spass數據去中心化處理
㈠ 如何做SPSS的調節效應
做SPSS的調節效應方法:
用回歸,回歸也有兩種方法來檢驗調節效應,看下面的兩個方程,y是因變數,x是自變數,m是調節變數,mx是調節變數和自變數的交互項,系數是a b c c'。檢驗兩個方程的R方該變數,如果該變數顯著,說明調節作用顯著,也可以直接檢驗c'的顯著性,如果顯著也可以說明調節作用。
㈡ spass的標准化和stata的縮尾處理是一樣的嗎
不是一樣的方法
㈢ SPSS回歸分析中的數據轉換問題
就是平方根轉換,在compute裡面去做,很方便的
我替別人做這類的數據分析蠻多的㈣ spss中的sig.F值偏大,如何修改數據
這個比較麻煩的
要懂理論才行㈤ 求spass數據分析
SPSS Trends-用強有力的時間序列分析工具做更好的預測
SPSS Trends可以完成多種任務,包括:
生產管理:監控質量標准
數據處理:管理預測系統的效能
預算管理:執行銷售預測
公共政策研究:探討民意
預測,能為組織計劃提供可靠的科學依據。利用SPSS Trends提供的一些新功能,無論您是入門新手還是專家老手都能利用時間序列數據在瞬間建立可靠的預測模型。SPSS Trends是與SPSS完全整合地附加模塊,這樣您不僅可以隨意支配全部SPSS的功能,您也可受益於專為支持預測設計的新特性。
因為這些工具能幫助您提出並管理計劃,就獲利面而言,有著相當之影響。正確的預測可幫助組織獲得較佳的預期收益。並有效控制人員配置、庫存及相關成本;並更精確地管理商務過程-所有這些改進都為組織的健康發展奠定基石。然而,運用時間序列數據建立預測模型並非易事。
SPSS Trends克服了所有傳統方法的缺點,為您提供高級建模技術。與電子表格程序不圖,SPSS Trends使您能夠在建立預測模型時使用高級統計方法,而無需具備專業的統計知識。
籍由SPSS Trends,入門新手能夠建立綜合考慮多變數的成熟准確的預測模型,經驗老手可以利用它來驗證自己的模型。SPSS Trends能夠簡單快捷地建立預測模型,這讓您更快獲得您所需要的信息。
高效地生成和更新模型
無需一次次地重復設定參數、重新估計模型等費力工作,利用SPSS Trends您可以提高整個建立預測模型過程的速度。您將節省數個小時、甚至是數天的寶貴時間,同時不失您所建立的預測模型的質量及可靠性。
利用SPSS Trends,您可以:
·建立可靠的預測,不論數據的大小或變數的多寡
·籍由自動選取適合模型及參數降低預測誤差
·使您組織內多數人能夠建立預測模型
·更有效率的更新及管理預測模型,讓您有更多時間比較和探索與其它模型的差異
·產生專家級的經驗預測值、預測模型類型、模型參數值及其它相關輸出
·提供可理解的有意義的信息給組織決策者,以利於企業進行正確預測
在創建預測模型時,您具有極大的靈活性。例如,利用SPSS for Windows您可以輕易地把交易數據轉換成時間序列數據,把現存的時間序列數據轉換到最適合您組織計劃需要的時間區間。
您可以為不同層級的地理區域或功能區,甚至每個產品線或產品,同時建立單獨的預測模型,而不論基於哪個層次的預測。
歸因於新增的Expert Modeler, SPSS Trends可幫助您:
·自動確定參數配適最佳的ARIMA或Exponential Smoothing時間序列模型
·讓您一次能夠擬合數百條時間序列模型,無需一次次地重復相同的操作(每次只能為一個時間序列數據建立預測模型)
您還可以:
·輸出模型到XML文件,當數據發生變動,無需重新設定參數或重新估計模型,您就可以實現新的預測
·模型以腳本形式寫入到文件,以便自動更新
指導預測的初學者
如果您對建立時間序列模型不熟悉,或只是偶然應用時間序列模型,那麼您將從SPSS Trends自動選擇最適合的預測模型以及建模過程中為您提供指導的能力中受益匪淺。
利用SPSS Trends,您可以:
·生成可靠的模型,即使您不知道如何選擇指數平滑的參數或ARIMA的階數,或如何獲得穩定的時間序列
·自動探查數據中的季節性、干擾事件、缺失值,並選擇最恰當的模型
·探查離群值,防止它們對參數估計的影響
