動駕駛同盟,基於其EyeQ系列晶元研發自動駕駛。
與寶馬的合作意味著,賓士要選用Mobileye的晶元來構建關鍵的自動駕駛計算單元。而這或許是雙方分歧中尤為重要的那一個。國外咨詢機構Guidehouse首席分析師SamAbuelsamid稱,「我懷疑這兩家汽車製造商無法就使用的平台達成共識,現在,與英特爾/Mobileye的產品相比,Orin看起來是更強大的解決方案。」
從公開的信息來看,Sam的分析不無道理。Mobileye規劃的下一代自動駕駛晶元EyeQ5,其算力為24TOPS(每秒運算24萬億次),而英偉達去年底發布的Orin,算力則高達200TOPS。此外,Mobileye過去在與車企的合作中一貫表現強勢(盡管承諾EyeQ5將會更加開放),其提供的功能模塊對主機廠常常是「黑箱」;而英偉達自動駕駛構建的DriveAGX軟體平台一開始就走了一條開放的道路,可以支持車廠在其計算平台上自主進行演算法開發。
其實在此之前,賓士探索研發自動駕駛網約車時,因為該技術對晶元算力的高要求,賓士就選用了來自英偉達的DrivePEGASUS車載電腦。6月23日官宣的信息,意味著賓士在自動駕駛時代的晶元選擇上,全面倒向英偉達,將雙方的合作擴展到賓士的量產車型中。
而與沃爾沃達成自動駕駛戰略合作的Waymo,則是依託谷歌在AI領域的技術實力,使用自研的TPU。雖然Waymo用於車輛端的TPU算力並未公布,但據Waymo官方的透露,在使用TPU後,其自動駕駛系統的性能提升了15倍。
晶元在自動駕駛中的地位,可以用「隱形冠軍」來形容。從車輛外觀你看不見它的存在,但一台自動駕駛汽車能夠順利運行,它絕對是頭號功臣。
二、自動駕駛競賽,亦是一場晶元競賽
無論是賓士棄寶馬牽手英偉達,還是沃爾沃與Waymo高達戰略級別的聯盟,又或者是滴滴的自動駕駛網約車發車,上周集中發生的大新聞說明,汽車公司與科技公司都將自動駕駛放在了至關重要的位置:從近期看,自動駕駛功能是汽車產品力的重要組成部分;從長遠看,L4級自動駕駛投入大規模應用後,可能會徹底改變汽車行業的商業模式。
推動這一切變化的基礎,是一枚小小的晶元。為了在自動駕駛能力上獲取競爭優勢,參與這場競賽的企業或獨立研發,或合縱連橫,只為尋得一塊高性能的自動駕駛晶元。行業內有個非常典型的例子:特斯拉。
作為智能電動汽車的領頭羊,特斯拉和當前市場上的兩家主流自動駕駛晶元廠商都有過合作經歷。但是由於Mobileye的強勢和封閉,英偉達降不下來的功耗和高昂的開發成本,合作都未能長遠。特斯拉為了發揮軟硬體一體在自動駕駛中的優勢,率先在車企中獨立研發了自動駕駛計算平台的FSD,其算力達到144TOPS。FSD對自動駕駛的算力支持主要來自兩塊AI晶元,其單晶元算力約72TOPS。
迄今為止,特斯拉的FSD仍然保持著量產車自動駕駛算力紀錄。而特斯拉認為,FSD足以為其將推出的完全自動駕駛(FullSelf-Driving)功能提供支持。
毫無疑問,自動駕駛的競賽,同樣也是晶元的競賽。整個汽車行業向自動駕駛的重視乃至全面轉向,將創造巨大的自動駕駛晶元需求。如果哪家企業在自動駕駛晶元市場占據了可觀的份額,那麼對應的或許是千億美元市值的想像空間。
當前,在巨大市場的吸引下,自動駕駛晶元領域已經出現了或新或老的四種勢力:
第一類,是Mobileye等老牌的ADAS晶元/自動駕駛晶元供應商。
