當前位置:首頁 » 算力簡介 » 15分鍾算力比本地高

15分鍾算力比本地高

發布時間: 2022-01-24 07:43:36

⑴ 280TOPS算力爆表!北京車展最強國產自動駕駛平台是它

▲左右分別為黑芝麻CEO單記章、COO劉衛紅

黑芝麻CEO單記章此前是全球視覺晶元領軍企業OmniVision創始團隊成員,在矽谷晶元行業打拚了20多年,在圖像處理晶元和軟體演算法上具有豐富的經驗和技術積累。

CTO齊崢是英特爾奔騰二代晶元主要設計成員、CSO曾代兵是中興微電子總工程師,COO劉衛紅則曾是博世中國ADAS主力部門——底盤與控制系統事業部的中國區總裁。

正因為有超強的研發團隊,讓黑芝麻這家初創公司可以在3年時間內做出ADAS晶元華山一號A500並量產上市,在今年推出華山二號A1000晶元,發布FAD自動駕駛平台。

今年以來,新車如果沒有配備L1/L2級自動駕駛,都「不好意思賣」,自動駕駛的普及程度正在快速提高,而更高等級的L3級甚至L4級自動駕駛也已經到了量產前夜,行業內對自動駕駛晶元和計算平台解決方案需求呈爆發性增長態勢。僅自動駕駛晶元的市場規模,都有望達到萬億美元級別,成為半導體行業最大單一市場。

因此,FAD此時進入自動駕駛市場可謂正當其時。

今年8月,一汽智能網聯開發院與黑芝麻達成技術合作協議。一汽智能網聯開發院將啟動基於華山二號A1000的智能駕駛平台的開發,以滿足後續量產車型需求。雙方將共同推動人工智慧技術在汽車工業領域的應用,加速國產智能駕駛晶元的產業化落地。

另外,黑芝麻也已經簽約多個FAD定點車型,預計明年就將有搭載FAD自動駕駛平台的車型上市。此外,國內外也已經有多家企業開始測試FAD自動駕駛平台,測試車輛已經上路。

黑芝麻在自動駕駛晶元和域控制器中取得的巨大成功,讓行業研究機構開始重視這家剛成立4年有餘創業公司。今年4月,矽谷最強智庫之一的CBInsights發布中國晶元設計企業榜單,黑芝麻在車載晶元領域上榜,成為中國晶元設計企業65強之一。

今年7月,黑芝麻華山二號A1000晶元也亮相世界人工智慧大會,與平頭哥、依圖、寒武紀等高端人工智慧晶元同台亮相。

可以說,黑芝麻經過四年多的發展,已經成為全球領先的自動駕駛晶元設計公司,甚至已經有能力和晶元行業的老大哥們一較高下。同時,黑芝麻的快速進步,也推動著國內自動駕駛晶元設計再上新台階。

在與兩位創始人的交談中,他們還透露了一個彩蛋,明年黑芝麻將發布性能更強的晶元,屆時搭載這一晶元的FAD自動駕駛平台最高算力有望突破1000TOPS,其算力已經可以進行完全自動駕駛。

本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。

⑵ 本地算力483時時算力50什麼原因

⑶ FIL裡面的算力增量是什麼意思

算力增量,就是計算機運算速度的增加量。
算力:簡單說就是你的礦機運算速度的一個量化指標,比如1T算力,就是1s能算10的12次方次運算。如果這10的12次方次能算出符合條件的結果那就挖到了,如果沒有,可以說是白算了。