·圖形展示數據、顯示置信區間和模型擬合優度
模型建立和驗證後,您可以把模型整合到微軟Office應用程序中來實現結果共享。或者,利用SPSS的輸出管理系統(OMS)www.infinityqs.cn,以HTML或者XML的形式把輸出發布到企業的區域網上來實現共享。您也能夠以SPSS數據文件的形式保存模型,這使得您可以繼續探察所建立模型的一些特徵,比如模型擬合優度。
為預測專家提供控制
如果您是經驗豐富預測專家,您將同樣受益於SPSS Trends、。因為您能夠更有效地創建時間序列,同時控制分析過程的主要方面。
例如,利用SPSS Trends的Expert Modeler您可以只在ARIMA模型或者只在Exponential Smoothing模型中尋找最佳預測模型。您也可以不利用Expert Modeler 而自行設定模型的每一個參數。同時,您也可以把Expert Modeler的結果作為初始的模型選擇,或者用來檢驗自己建立的模型。
您也可以限制模型輸出,如只輸出擬合最差的模型-需要進一步檢驗的模型。這使您能夠更快更有效地發現數據或模型中的問題
零售行業預測
Greg是一主要零售廠商的庫存經理,他要負責5000多種產品,並利用SPSS Trends預測未來三個月每個產品的庫存。SPSS Trends能夠自動地為數千個變數建立預測模型,使得初始預測模型的建立僅僅需要幾個小時,而不是幾天。此外,還可以高效率地實現模型的更新。
由於公司的資料庫每個月都以實際的銷售數據更新,所以Greg把預測作為每月運行一次的批處理工作。通過這樣做,他把新的數據整合並把預測期向前擴展一個月。
這樣不需要重新估計模型就可以實現預測,極大地提高了處理效率。為了檢驗模型的能力,Greg利用批處理工作運行SPSS命令語法,來識別包含與由原始模型根據歷史銷售數據確定地置信區間相偏離的時間點的序列。對於這些序列 ,他運行另外一個批處理工作,來建立新的模型,以更好的擬合這些數據。
利用SPSS Trends,Greg實現了高效率高精度的預測,極大地提高了公司有效計劃的能力。
系統需要
SPSS Base
其他系統需求根據平台的不同而異㈥ 如何做SPSS的調節效應
顯變數的調節效應分析方法:分為四種情況討論。當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做Y=aX+bM+cXM+e 的層次回歸分析:1、做Y對X和M的回歸,得測定系數R12。2、做Y對X、M和XM的回歸得R22,若R22顯著高於R12,則調節效應顯著。或者,作XM的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按 M的取值分組,做 Y對 X的回歸。若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX +bM +cXM +e的層次回歸分析。
㈦ 怎麼在SPSS軟體中用多元線性回歸做調節效應
回歸做調節效應,是使用回歸進行。但是更多是使用分層回歸,即通過加入交互項後,看交互項是否顯著,模型解釋力度有沒明顯的變化,來判斷調節效應是否存在。如果加入交互項後模型明顯變化,或者調節項呈現出顯著性即說明具有調節作用。在線SPSS分析軟體SPSSAU中就有這個分析方法可以使用,以及有可能使用到sobel檢驗裡面也有。
㈧ 如何用SPSS做中介效應與調節效應
調節變數可以是定性的,也可以是定量的。在做調節效應分析時,通常要將自變數和調節變數做中心化變換。簡要模型:Y = aX + bM + cXM + e 。Y 與X 的關系由回歸系數a + cM 來刻畫,它是M 的線性函數, c 衡量了調節效應(moderating effect) 的大小。如果c 顯著,說明M 的調節效應顯著。 2、調節效應的分析方法 顯變數的調節效應分析方法:分為四種情況討論。當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做 Y=aX+bM+cXM+e 的層次回歸分析:1、做Y對X和M 的回歸,得測定系數R1 2 。