這一類企業,是汽車行業開始研發高級輔助駕駛系統(ADAS)時,就參與市場競爭的企業。這些企業面向自動駕駛的競爭策略是,通過在ADAS市場積累的技術以及客戶資源,不斷向上升級其既有產品,實現向自動駕駛的平滑過渡,典型的就是Mobileye對EyeQ系列晶元的不斷迭代。
除了Mobileye,瑞薩、恩智浦、德州儀器、電裝等老牌汽車半導體供應商,都有各自的自動駕駛晶元規劃。
第二類,是看到自動駕駛晶元機遇,跨領域而來的半導體巨頭。
比如上文提到的英偉達,此前其主力業務為屬於消費電子的GPU,以及數據中心等,但英偉達洞察到自動駕駛對高性能晶元的需求後,迅速進入了這一市場,目前已經推出DrivePX、DriveAGXXavier、DriveOrin三代產品,並獲得了不少車企的訂單。
主力業務為通信,制霸基帶晶元、手機SoC的高通,則在嘗試收購恩智浦獲得自動駕駛競賽入場券的努力告吹後,於今年CES上推出了SnapdragonRide自動駕駛計算平台。根據高通官方的信息,這一基於高通晶元打造的計算平台最高算力可達700TOPS,可支持L4--L5級自動駕駛。
而在高通之前,主力業務同樣為通信以及消費電子的華為,就已經發布了自動駕駛計算平台MDC600。這一計算平台由8顆昇騰310AI晶元整合而成,最高算力達到352TOPS。
第三類,是在新機遇下誕生的自動駕駛晶元初創企業。
在國內以地平線為典型代表。
本月,搭載地平線車規級AI晶元征程2的長安UNIT正式上市。藉此,地平線實現了國產自動駕駛晶元的率先「上車」。另一方面,算力為4TOPS的征程2,也是中國首款車規級AI晶元。
而在今年晚些時候,地平線還將發布算力達到96TOPS、支持16路高清攝像頭信號的征程5,這款晶元算力超越特斯拉的FSD,將面向高等級自動駕駛。
最後一類,則是特斯拉為代表的車企自研派。
由於車企基本沒有半導體的製造經驗,因此他們通常會向供應商采購晶元。而總部位於矽谷的特斯拉,則有著不同的基因、為了最大程度發揮軟硬體一體化的優勢,特斯拉依託矽谷的半導體人才資源,自行研發了FSD。
目前來看,車企自研自動駕駛晶元的模式難以復制,特斯拉很可能會是這條路徑的獨苗。
在國內,無論是傳統車企還是造車新勢力,目前都無自研自動駕駛晶元的計劃。作為全球最大的單一汽車市場,中國順理成章地成為自動駕駛晶元供應商的兵家必爭之地。
三、中國能否催生自動駕駛晶元巨頭?
如此多的參賽者,讓自動駕駛晶元這個仍待開發的藍海市場,看上去已經呈現出紅海的競爭態勢。近兩年中美圍繞晶元發生的一系列事件,讓人們對中國晶元產業的的弱勢心有戚戚。從年初國家11部位聯合發布的《智能汽車創新發展戰略》到「新基建」,都將車載晶元的研發作為戰略重點,中國汽車行業都希望能有更多本土晶元企業強勢崛起。
如今,在汽車行業進行智能化轉型、創造大量自動駕駛晶元需求的態勢下,中國晶元能否迎頭趕上,培育出一家能夠在市場上立足的中國本土自動駕駛晶元供應商?答案並不確定,但6月地平線征程2晶元搭載於長安UNIT的「上車」,至少已經開了一個好頭。據了解,在ADAS晶元領域,征程2晶元所展現的感知計算性能已經在多個指標上超越了行業龍頭Mobileye的晶元,特別是針對中國的特殊路況,並已經成功簽下了來自中國各大汽車集團的十多款定點車型。
地平線創始人余凱在一次媒體采訪中如此總結地平線的差異化優勢:「在全球范圍內,能提供這樣功耗和算力水平、且開放賦能的晶元企業,我們是獨一家。英偉達在輔助駕駛、智能座艙多模交互等方面完全沒有產品,晶元功耗也比較高。我們的功耗和算力可以跟Mobileye正面PK,但Mobileye不開放,而我們能滿足車企自主開發的需求」,並表示未來有信心拿到全球1/3的市場。
