自動駕駛什麼時候能做到10tw算力
㈠ 比特斯拉FSD強7倍算力的蔚來自動駕駛NAD是什麼
焦點無疑是蔚來的ET7:蔚來首款具備自動駕駛能力的智能電動旗艦轎車。蔚來官方將之定義為
「為自動駕駛而生」的汽車。那麼ET7的自動駕駛能力會有多強呢?首先我們還是了解下ET7的基礎性能:新車最大功率 480kW,最大扭矩 850N·m,風阻系數
0.23Cd,百公里加速 3.9 秒。全系標配空懸掛和 4D 智能車身控制。
有了這么強的算力,ET7 全系標配 NAD 19 項安全與駕駛輔助功能,NAD 的完整功能將採用月租的服務訂閱模式, ADaaS(AD as a
Service),服務費為每月 680 元。雖然看得很激動,但ET7 的交付要到明年第一季度,至於 150kWh 的電池包,要到 2022
年第四季度才能開始交付。所以,在這么長的時間里,如今激烈競爭的新造車品牌中,ET7能否一直保持領先,還要看其他同學的成績了。
㈡ 馬斯克:2020年底可實現自動駕駛
據外媒報道,埃隆·馬斯克近日表示,特斯拉仍計劃在今年年底推出100萬輛自動駕駛計程車,這一計劃目前正在等待監管部門的批准。
解讀:2018年10月份,在軟體更新到9.0版本後,特斯拉自動駕駛可實現在高速公路上自由出入匝道口。當時,這一進展被解讀為「離全自動駕駛只剩一步之遙」了。
2019年2月底,特斯拉官網對自動駕駛部分的內容做了很大的調整,一個最明顯的變化是:「增強版自動駕駛」功能被拆分,其中一部分被劃歸Autopilot,而另一部分如自主召車、自主泊車、紅綠燈識別等功能則被劃歸「全自動駕駛」。
2019年3月份,特斯拉自研的FSD晶元被搭載在新出貨的Model3上,隨後,又搭載在ModelX和ModelS上。每顆FSD晶元的算力為72TOPS,而每個計算平台Hardware3.0上搭載了兩顆FSD晶元。按特斯拉的說法,Hardware3.0可滿足全自動駕駛對算力的要求。
根據官方口徑,當時,特斯拉的全自動駕駛功能是硬體已全部准備就緒,只待軟體更新即可。
2019年4月22日的自動駕駛日上,特斯拉宣布,到了2020年第二季度,全自動駕駛的所有功能均可實現;而到了2020年底,該公司的出行網路TeslaNetwerk將啟動,其車主可將全自動駕駛汽車投放到該平台上,組成100萬輛Robotaxi。
時隔一年後,馬斯克仍在堅持之前設定的時間節點。不過,100萬輛Robotaxi這個數字,從一開始業界就充滿了質疑。
首先,在2020年年底之前,購買了全自動駕駛功能、也搭配了相應套件的特斯拉車輛是否能達到100萬輛就有待驗證。
據特斯拉論壇上在2020年1月份的一組數據,自2019年第二季度以來,50%的特斯拉新車主訂購了FSD功能。而據Electrek在最近的一篇報道,2019年,特斯拉通過全自動駕駛套件獲得的收入為5億美元,按每套6000-7000美元算,全自動駕駛套件一共賣出去了7-8萬套,佔全年總銷量(36.75萬輛)的20%以上。
另一方面,真正願意將自己的愛車分享出來做Robotaxi的車主會有多少呢?能否達到50%還不好說。
此外,雖然從2016年10月份起,大量Autopilt2.0和Autopilot2.5的用戶也購買了全自動駕駛功能,但遺憾的是,特斯拉後來承認,這兩個版本中的晶元算力不能滿足全自動駕駛的需求。因此,在時機成熟時,該公司將為老用戶提供硬體免費更換服務,即將Autopilot2.0和2.5換成Hardware3.0。
據統計,需要更換硬體的車輛大概有10萬輛。更換服務在2019年9月份啟動,但效率特別低——硬體更換+軟體升級,共需要4-5個小時——不是批量更新,而是onebyone。並且,大量的用戶需要先將MCU從1.0版升級到2.0版,才能升級Autopilot2.0/2.5。
再看看軟體技術的進展。當時,特斯拉宣布,在演算法迭代後,在2019年「晚些時候」,其自動駕駛系統可實現紅綠燈識別、停車標志及城市道路下的自動駕駛。然而,事實是,直到2020年3月份,特斯拉才實現了紅綠燈識別功能,而城市道路下的全自動駕駛功能,還需要一段時間。
此外,根據大量用戶的反饋,該公司在去年10月份推出軟體10.0版本中的自主召車功能,其實是個擺設,裝逼價值大於使用價值。而對交通隔離墩、錐形桶的檢測與識別,則只有搭載了Hardware3.0的車輛可實現,Autopilot2.0/2.5的用戶則沒機會體驗。
馬斯克說,監管部門不批准,可能會成為特斯拉推出那100萬輛Robotaxi的最大障礙,但從目前的技術進展來說,這可能是個借口。況且,短期內,特斯拉這一計劃通過監管批準的可能性很低。