2、做Y對X、M 和XM 的回歸得R2 2 ,若R2 2 顯著高於R1 2 ,則調節效應顯著。或者, 作XM 的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按 M 的取值分組,做 Y 對 X 的回歸。若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX +bM +cXM +e 的層次回歸分析。 潛變數的調節效應分析方法:分兩種情形:一是調節變數是類別變數,自變數是潛變數;二是調節變數和自變數都是潛變數。當調節變數是類別變數時,做分組結構 方程分析。做法是,先將兩組的結構方程回歸系數限制為相等,得到一個χ 2 值和相應的自由度。然後去掉這個限制,重新估計模型,又得到一個χ 2 值和相應的自 由度。前面的χ 2 減去後面的χ 2 得到一個新的χ 2,其自由度就是兩個模型的自由度之差。如果χ 2 檢驗結果是統計顯著的,則調節效應顯著;當調節變數和自變 量都是潛變數時,有許多不同的分析方法,最方便的是Marsh,Wen 和Hau 提出的無約束的模型。 3.中介變數的定義 自變數X 對因變數Y 的影響,如果X 通過影響變數M 來影響Y,則稱M 為中介變數。 Y=cX+e1, M=aX+ e2 , Y= c′X+bM+e3。其中,c 是X 對Y 的總效應,ab 是經過中介變數M 的中介效應,c′是直接效應。當只有一個中介變數時,效應之間有 c=c′+ab,中介效應的大小用c-c′=ab 來衡量。 4、中介效應分析方法 中介效應是間接效應,無論變數是否涉及潛變數,都可以用結構方程模型分析中介效應。步驟為:第一步檢驗系統c,如果c 不顯著,Y 與X 相關不顯著,停止中介 效應分析,如果顯著進行第二步;第二步一次檢驗a,b,如果都顯著,那麼檢驗c′,c′顯著中介效應顯著,c′不顯著則完全中介效應顯著;如果a,b至少 有一個不顯著,做Sobel 檢驗,顯著則中介效應顯著,不顯著則中介效應不顯著。Sobel 檢驗的統計量是z=^a^b/sab ,中 ^a, ^b 分別是 a, b 的估計, sab=^a2sb2 +b2sa2, sa,sb 分別是 ^a, ^b 的標准誤。 5. 調節變數與中介變數的比較 調節變數M 中介變數M 研究目的 X 何時影響Y 或何時影響較大 X 如何影響Y 關聯概念 調節效應、交互效應 中介效應、間接效應 什麼情況下考慮 X 對Y 的影響時強時弱 X 對Y 的影響較強且穩定 典型模型 Y=aM+bM+cXM+e M=aX+e2 Y=c′X+bM+e3 模型中M 的位置 X,M 在Y 前面,M 可以在X 前面 M 在X 之後、Y 之前 M 的功能 影響Y 和X 之間關系的方向(正或負) 和強弱 代表一種機制,X 通過它影響Y M 與X、Y 的關系 M 與X、Y 的相關可以顯著或不顯著(後者較理想) M 與X、Y 的相關都顯著 效應 回歸系數c 回歸系數乘積ab 效應估計 ^c ^a^b 效應檢驗 c 是否等於零 ab 是否等於零 檢驗策略 做層次回歸分析,檢驗偏回歸系數c 的顯著性(t 檢驗);或者檢驗測定系數的變化(F 檢驗) 做依次檢驗,必要時做 Sobel 檢驗 6. 中介效應與調節效應的SPSS 操作方法 處理數據的方法 第一做描述性統計,包括M SD 和內部一致性信度a(用分析里的scale 里的 realibility analsys) 第二將所有變數做相關,包括統計學變數和假設的X,Y,M 第三做回歸分析。(在回歸中選線性回歸linear) 要先將自變數和M 中心化,即減去各自的平均數 1、現將M(調節變數或者中介變數)、Y 因變數,以及與自變數、因變數、M 調節變數其中任何一個變數相關的人口學變數輸入indpendent 2、再按next 將X 自變數輸入(中介變數到此為止) 3、要做調節變數分析,還要將X與M 的乘機在next 里輸入作進一步回歸。檢驗主要看F 是否顯著
㈨ spss中,變數去中心化是變數減去該變數的均值,那麼zscore又是什麼呢
中心化是減去均值,Z分數是再除以標准差,二者都是中心化的方法。