事實上,當自動駕駛潮流席捲而來,如地平線這樣率先瞄準車載AI晶元市場,並已通過前裝量產得到市場驗證的中國晶元企業確實迎來了最好的時代。中國作為全球最大的汽車市場,再加上自動駕駛技術開發的一些典型特徵與需求,為本土自動駕駛晶元企業創造了難得的機遇。
首先,自動駕駛技術有強地域性。
因為世界各地自然條件、交通場景、交通規則乃至是文化傳統的差異,所以在一國一地開發的自動駕駛技術很難復用到其他地區。這種影響會直接傳導到硬體層面——因為與具體數據、演算法高度整合,自動駕駛晶元很難不受地域特徵的支配。
在此情況下,一家擁有強大本土研發團隊、對中國的數據與場景更加了解的企業,有更大的概率研發出更適合中國場景,且演算法與硬體結合更加高效的自動駕駛晶元。
其次,當汽車被越來越多的人們看作電子產品時,人們對其功能迭代的頻率與速度,都有了更高的期望,自動駕駛功能也不例外。
此前,主要由國外供應商占據市場主流的ADAS,在功能搭載上車後便永不更新。但當汽車變得智能化,車輛其實可以通過不斷地OTA,實現功能的升級,甚至實現從ADAS到半自動駕駛、自動駕駛的跨越。比如特斯拉通過升級實現Model3的NOA(高速公路自動駕駛輔助)功能,就是典型的例子。
當然,特斯拉僅此一家。對於更多車企來說,要完成這樣的任務,需要他們與自動駕駛晶元供應商保持高頻、緊密的聯系,由雙方進行聯合研發。
這一變化,更加考驗供應商對車企需求的快速響應。換句話說,這需要自動駕駛晶元供應商建立一個成規模的現場支持團隊,做到對車企需求的快速反饋、支援。顯然,一個本土的、沒有文化語言隔閡的團隊,能夠更好地勝任。
最後,車企在自動駕駛研發上有更多的功能差異化訴求。
當ADAS功能在汽車產品已經高度標准化或者雷同時,它很難再成為吸引消費者的亮點。對此,有遠見、有能力的車企,紛紛選擇基於場景去開發新的、有差異的自動駕駛功能(比如寶馬的自動循跡倒車),從而獲得新的競爭力。
這一趨勢對自動駕駛晶元供應商提出的要求是,不能再單純採用過往的「黑箱」模式,直接給車企一個完整但「知其然不知其所以然」的功能模塊,而是要賦予車企進行二次開發、深度開發的權利。或者說,這要求自動駕駛晶元供應商轉變思路,去賦能車企的自動駕駛開發。
具體而言,這要求晶元供應商轉變思路,在戰略上開放,為車企的自動駕駛開發賦能;在產品策略上則要為車企分憂解難,通過打造工具鏈,降低車企基於自動駕駛晶元進行差異化功能開發的難度與成本。
從上述三點特徵來看,自動駕駛潮流的到來,將更加考驗自動駕駛供應商的服務意識與快速開發能力。而國外晶元供應商,因為歷史、成本、政治等因素,很少在國內搭建起成規模的研發與現場支持團隊,過往的開放程度與開發速度也難以滿足新的需求。而這,正是中國本土自動駕駛晶元供應商崛起的突破口。
最終,從形勢上來說,國外晶元巨頭產業先天更加成熟、進入汽車行業更早、各自擁有不同的壁壘。對中國本土自動駕駛晶元供應商來說,與他們同台競技並最終突出重圍,並不容易。
但如果本土自動駕駛晶元供應商在晶元算力、功耗等指標上的表現能迎頭趕上,並發揮自己的核心優勢,抓住車企智能化轉型的時代機遇,那麼,中國誕生一個本土自動駕駛晶元巨頭或將是大概率事件。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。