在今年2月份的一場聽證會上,NTSB認為,Autopilt這樣的詞語嚴重誤導了消費者,需要修正。
此外,NHSB指責NHTSA將行業利潤置於安全至上,過於依賴汽車製造商的自願指導來應對新技術的湧入,而不是頒布相關法規。NTSB建議NHTSA對Autopilot進行檢查,以確定其局限性、誤用的可能性以及在其預期設計之外操作的能力是否對安全構成不合理的風險。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
㈢ 自動駕駛會用到GPU高性能計算嗎
答案是需要使用到GPU高性能計算,自動駕駛的實現,需要依賴感知感測器對道路環境的信息進行採集,包括超聲波、攝像頭、毫米波雷達、激光雷達等,採集的好的數據需要傳送到汽車中央處理器進行處理,用來識別障礙物、可行道路等,最後依據識別的結果,規劃路徑、制定速度,自動驅使汽車行駛。
整個過程需要在瞬時完成,延時必須要控制在毫秒甚至微秒級別,才能保證自動駕駛的行駛安全。
要完成瞬時處理、反饋、決策規劃、執行的效果,對中央處理器的算力要求非常高。
為了准確識別圖像、視頻中的有效信息,業內多採用深度學習神經網路。
深度學習神經網路尤其是幾百上千層的神經網路對高性能計算要求非常高,GPU對處理復雜運算擁有天然的優勢:它有出色的並行矩陣計算能力,對於神經網路的訓練和分類都可以提供顯著的加速效果。選擇桌面雲同樣可以享受GPU高性能計算
因此所有的人工智慧,無論是做語言還是語音、圖象、搜索,都和 GPU 相關。所有傳統行業都會利用深度學習去推動新的改革,讓新的研究方向達到一個新高度和新的飛躍。
㈣ 自動駕駛以後會實現嗎
目前國內普遍採用的是美國汽車工程師協會SAE制訂的無人駕駛等級,分六個階段,分別是:L0沒有自動化,L1駕駛輔助,L2部分自動駕駛,L3有條件自動駕駛,L4高度自動駕駛,L5完全自動駕駛。前三個是人類駕駛,後三個為自動駕駛。
國內大多數車企如吉利、長安則已經實現了L2級別的自動駕駛,部分車企業已經宣稱達到L2.5級別自動駕駛,如小鵬G3。
那麼當前已經量產的汽車到了哪一個水平呢?答案是L3,代表車型是第四代奧迪A8。
國內今年即將上市小鵬P7號稱也能達到L3自動駕駛水平。
就目前的各項技術發展趨勢判斷,最早能夠實現量產的L4自動駕駛車型預計會到2022年左右實現,而L5級別的則會在2025年之後。
㈤ 英偉達發布史上最強計算平台,黃教主:自動駕駛不再擔心算力問題
原本應該在今年 3 月份於加州聖何塞舉辦的英偉達 GTC 2020 大會,因為全球性新冠病毒肺炎的爆發而不得不推遲舉行。
比原計劃晚了將近 2 個月,英偉達 GTC 2020 終於在 5 月 14 日回歸。
不過這一次開發者們沒辦法在線下集會,只能通過線上直播觀看「皮衣教主」黃仁勛的主題演講。老黃此次是在他矽谷的家中完成了這場別開生面的「Kitchen Keynote」。
雖然是廚房舉行,英偉達依然爆出「核彈」,發布了全新一代的 GPU 架構 Ampere(安培)。
在自動駕駛方向上,英偉達通過兩塊 Orin SoC 和兩塊基於安培架構的 GPU 組合,實現了前所未有的?2000 TOPS?算力的 Robotaxi 計算平台,整體功耗為?800W。
有業界觀點認為,實現 L2 自動駕駛需要的計算力小於 10 TOPS,L3 需要的計算力為 30 - 60 TOPS,L4 需要的計算力大於 100 TOPS,L5 需要的計算力至少為 1000 TOPS。
現在的英偉達自動駕駛計算平台已經建立起了從?10TOPS/5W,200TOPS/45W?到?2000 TOPS/800W?的完整產品線,分別對應前視模塊、L2+ADAS?以及?Robotaxi?的各級應用。
從產品線看,英偉達?Drive AGX?將全面對標 Mobileye?EyeQ?系列,希望成為量產供應鏈中的關鍵廠商。
1、全新 GPU 架構:Ampere(安培)
2 個月的等待是值得的,本次 GTC 上,黃仁勛重磅發布了英偉達全新一代 GPU 架構 Ampere(安培)以及基於這一架構的首款 GPU NVIDIA A100。
A100 在整體性能上相比於前代基於 Volta 架構的產品有 20 倍的提升,這顆 GPU 將主要用於數據分析、專業計算以及圖形處理。
在安培架構之前,英偉達已經研發了多代 GPU 架構,它們都是以科學發展史上的偉人來命名的。
比如 Tesla(特斯拉)、Fermi(費米)、Kepler(開普勒)、Maxwell(麥克斯維爾)、Pascal(帕斯卡)、Volta(伏特)以及 Turing(圖靈)。
這些核心架構的升級正是推動英偉達各類 GPU 產品整體性能提升的關鍵。