面對指數級攀升的數據增量,算力是時刻擺在企業和機構面前最大的訴求,而提升算力就需要性能更高的CPU與GPU。
上一次AMD處理器將HPC的計算力推至億億次,而現在AMD攜EPYC處理器再次將超算的計算力推進到百億億次的級別。AMD打造的兩大E級超算系統Frontier和El Capitan分別計劃於2021和2023年交付,將分別實現超過 1.5 exaflops(百億億次)和2 exaflops的預期處理性能,預計交付後將成為世界上最快的超級計算機。。
短時間內在計算力方面有如此大的提升,對於任何一家廠商來說都是不小的挑戰。AMD是如何取得如此大的進步?我們要從2017年說起。
2017年,AMD採用了全新的Zen架構,推出了第一代EPYC處理器,並驚人地把單個處理器核心數提升到了32核。而在兩年之後,第二代EPYC處理器的推出,不僅把架構升級至Zen2,同時,製程工藝從14nm降至7nm,從而使其IPC性能提升15%。
相比與Zen架構,新推出Zen2架構優化了L1指令緩存,並使操作緩存容量和浮點單元數據位寬翻倍,同時L3緩存翻倍到16MB,64核EPYC處理器輕松擁有128MB L3緩存。而且很重要的一點是,第二代EPYC採用了7nm工藝,有效減低了功耗,使得在225W TDP下可以將核心數提升到64核,讓其性能提升明顯。
在過去的一年時間里,第二代AMD EPYC處理器取得了超過140項世界紀錄,其中涵蓋雲計算、虛擬化、高性能計算、大數據分析等多個領域,並且還以強大的性能來滿足企業或機構對計算力日漸增強的需求。
所以,AMD依靠著EPYC處理器的領先性能以及超高的功耗比,不僅贏得了更多市場份額、打破眾多世界紀錄,同時,也讓AMD的生態圈日漸擴大。

挖礦所消耗的算力最終用到了哪裡

從廉價電力到集中采礦作業,我國的資源環境為比特幣礦商提供了多項優勢。近年來,比特幣礦商們在新疆和內蒙古等煤炭豐富的地區利用廉價電力來擴大業務,這些地區可以說是一些世界領先的采礦公司的創始人的家園。

隨著比特幣價格的攀升,加入比特幣挖礦業務的人群越來越多,相應的,挖礦消耗的能源也越來越多。很顯然,我國政府也意識到了這一點。

根據文件要求,監管者要求地方政府採取與電價、土地使用、稅收和環境保護相關的措施來指導比特幣礦工退出該業務。根據外媒報道,監管監管部門出台關停政策主要是擔心其中所涉及的洗錢和金融風險,但過高的電力消耗也是不可忽視的因素。從原理上來說,比特幣采礦消耗大量電力的原因在於,每生產一個新比特幣都需要通過高性能計算機執行的加密過程來解決復雜的數學難題。挖掘計算過程用於在區塊鏈中驗證比特幣交易來確保安全,而缺點就是要消耗大量的能源。