針對基於安培架構的首款 GPU A100,黃仁勛細數了它的五大核心特點:
集成了超過 540 億個晶體管,是全球規模最大的 7nm 處理器;引入第三代張量運算指令 Tensor Core 核心,這一代 Tensor Core 更加靈活、速度更快,同時更易於使用;採用了結構化稀疏加速技術,性能得以大幅提升;支持單一 A100 GPU 被分割為多達 7 塊獨立的 GPU,而且每一塊 GPU 都有自己的資源,為不同規模的工作提供不同的計算力;集成了第三代 NVLink 技術,使 GPU 之間高速連接速度翻倍,多顆 A100 可組成一個巨型 GPU,性能可擴展。
這些優勢累加起來,最終讓 A100 相較於前代基於 Volta 架構的 GPU 在訓練性能上提升了?6 倍,在推理性能上提升了?7 倍。
最重要的是,A100 現在就可以向用戶供貨,採用的是台積電的 7nm 工藝製程生產。
阿里雲、網路雲、騰訊雲這些國內企業正在計劃提供基於 A100 GPU 的服務。
2、Orin+安培架構 GPU:實現 2000TOPS 算力
隨著英偉達全新 GPU 架構安培的推出,英偉達的自動駕駛平台(NVIDIA Drive)也迎來了一次性能的飛躍。
大家知道,英偉達此前已經推出了多代 Drive AGX 自動駕駛平台以及 SoC,包括?Drive AGX Xavier、Drive AGX Pegasus?以及?Drive AGX Orin。
其中,Drive AGX Xavier 平台包含了兩顆 Xavier SoC,算力可以達到 30TOPS,功耗為 30W。
最近上市的小鵬 P7 上就量產搭載了這一計算平台,用於實現一系列 L2 級自動輔助駕駛功能。
Drive AGX Pegasus 平台則包括了兩顆 Xavier SoC 和兩顆基於圖靈架構的 GPU,算力能做到 320TOPS,功耗為 500W。
目前有文遠知行這樣的自動駕駛公司在使用這一計算平台。
在 2019 年 12 月的 GTC 中國大會上,英偉達又發布了最新一代的自動駕駛計算 SoC Orin。
這顆晶元由 170 億個晶體管組成,集成了英偉達新一代 GPU 架構和 Arm Hercules CPU 內核以及全新深度學習和計算機視覺加速器,最高每秒可運行 200 萬億次計算。
相較於上一代 Xavier 的性能,提升了 7 倍。
如今,英偉達進一步將自動駕駛計算平台的算力往前推進,通過將兩顆 Orin SoC 和兩塊基於安培架構的 GPU 集成起來,達到驚人的 2000TOPS 算力。
相較於 Drive AGX Pegasus 的性能又提升了 6 倍多,相應地,其功耗為 800W。
按一顆 Orin SoC 200TOPS 算力來計算,一塊基於安培架構的 GPU 的算力達到了 800TOPS。
正因為高算力,這個平台能夠處理全自動駕駛計程車運行所需的更高解析度感測器輸入和更先進的自動駕駛深度神經網路。
對於高階自動駕駛技術的發展而言,英偉達正在依靠 Orin SoC 和安培 GPU 架構在計算平台方面引領整個行業。
當然,作為一個軟體定義的平台,英偉達 Drive AGX 具備很好的可擴展性。
特別是隨著安培 GPU 架構的推出,該平台已經可以實現從入門級 ADAS 解決方案到 L5 級自動駕駛計程車系統的全方位覆蓋。
比如英偉達的 Orin 處理器系列中,有一款低成本的產品可以提供 10TOPS 的算力,功耗僅為 5W,可用作車輛前視 ADAS 的計算平台。
換句話說,採用英偉達 Drive AGX 平台的開發者在單一平台上僅基於一種架構便能開發出適應不同細分市場的自動駕駛系統,省去了單獨開發多個子系統(ADAS、L2+ 等系統)的高昂成本。
不過,想採用 Orin 處理器的廠商還得等一段時間,因為這款晶元會從 2021 年開始提供樣品,到?2022 年下半年才會投入生產並開始供貨。
3、英偉達自動駕駛「朋友圈」再擴大
本屆 GTC 上,英偉達的自動駕駛「朋友圈」繼續擴大。
中國自動駕駛公司小馬智行(Pony.ai)、美國電動車創業公司?Canoo?和法拉第未來(Faraday Future)加入到英偉達的自動駕駛生態圈,將採用英偉達的 Drive AGX 計算平台以及相應的配套軟體。
小馬智行將會基於 Drive AGX Pegasus 計算平台打造全新一代 Robotaxi 車型。
此前,小馬智行已經拿到了豐田的 4 億美金投資,不知道其全新一代 Robotaxi 會不會基於豐田旗下車型打造。
美國的電動汽車初創公司 Canoo 推出了一款專門用於共享出行服務的電動迷你巴士,計劃在 2021 年下半年投入生產。
為了實現輔助駕駛的系列功能,這款車型會搭載英偉達 Drive AGX Xavier 計算平台。前不久,Canoo 還和現代汽車達成合作,要攜手開發電動汽車平台。
作為全球新造車圈內比較特殊存在的法拉第未來,這一次也加入到了英偉達的自動駕駛生態圈。
FF 首款量產車 FF91 上的自動駕駛系統將基於 Drive AGX Xavier 計算平台打造,全車搭載了多達 36 顆各類感測器。
法拉第未來官方稱 FF91 有望在今年年底開始交付,不知道屆時會不會再一次跳票。
作為 GPU 領域絕對霸主的英偉達,在高算力的數據中心 GPU 以及高性能、可擴展的自動駕駛計算平台的加持下,已經建起了一個完整的集數據收集、模型訓練、模擬測試、遠程式控制制和實車應用的軟體定義的自動駕駛平台,實現了端到端的完整閉環。
同時,其自動駕駛生態圈也在不斷擴大,包括汽車製造商、一級供應商、感測器供應商、Robotaxi 研發公司和軟體初創公司在內的數百家自動駕駛產業鏈上的企業已經在基於英偉達的計算硬體和配套軟體開發、測試和應用自動駕駛車輛。
未來,在整個自動駕駛產業里,以計算晶元為核心優勢,英偉達的觸角將更加深入,有機會成為產業鏈條上不可或缺的供應商。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
㈥ 高通發布全新自動駕駛計算平台 最高算力700TOPS,2023年量產
▲高通公司總裁CristianoAmon新聞發布會上向展示了SnapdragonRide(圖源CNET/James?Martin)
SnapdragonRide通過獨特的SoC、加速器和自動駕駛軟體棧的結合,為汽車製造商提供了一種可擴展的解決方案,可在三個細分領域對自動駕駛汽車提供支持,分別是:
1、L1/L2級主動安全ADAS——面向具備自動緊急制動、交通標志識別和車道保持輔助功能的汽車。
2、L2+級ADAS——面向在高速公路上進行自動駕駛、支持自助泊車,以及可在頻繁停車的城市交通中進行駕駛的汽車。
3、L4/L5級完全自動駕駛——面向在城市交通環境中的自動駕駛、無人計程車和機器人物流。
SnapdragonRide平台基於一系列不同的驍龍汽車SoC和加速器建立,採用可擴展且模塊化的高性能異構多核CPU、高能效的AI及計算機視覺引擎,以及GPU。
其中,ADASSoC系列和加速器系列採用異構計算,與此同時利用高通的新一代人工智慧引擎,ADAS和SoC能夠高效管理車載系統的大量數據。
得益於這些不同的SoC和加速器的組合,SnapdragonRide平台可以根據自動駕駛的不同細分市場的需求進行配備,同時提供良好的散熱效率,包括從面向L1/L2級別應用的30TOPS等級的設備,到面向L4/L5級別駕駛、超過700TOPS的功耗130瓦的設備。
此外,高通全新推出的SnapdragonRide自動駕駛軟體棧是集成在SnapdragonRide平台中的模塊化可擴展解決方案。
據介紹,SnapdragonRide平台的軟體框架可同時託管客戶特定的軟體棧組件和SnapdragonRide自動駕駛軟體棧組件。
SnapdragonRide平台也支持被動或風冷的散熱設計,因而能夠在成本降低的同時進一步優化汽車設計,提升可靠性。
現在,Arm、黑莓QNX、英飛凌、新思科技、Elektrobit、安森美半導體均已加入高通的自動駕駛朋友圈,成為SnapdragonRide自動駕駛平台的軟/硬體供應商。
Arm的功能安全解決方案,新思科技的汽車級DesignWare介面IP、ARC處理器IP和STARMemorySystemTM,黑莓QNX的汽車基礎軟體OS安全版及Hypervisor安全版,英飛凌的AURIXTM微控制器,以及安森美半導體的ADAS系列感測器都會集成到高通的自動駕駛平台上。
Elektrobit還計劃與高通合作,共同開發可規模化生產的新一代AUTOSAR架構,EBcorbos軟體和SnapdragonRide自動駕駛平台都將集成在這個架構上面。
據了解SnapdragonRide將在2020年上半年交付汽車製造商和一級供應商進行前期開發,而根據QualcommTechnologies估計,搭載SnapdragonRide的汽車將於2023年投入生產。
二、深耕汽車業務多年高通賦能超百萬台汽車
在發布SnapdragonRide自動駕駛平台之前,高通已在智能汽車領域深耕多年。
十多年來,高通子公司QualcommTechnologies一直在為通用汽車的網聯汽車應用提供先進的無線通信解決方案,包括通用汽車上安吉星設備所支持的安全應用。