⑸ 最高280 TOPS算力,黑芝麻科技發布華山二號,PK特斯拉FSD

晶元作為智能汽車的核心「大腦」,成為諸多車企、Tier 1、自動駕駛企業重點布局的領域。
圍繞著自動駕駛最為關鍵的計算單元,國內誕生了諸多自動駕駛晶元創新公司,在該領域的絕大部分市場份額依然被國外廠商控制的當下,他們正在爭取成為「國產自動駕駛晶元之光」。
成立於 2016 年的黑芝麻智能科技便是這一名號的有力爭奪者。
繼 2019 年 8 月底發布旗下首款車規級自動駕駛晶元華山一號(HS-1)A500 後,黑芝麻又在這個 6 月推出了相較於前代在性能上實現躍遷的全新系列產品——華山二號(HS-2),兩個系列產品的推出相隔僅 300 余天,整體研發效率可見一斑。
1、國產算力最高自動駕駛晶元的自我修養
華山二號系列自動駕駛晶元目前有兩個型號的產品,包括:
應用於?L3/L4?級自動駕駛的華山二號 A1000?;針對?ADAS/L2.5?自動駕駛的華山二號 A1000L。
簡單理解就是,A1000 是高性能版本,而 A1000L 則在性能上進行了裁剪。
這樣的產品型號設置也讓華山二號系列晶元能在不同的自動駕駛應用場景中進行集成。
相較於 A500 晶元,A1000?在算力上提升了近?8 倍,達到了?40 - 70TOPS,相應的功耗為?8W,能效比超過?6TOPS/W,這個數據指標目前在全球處於領先地位。
華山二號 A1000 之所以能有如此出色的能效表現,很大程度是因為這塊晶元是基於黑芝麻自研的多層異構性的?TOA 架構打造的。
這個架構將黑芝麻核心的圖像感測技術、圖像視頻壓縮編碼技術、計算機視覺處理技術以及深度學習技術有機地結合在了一起。
此外,這款晶元中內置的黑芝麻自研的高性能圖像處理核心?NeuralIQ ISP?以及神經網路加速引擎?DynamAI DL?也為其能效躍升提供了諸多助力。
需要注意的是,這里的算力數值之所以是浮動的,是因為計算方式的不同。
如果只計算 A1000 的卷積陣列算力,A1000 大致是 40TOPS,如果加上晶元上的 CPU 和 GPU 的算力,其總算力將達到?70TOPS。
在其他參數和特性方面,A1000 內置了 8 顆 CPU 核心,包含 DSP 數字信號處理和硬體加速器,支持市面上主流的自動駕駛感測器接入,包括激光雷達、毫米波雷達、4K 攝像頭、GPS 等等。
另外,為了滿足車路協同、車雲協同的要求,這款晶元不僅集成了 PCIE 高速介面,還有車規級千兆乙太網介面。
A1000 從設計開始就朝著車規級的目標邁進,它符合晶元 AEC-Q100 可靠性和耐久性 Grade 2 標准,晶元整體達到了 ISO 26262 功能安全 ASIL-B 級別,晶元內部還有滿足 ASIL-D 級別的安全島,整個晶元系統的功能安全等級為?ASIL-D。
從這些特性來看,A1000 是一款非常標準的車規級晶元,完全可以滿足在車載終端各種環境的使用要求。
A1000 晶元已於今年 4 月完成流片,採用的是台積電的 16nm FinFET 製程工藝。
今年 6 月,黑芝麻的研發團隊已經對這款晶元的所有模塊進行了性能測試,完全調試通過,接下來就是與客戶進行聯合測試,為最後的大規模量產做准備。
據悉,搭載這款晶元的首款車型將在?2021 年底量產。
隨著 A1000 和 A1000L 的推出,黑芝麻的自動駕駛晶元產品路線圖也更加清晰。
在華山二號之後,這家公司計劃在 2021 年的某個時點推出華山三號,主要面向的是 L4/L5 級自動駕駛平台,晶元算力將超越 200TOPS,同時會採用更先進的 7nm 製程工藝。
華山三號的?200TOPS?算力,將追平英偉達 Orin 晶元的算力。
去年 8 月和華山一號 A500 晶元一同發布的,還有黑芝麻自研的 FAD(Full Autonomous Driving)自動駕駛計算平台。
這個平台演化至今,在 A1000 和 A1000L 晶元的基礎上,有了更強的可擴展性,也有了更廣泛的應用場景。
針對低級別的 ADAS 場景,客戶可以基於 HS-2 A1000L 晶元搭建一個算力為 16TOPS、功耗為 5W 的計算平台。
而針對高級別的 L4 自動駕駛,客戶可以將 4 塊 HS-2 A1000 晶元並聯起來,實現高達 280TOPS 算力的計算平台。
當然,根據不同客戶需求,這些晶元的組合方式是可變換的。
與其他大多數自動駕駛晶元廠商一樣,黑芝麻也在可擴展、靈活變換的計算平台層面投入了更多研發精力,為的是更大程度上去滿足客戶對計算平台的需求。
反過來,這樣的做法也讓黑芝麻這樣的晶元廠商有了接觸更多潛在客戶的機會。
根據黑芝麻智能科技的規劃,今年 7 月將向客戶提供基於 A1000 的核心開發板。
到今年 9 月,他們還將推出應用於 L3 自動駕駛的域控制器(DCU),其中集成了兩顆 A1000 晶元,算力可達 140TOPS。
2、黑芝麻自動駕駛晶元產品「聖經」
借著華山二號系列晶元的發布,黑芝麻智能科技創始人兼 CEO 單記章也闡述了公司 2020 年的「AI 三次方」產品發展戰略,具體包括「看得懂、看得清和看得遠」。
這一戰略是基於目前市面上對自動駕駛域控制器和計算平台的諸多要求提出的,這些要求包括安全性、可靠性、易用性、開放性、可升級以及延續性等。
其中,看得懂直接指向的是?AI 技術能力,要求黑芝麻的晶元產品能夠理解外界所有的信息,可以進行判斷和決策。
而看得懂的基礎是看得清,這指的是黑芝麻晶元產品的圖像處理能力,需要具備准確接收外界信息的能力。
這里尤其以攝像頭感測器為代表,其信息量最大、數據量也最多,當然感測器融合也不可或缺。
看得遠則指的是車輛不僅要感知周邊環境,還要了解更大范圍的環境信息,這就涉及到了車路協同、車雲協同這樣的互聯技術,所以我們看到黑芝麻的晶元產品非常注重對互聯技術的支持。
作為一家自動駕駛晶元研發商,這一戰略將成為黑芝麻後續晶元產品研發的「聖經」。
3、定位 Tier 2,綁定 Tier 1,服務 OEM
現階段,發展智能汽車已經成為了國家意志,在政策如此支持的情況下,智能汽車的市場爆發期指日可待。
根據艾瑞咨詢的報告數據顯示,到 2025 年全球將會有 6662 萬輛智能汽車的存量,中國市場的智能汽車保守預計在 1600 萬輛左右。
如此規模龐大的智能汽車增量市場,將為那些打造智能汽車「大腦」的晶元供應商培育出無限的產品落地機會。
作為其中一員,黑芝麻智能科技也將融入到這股潮流之中,很有機會成長為潮流的引領者。
作為一家自動駕駛晶元研發商,黑芝麻智能科技將自己定位為?Tier 2,未來將綁定 Tier 1 合作夥伴,進而為車企提供產品和服務。
當然,黑芝麻不僅能提供車載晶元,未來還將為客戶提供自動駕駛感測器和演算法的解決方案,還有工具鏈、操作平台等產品。
憑借著此前發布的華山一號 A500 晶元,黑芝麻智能科技已經與中國一汽和中科創達兩家達成了深入的合作夥伴關系,將在自動駕駛晶元、視覺感知演算法等領域展開了諸多項目合作。
另外,全球頂級供應商博世也與黑芝麻建立起了戰略合作關系。
目前,黑芝麻的華山一號 A500 晶元已經開啟了量產,其與國內頭部車企關於 L2+ 和 L3 級別自動駕駛的項目也正在展開。
如此快速的落地進程,未來可期。
有意思的是,黑芝麻此番發布華山二號系列晶元,包括中國一汽集團的副總經理王國強、上汽集團總工程師祖似傑、蔚來汽車 CEO 李斌以及博世中國區總裁陳玉東在內的多位行業大佬都為其雲站台。
這背後意味著什麼?給我們留下了很大的想像空間。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。