在車載信息處理、信息影音和車內互聯等領域,QualcommTechnologies的訂單總價值目前已超過70億美元(約合人民幣487億元)。
而根據高通在CES2020發布會現場公布的信息,迄今為止已經有超百萬輛汽車使用了高通提供的汽車解決方案。
很顯然,如今高通在汽車領域的布局又向前邁進了一步。
CES2020期間,除發布SnapdragonRide自動駕駛平台外,高通還推出了全新的車對雲服務(Car-to-CloudService),該服務預計在2020年下半年開始提供。
據介紹,由QualcommTechnologies打造的車對雲服務支持SoftSKU晶元規格軟升級能力,不僅可以幫助汽車客戶滿足消費者不斷變化的需求,還可根據新增性能需求或新特性,讓晶元組在外場實現升級、以支持全新功能。
與此同時SoftSKU也支持客戶開發通用硬體,從而節省他們面向不同開發項目的專項投入。利用高通車對雲SoftSKU,汽車製造商不僅能夠為消費者提供各種定製化服務,還可以通過個性化特性打造豐富且具沉浸感的車內體驗。
另外高通的車對雲服務也支持實現全球蜂窩連接功能,既可用於引導初始化服務,也可以在整個汽車生命周期中提供無線通信連接。
QualcommTechnologies產品管理高級副總裁NakulDuggal表示,結合驍龍汽車4G和5G平台、驍龍數字座艙平台,高通的車對雲服務能夠幫助汽車製造商和一級供應商滿足當代車主的新期待,包括靈活、持續地進行技術升級,以及在整個汽車生命周期中不斷探索新功能。
此外,QualcommTechnologies也在CES2020上宣布,表示將繼續深化和通用汽車的合作。作為長期合作夥伴,通用汽車將通過與QualcommTechnologies的持續合作來支持數字座艙、車載信息處理和ADAS(先進駕駛輔助系統)。
結語:巨頭紛紛入局自動駕駛領域風起雲涌
前有華為表示要造激光雷達、毫米波雷達等智能汽車核心感測器,後有Arm牽頭成立自動駕駛汽車計算聯盟,如今移動晶元巨頭高通也發布了全新的自動駕駛平台,在汽車和自動駕駛領域上又邁進一步。
巨頭入局有利於自動駕駛汽車更快更好地落地,然而另一方面隨著更多硬核玩家拓展業務邊界,此次市場上的競爭也必然會變得更加激烈。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
㈦ 自動駕駛會「加速」發展嗎
將今年視為自動駕駛的加速年並不言過其實。這從拉斯維加斯消費電子展便可窺一斑。今年參展與汽車科技相關的企業規模最為龐大。相比往年參展商數量增長19%,汽車科技展區面積也增長近25%。大大小小超500家來自全球各地的企業幾乎都與自動駕駛有關。這些企業大概可以劃分為科技公司、晶元廠商、老牌車企、傳統供應商、新造車企業以及初創企業等。
中國新造車企業集體發力也給消費電子展增加了更多看點。參展的拜騰純電概念車、小鵬汽車等新能源車型上已將自動駕駛技術設定為標配。雖然最終的上路和量產時間不同步,但智能交互和自動駕駛無疑將成為國產新車的必備技能。
總之,今年自動駕駛技術將呈現出幾個很明顯的特點:部署時間提前到來,從概念走向實踐,互聯網平台化模式愈發明顯,技術落地從實驗室開始逐漸走向商業化。
㈧ 5G和自動駕駛究竟有沒有關系有什麼關系
5G技術為自動駕駛賦能,主要在車聯網和雲計算兩個層面。在完全落地之前,任何質疑都是可以理解的。但5G與自動駕駛的結合,值得期待,我們所嚮往的終究是美好的汽車生活。
知乎上有一句標准話術,「先問是不是,再問為什麼」。
所以,老知乎會將這個問題進行拆解,然後就變成了「5G技術和自動駕駛之間究竟有沒有關系?如果有,那麼究竟是什麼關系?」
於是,我在搜索引擎上輸入了這個問題,並且將搜索時間設定為2005年至2015年,果然,這是一個經典的問題。
寫在最後
自動駕駛,熱度多年不息。從上世紀50年代開始,人們就在憧憬著自動駕駛的未來。
但時至今日,我們也不敢輕易下結論,自動駕駛將會在多少年之後成為現實。只能說,我們離自動駕駛越來越近了。以前只有想像,現在有了落地的技術可能性。
5G時代能帶來多麼美好的生活,我們不做過分吹捧,只是客觀分析。但這個時代一定會來,我們保持期待,等待花開爛漫。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
㈨ 歷數特斯拉自動駕駛5年進步:Autopilot從1.0走向FSD
1、Autopilot的進化歷程
就在最近,Musk信誓旦旦地表示,今年年底前實現100萬輛自動駕駛計程車上路的目標,只不過這些功能能否啟用,取決於監管部門是否批准。
Musk說這話的背後有哪些底氣呢?
首先,是今年3月特斯拉宣布了第?100萬輛車下線。
其次,此前Model3上一直沒有啟用過的座艙攝像頭功能也被Musk揭秘,這個就是用來監控車內情況,防止有人使用自動駕駛計程車功能時破壞車內的設備。
第三,特斯拉還對自動駕駛軟體進行了大更新,以便更好利用FSD晶元的算力,早日實現「功能完整」的全自動駕駛。
種種因素加在一起,年底前實現看到100萬輛能全自動駕駛的特斯拉上路,似乎真的有可能。
但我們別忘了,在自動駕駛上,Musk有過兩次跳票的先例:
2016年初,Musk對外表示,2年內特斯拉能夠自動駕駛穿越美國東西海岸。2017年1月,Musk再次畫大餅:全自動駕駛功能將在3到6個月內推出。
結果呢?特斯拉橫穿美國的壯舉沒見到,全自動駕駛功能也沒見到。這也難怪有業內人士跳出來說,一年內實現全自動駕駛根本不可能,甚至公開指責Musk的行為就是炒作。
但客觀地說,2015年至今,Autopilot確實發生了巨大的變化,不過真正的質變依然在不久的將來——在城市道路實現自動駕駛將徹底改變現有游戲規則,讓特斯拉在競爭中甩開對手好幾個身位。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
㈩ 自動駕駛「芯」戰爭
今年,新冠疫情的爆發、經濟的下滑、國際政治環境的惡化,讓汽車產業充滿了巨大的不確定。多家咨詢機構預計,今年全球汽車銷量將面臨10%-20%的下滑。
然而,在不確定中,汽車行業對未來的方向又十分篤定。自動駕駛集中出現了幾則大新聞——
6月23日,剛剛與寶馬在自動駕駛領域宣布和平分手的賓士,宣布與晶元供應商英偉達達成合作,將使用後者的Orin晶元,開發下一代車載計算系統,為賓士量產車型2024年將全面搭載的L2-L3級自動駕駛功能,以及最高可達L4級的自動泊車功能提供算力支持。
6月25日,沃爾沃汽車集團宣布,沃爾沃將與谷歌旗下自動駕駛公司Waymo達成戰略合作夥伴關系,在一個全新的電動汽車平台上,進行L4級自動駕駛技術的合作,探索自動駕駛網約車等商業場景。
6月26日,亞馬遜正式收購美國自動駕駛公司Zoox,亞馬遜為此付出超過12億美元。
6月27日,滴滴自動駕駛網約車載人示範運營在上海正式啟動,央視對其全過程進行了直播。從這一天開始,滴滴在上海嘉定的自動駕駛測試車將面向公眾開放,滴滴在APP中上線了「未來出行」頁面,供公眾申請自動駕駛網約車試乘。
一時間,大公司近乎開啟了一場自動駕駛軍備競賽。毫無疑問,參與其中的企業都意識到,未來的汽車,將是跑在輪子上的超級計算機。高性能的計算晶元,在這場軍備競賽中至關重要的地位,愈發凸顯。
一、賓士另結新歡,只是因為它?
6月23日,在與寶馬的自動駕駛合作宣告暫停後4天,賓士向晶元供應商英偉達投懷送抱,雙方達成合作,為賓士將在2024年量產的自動駕駛車型開發計算平台。
在幾天前的公告中,雙方還表示,「鑒於建立共享技術平台所需的費用,以及當前的商業和經濟狀況,現在並不是成功實施合作的一個合適的時機。」太燒錢,看起來是讓雙方決定暫停技術合作的關鍵原因。
不過,賓士隨後與英偉達光速結伴的舉動,倒是指向了錢以外的因素。通常來說,車企與車企之間的合作,並不會對車企與供應商的合作產生影響,但賓士與寶馬之間的合作不同。在與賓士達成合作之前,寶馬已經與全球最大的ADAS系統供應商Mobileye組建了一個自動駕駛同盟,基於其EyeQ系列晶元研發自動駕駛。
與寶馬的合作意味著,賓士要選用Mobileye的晶元來構建關鍵的自動駕駛計算單元。而這或許是雙方分歧中尤為重要的那一個。國外咨詢機構Guidehouse首席分析師SamAbuelsamid稱,「我懷疑這兩家汽車製造商無法就使用的平台達成共識,現在,與英特爾/Mobileye的產品相比,Orin看起來是更強大的解決方案。」
從公開的信息來看,Sam的分析不無道理。Mobileye規劃的下一代自動駕駛晶元EyeQ5,其算力為24TOPS(每秒運算24萬億次),而英偉達去年底發布的Orin,算力則高達200TOPS。此外,Mobileye過去在與車企的合作中一貫表現強勢(盡管承諾EyeQ5將會更加開放),其提供的功能模塊對主機廠常常是「黑箱」;而英偉達自動駕駛構建的DriveAGX軟體平台一開始就走了一條開放的道路,可以支持車廠在其計算平台上自主進行演算法開發。
其實在此之前,賓士探索研發自動駕駛網約車時,因為該技術對晶元算力的高要求,賓士就選用了來自英偉達的DrivePEGASUS車載電腦。6月23日官宣的信息,意味著賓士在自動駕駛時代的晶元選擇上,全面倒向英偉達,將雙方的合作擴展到賓士的量產車型中。