⑹ 高通發布全新自動駕駛計算平台 最高算力700TOPS,2023年量產

▲高通公司總裁CristianoAmon新聞發布會上向展示了SnapdragonRide(圖源CNET/James?Martin)

SnapdragonRide通過獨特的SoC、加速器和自動駕駛軟體棧的結合,為汽車製造商提供了一種可擴展的解決方案,可在三個細分領域對自動駕駛汽車提供支持,分別是:

1、L1/L2級主動安全ADAS——面向具備自動緊急制動、交通標志識別和車道保持輔助功能的汽車。

2、L2+級ADAS——面向在高速公路上進行自動駕駛、支持自助泊車,以及可在頻繁停車的城市交通中進行駕駛的汽車。

3、L4/L5級完全自動駕駛——面向在城市交通環境中的自動駕駛、無人計程車和機器人物流。

SnapdragonRide平台基於一系列不同的驍龍汽車SoC和加速器建立,採用可擴展且模塊化的高性能異構多核CPU、高能效的AI及計算機視覺引擎,以及GPU。

其中,ADASSoC系列和加速器系列採用異構計算,與此同時利用高通的新一代人工智慧引擎,ADAS和SoC能夠高效管理車載系統的大量數據。

得益於這些不同的SoC和加速器的組合,SnapdragonRide平台可以根據自動駕駛的不同細分市場的需求進行配備,同時提供良好的散熱效率,包括從面向L1/L2級別應用的30TOPS等級的設備,到面向L4/L5級別駕駛、超過700TOPS的功耗130瓦的設備。

此外,高通全新推出的SnapdragonRide自動駕駛軟體棧是集成在SnapdragonRide平台中的模塊化可擴展解決方案。

據介紹,SnapdragonRide平台的軟體框架可同時託管客戶特定的軟體棧組件和SnapdragonRide自動駕駛軟體棧組件。

SnapdragonRide平台也支持被動或風冷的散熱設計,因而能夠在成本降低的同時進一步優化汽車設計,提升可靠性。

現在,Arm、黑莓QNX、英飛凌、新思科技、Elektrobit、安森美半導體均已加入高通的自動駕駛朋友圈,成為SnapdragonRide自動駕駛平台的軟/硬體供應商。