而與沃爾沃達成自動駕駛戰略合作的Waymo,則是依託谷歌在AI領域的技術實力,使用自研的TPU。雖然Waymo用於車輛端的TPU算力並未公布,但據Waymo官方的透露,在使用TPU後,其自動駕駛系統的性能提升了15倍。
晶元在自動駕駛中的地位,可以用「隱形冠軍」來形容。從車輛外觀你看不見它的存在,但一台自動駕駛汽車能夠順利運行,它絕對是頭號功臣。
二、自動駕駛競賽,亦是一場晶元競賽
無論是賓士棄寶馬牽手英偉達,還是沃爾沃與Waymo高達戰略級別的聯盟,又或者是滴滴的自動駕駛網約車發車,上周集中發生的大新聞說明,汽車公司與科技公司都將自動駕駛放在了至關重要的位置:從近期看,自動駕駛功能是汽車產品力的重要組成部分;從長遠看,L4級自動駕駛投入大規模應用後,可能會徹底改變汽車行業的商業模式。
推動這一切變化的基礎,是一枚小小的晶元。為了在自動駕駛能力上獲取競爭優勢,參與這場競賽的企業或獨立研發,或合縱連橫,只為尋得一塊高性能的自動駕駛晶元。行業內有個非常典型的例子:特斯拉。
作為智能電動汽車的領頭羊,特斯拉和當前市場上的兩家主流自動駕駛晶元廠商都有過合作經歷。但是由於Mobileye的強勢和封閉,英偉達降不下來的功耗和高昂的開發成本,合作都未能長遠。特斯拉為了發揮軟硬體一體在自動駕駛中的優勢,率先在車企中獨立研發了自動駕駛計算平台的FSD,其算力達到144TOPS。FSD對自動駕駛的算力支持主要來自兩塊AI晶元,其單晶元算力約72TOPS。
迄今為止,特斯拉的FSD仍然保持著量產車自動駕駛算力紀錄。而特斯拉認為,FSD足以為其將推出的完全自動駕駛(FullSelf-Driving)功能提供支持。
毫無疑問,自動駕駛的競賽,同樣也是晶元的競賽。整個汽車行業向自動駕駛的重視乃至全面轉向,將創造巨大的自動駕駛晶元需求。如果哪家企業在自動駕駛晶元市場占據了可觀的份額,那麼對應的或許是千億美元市值的想像空間。
當前,在巨大市場的吸引下,自動駕駛晶元領域已經出現了或新或老的四種勢力:
第一類,是Mobileye等老牌的ADAS晶元/自動駕駛晶元供應商。
這一類企業,是汽車行業開始研發高級輔助駕駛系統(ADAS)時,就參與市場競爭的企業。這些企業面向自動駕駛的競爭策略是,通過在ADAS市場積累的技術以及客戶資源,不斷向上升級其既有產品,實現向自動駕駛的平滑過渡,典型的就是Mobileye對EyeQ系列晶元的不斷迭代。
除了Mobileye,瑞薩、恩智浦、德州儀器、電裝等老牌汽車半導體供應商,都有各自的自動駕駛晶元規劃。
第二類,是看到自動駕駛晶元機遇,跨領域而來的半導體巨頭。
比如上文提到的英偉達,此前其主力業務為屬於消費電子的GPU,以及數據中心等,但英偉達洞察到自動駕駛對高性能晶元的需求後,迅速進入了這一市場,目前已經推出DrivePX、DriveAGXXavier、DriveOrin三代產品,並獲得了不少車企的訂單。
主力業務為通信,制霸基帶晶元、手機SoC的高通,則在嘗試收購恩智浦獲得自動駕駛競賽入場券的努力告吹後,於今年CES上推出了SnapdragonRide自動駕駛計算平台。根據高通官方的信息,這一基於高通晶元打造的計算平台最高算力可達700TOPS,可支持L4--L5級自動駕駛。
而在高通之前,主力業務同樣為通信以及消費電子的華為,就已經發布了自動駕駛計算平台MDC600。這一計算平台由8顆昇騰310AI晶元整合而成,最高算力達到352TOPS。
第三類,是在新機遇下誕生的自動駕駛晶元初創企業。
在國內以地平線為典型代表。
本月,搭載地平線車規級AI晶元征程2的長安UNIT正式上市。藉此,地平線實現了國產自動駕駛晶元的率先「上車」。另一方面,算力為4TOPS的征程2,也是中國首款車規級AI晶元。
而在今年晚些時候,地平線還將發布算力達到96TOPS、支持16路高清攝像頭信號的征程5,這款晶元算力超越特斯拉的FSD,將面向高等級自動駕駛。
最後一類,則是特斯拉為代表的車企自研派。
由於車企基本沒有半導體的製造經驗,因此他們通常會向供應商采購晶元。而總部位於矽谷的特斯拉,則有著不同的基因、為了最大程度發揮軟硬體一體化的優勢,特斯拉依託矽谷的半導體人才資源,自行研發了FSD。
目前來看,車企自研自動駕駛晶元的模式難以復制,特斯拉很可能會是這條路徑的獨苗。
在國內,無論是傳統車企還是造車新勢力,目前都無自研自動駕駛晶元的計劃。作為全球最大的單一汽車市場,中國順理成章地成為自動駕駛晶元供應商的兵家必爭之地。
三、中國能否催生自動駕駛晶元巨頭?
如此多的參賽者,讓自動駕駛晶元這個仍待開發的藍海市場,看上去已經呈現出紅海的競爭態勢。近兩年中美圍繞晶元發生的一系列事件,讓人們對中國晶元產業的的弱勢心有戚戚。從年初國家11部位聯合發布的《智能汽車創新發展戰略》到「新基建」,都將車載晶元的研發作為戰略重點,中國汽車行業都希望能有更多本土晶元企業強勢崛起。
如今,在汽車行業進行智能化轉型、創造大量自動駕駛晶元需求的態勢下,中國晶元能否迎頭趕上,培育出一家能夠在市場上立足的中國本土自動駕駛晶元供應商?答案並不確定,但6月地平線征程2晶元搭載於長安UNIT的「上車」,至少已經開了一個好頭。據了解,在ADAS晶元領域,征程2晶元所展現的感知計算性能已經在多個指標上超越了行業龍頭Mobileye的晶元,特別是針對中國的特殊路況,並已經成功簽下了來自中國各大汽車集團的十多款定點車型。
地平線創始人余凱在一次媒體采訪中如此總結地平線的差異化優勢:「在全球范圍內,能提供這樣功耗和算力水平、且開放賦能的晶元企業,我們是獨一家。英偉達在輔助駕駛、智能座艙多模交互等方面完全沒有產品,晶元功耗也比較高。我們的功耗和算力可以跟Mobileye正面PK,但Mobileye不開放,而我們能滿足車企自主開發的需求」,並表示未來有信心拿到全球1/3的市場。
事實上,當自動駕駛潮流席捲而來,如地平線這樣率先瞄準車載AI晶元市場,並已通過前裝量產得到市場驗證的中國晶元企業確實迎來了最好的時代。中國作為全球最大的汽車市場,再加上自動駕駛技術開發的一些典型特徵與需求,為本土自動駕駛晶元企業創造了難得的機遇。
首先,自動駕駛技術有強地域性。
因為世界各地自然條件、交通場景、交通規則乃至是文化傳統的差異,所以在一國一地開發的自動駕駛技術很難復用到其他地區。這種影響會直接傳導到硬體層面——因為與具體數據、演算法高度整合,自動駕駛晶元很難不受地域特徵的支配。
在此情況下,一家擁有強大本土研發團隊、對中國的數據與場景更加了解的企業,有更大的概率研發出更適合中國場景,且演算法與硬體結合更加高效的自動駕駛晶元。
其次,當汽車被越來越多的人們看作電子產品時,人們對其功能迭代的頻率與速度,都有了更高的期望,自動駕駛功能也不例外。
此前,主要由國外供應商占據市場主流的ADAS,在功能搭載上車後便永不更新。但當汽車變得智能化,車輛其實可以通過不斷地OTA,實現功能的升級,甚至實現從ADAS到半自動駕駛、自動駕駛的跨越。比如特斯拉通過升級實現Model3的NOA(高速公路自動駕駛輔助)功能,就是典型的例子。
當然,特斯拉僅此一家。對於更多車企來說,要完成這樣的任務,需要他們與自動駕駛晶元供應商保持高頻、緊密的聯系,由雙方進行聯合研發。
這一變化,更加考驗供應商對車企需求的快速響應。換句話說,這需要自動駕駛晶元供應商建立一個成規模的現場支持團隊,做到對車企需求的快速反饋、支援。顯然,一個本土的、沒有文化語言隔閡的團隊,能夠更好地勝任。
最後,車企在自動駕駛研發上有更多的功能差異化訴求。
當ADAS功能在汽車產品已經高度標准化或者雷同時,它很難再成為吸引消費者的亮點。對此,有遠見、有能力的車企,紛紛選擇基於場景去開發新的、有差異的自動駕駛功能(比如寶馬的自動循跡倒車),從而獲得新的競爭力。
這一趨勢對自動駕駛晶元供應商提出的要求是,不能再單純採用過往的「黑箱」模式,直接給車企一個完整但「知其然不知其所以然」的功能模塊,而是要賦予車企進行二次開發、深度開發的權利。或者說,這要求自動駕駛晶元供應商轉變思路,去賦能車企的自動駕駛開發。
具體而言,這要求晶元供應商轉變思路,在戰略上開放,為車企的自動駕駛開發賦能;在產品策略上則要為車企分憂解難,通過打造工具鏈,降低車企基於自動駕駛晶元進行差異化功能開發的難度與成本。
從上述三點特徵來看,自動駕駛潮流的到來,將更加考驗自動駕駛供應商的服務意識與快速開發能力。而國外晶元供應商,因為歷史、成本、政治等因素,很少在國內搭建起成規模的研發與現場支持團隊,過往的開放程度與開發速度也難以滿足新的需求。而這,正是中國本土自動駕駛晶元供應商崛起的突破口。
最終,從形勢上來說,國外晶元巨頭產業先天更加成熟、進入汽車行業更早、各自擁有不同的壁壘。對中國本土自動駕駛晶元供應商來說,與他們同台競技並最終突出重圍,並不容易。
但如果本土自動駕駛晶元供應商在晶元算力、功耗等指標上的表現能迎頭趕上,並發揮自己的核心優勢,抓住車企智能化轉型的時代機遇,那麼,中國誕生一個本土自動駕駛晶元巨頭或將是大概率事件。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。