Arm的功能安全解決方案,新思科技的汽車級DesignWare介面IP、ARC處理器IP和STARMemorySystemTM,黑莓QNX的汽車基礎軟體OS安全版及Hypervisor安全版,英飛凌的AURIXTM微控制器,以及安森美半導體的ADAS系列感測器都會集成到高通的自動駕駛平台上。

Elektrobit還計劃與高通合作,共同開發可規模化生產的新一代AUTOSAR架構,EBcorbos軟體和SnapdragonRide自動駕駛平台都將集成在這個架構上面。

據了解SnapdragonRide將在2020年上半年交付汽車製造商和一級供應商進行前期開發,而根據QualcommTechnologies估計,搭載SnapdragonRide的汽車將於2023年投入生產。

二、深耕汽車業務多年高通賦能超百萬台汽車

在發布SnapdragonRide自動駕駛平台之前,高通已在智能汽車領域深耕多年。

十多年來,高通子公司QualcommTechnologies一直在為通用汽車的網聯汽車應用提供先進的無線通信解決方案,包括通用汽車上安吉星設備所支持的安全應用。

在車載信息處理、信息影音和車內互聯等領域,QualcommTechnologies的訂單總價值目前已超過70億美元(約合人民幣487億元)。

而根據高通在CES2020發布會現場公布的信息,迄今為止已經有超百萬輛汽車使用了高通提供的汽車解決方案。

很顯然,如今高通在汽車領域的布局又向前邁進了一步。

CES2020期間,除發布SnapdragonRide自動駕駛平台外,高通還推出了全新的車對雲服務(Car-to-CloudService),該服務預計在2020年下半年開始提供。

據介紹,由QualcommTechnologies打造的車對雲服務支持SoftSKU晶元規格軟升級能力,不僅可以幫助汽車客戶滿足消費者不斷變化的需求,還可根據新增性能需求或新特性,讓晶元組在外場實現升級、以支持全新功能。

與此同時SoftSKU也支持客戶開發通用硬體,從而節省他們面向不同開發項目的專項投入。利用高通車對雲SoftSKU,汽車製造商不僅能夠為消費者提供各種定製化服務,還可以通過個性化特性打造豐富且具沉浸感的車內體驗。

另外高通的車對雲服務也支持實現全球蜂窩連接功能,既可用於引導初始化服務,也可以在整個汽車生命周期中提供無線通信連接。

QualcommTechnologies產品管理高級副總裁NakulDuggal表示,結合驍龍汽車4G和5G平台、驍龍數字座艙平台,高通的車對雲服務能夠幫助汽車製造商和一級供應商滿足當代車主的新期待,包括靈活、持續地進行技術升級,以及在整個汽車生命周期中不斷探索新功能。

此外,QualcommTechnologies也在CES2020上宣布,表示將繼續深化和通用汽車的合作。作為長期合作夥伴,通用汽車將通過與QualcommTechnologies的持續合作來支持數字座艙、車載信息處理和ADAS(先進駕駛輔助系統)。

結語:巨頭紛紛入局自動駕駛領域風起雲涌

前有華為表示要造激光雷達、毫米波雷達等智能汽車核心感測器,後有Arm牽頭成立自動駕駛汽車計算聯盟,如今移動晶元巨頭高通也發布了全新的自動駕駛平台,在汽車和自動駕駛領域上又邁進一步。

巨頭入局有利於自動駕駛汽車更快更好地落地,然而另一方面隨著更多硬核玩家拓展業務邊界,此次市場上的競爭也必然會變得更加激烈。

本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。

⑺ 實時算力和本地算力差距大嗎

實時算力和本地算力一般差距較大。一般來說,顯卡礦機的本地算力一直都很穩定,而礦池上顯示的實時算力卻經常波動。有的時候,這台礦機在礦池的實際算力會高於本地算力,有的時候,這台礦機在礦池的實際算力會低於本地算力。

理論上,礦池其實只需要按照有效share的數量,向每一個礦機(綁定的地址)發放獎勵就可以了。不過,實際過程中,礦池是需要給礦機主提供一個數據,來幫助礦工判斷礦機是否在正常工作。

因此,礦池需要把有效share的數量按照每一個任務的權重,反推計算出來一個算力值,來供礦機主參考,辨別礦機是否在正常工作。礦池算力其實並不是你本地的算力數據,而是通過你提交的有效share反推出來的一個幫助判斷機器是否正常運行的數據指標。

本地算力與實時算力的關系

一般礦池算力會顯示成兩個數據:

一個是短時間的算力,或者叫瞬時算力(不同礦池會顯示5分鍾、10分鍾、15分鍾算力);另一個則是長時間的算力,一般會選擇24小時算力。

短時間算力,比如15分鍾算力,就是統計15分鍾提交的有效share然後按照權重反推出來的平均算力值。而長期算力,則是24小時內提交的有效share然後按照權重反推出來的平均算力值。那麼兩個數據的關系,則取決於統計時間內有效share提交的數量。

如果礦機的運算效率高,在此統計周期內(比如15分鍾內),提交的有效share特別多,則這時候的15分鍾算力數據會特別高,甚至比本地算力還要高很多。

(這種情況,可以理解為機器在超負荷運算。例如,機器的能力只有310M水平,卻在這15分鍾完成了400M水平的運算工作。)正常來說,一個機器當然不可能持續的超負荷工作。

所以我們會看到礦池反應的算力曲線是實時波動的,並且同一地址下的礦機數量越少,算力波動會越明顯,若多台礦機一起顯示的總算力會平穩些。而礦池顯示的24小時平均算力,由於統計周期比較長,所以是一個比較穩定的數據。一般會比本地算力略低一些。

因此,也會出現很多時候,在此統計周期內(比如15分鍾內),提交的有效share比較少。那麼這個時候的15分鍾算力數據就會比較低,低於本地算力。

⑻ 什麼是挖礦

挖礦就是利用比特幣挖礦機,就是用於賺取比特幣。

用戶用個人計算機下載軟體然後運行特定演算法,與遠方伺服器通訊後可得到相應比特幣,是獲取比特幣的方式之一。

比特幣為一種虛擬的貨幣,比特幣挖礦制度為通過計算機硬體為比特幣網路開展數學運算的過程,提供服務的礦工可以得到一筆報酬,因為網路報酬依據礦工完成的任務來計算,為此挖礦的競爭十分激烈。

挖礦實際是性能的競爭、裝備的競爭,由非常多張顯卡組成的挖礦機,哪怕只是HD6770這種中低端顯卡,「組團」之後的運算能力還是能夠超越大部分用戶的單張顯卡的。

而且這還不是最可怕的,有些挖礦機是更多這樣的顯卡陣列組成的,數十乃至過百的顯卡一起來,顯卡本身也是要錢的,算上硬體價格等各種成本,挖礦存在相當大的支出。

(8)15分鍾算力比本地高擴展閱讀:

比特幣挖礦流程:

1、找到礦池

開始挖礦必須要有一個操作方便、產出穩定的礦池,它的作用就是為各個終端細分數據包,可以通過精密的演算法將終端計算好的數據包按照比例,支付相應數量的比特幣。

2、下載比特幣挖礦器(軟體)

其實這種挖礦器也有很多種,大家可以去官方網站下載。

3、設置挖礦軟體

GUIMiner是個綠色軟體,安裝完成後我們可以先設置下語言,以便更方便進一步設置。接下來需要對采礦器設置伺服器、用戶名、密碼、設備等。一般伺服器從BTC guild系列裡面選一個網路較好的就行,用戶名和密碼就是我們之前自己設置的。

4、比特幣挖礦開始

當我們確認都設定無誤後,點「開始挖礦」按鈕之後就開始挖比特幣了,隨之顯卡很快就會進入全速運行狀態,溫度升高、風扇轉速提高,你可以通過GPU-Z或顯卡驅動來監控狀態。

⑼ 技嘉6600xt魔鷹,挖礦超頻設置如何才能做到,不那麼燒顯卡的情況下,達到高算力

技嘉六六六技嘉66666差距模型玩不玩超頻設置,如何才能做到不那麼燒顯卡的情況下達到了高三的,這是因為他數據得到了很好的印證以後,通過它來進行計算的就是一般性的

⑽ zec r9 280x 和 390 哪個算力高

390是290的馬甲,比280X多了幾百個流處理器和幾個光柵,位寬也大得多
280X各個方面都不如390

熱點內容
比特幣場外交易被騙怎麼辦 發布:2025-05-12 17:27:53 瀏覽:151
不賣礦機賣什麼 發布:2025-05-12 15:40:56 瀏覽:848
eth在哪個交易所要合法 發布:2025-05-12 15:05:10 瀏覽:901
元宇宙涉及電子行業 發布:2025-05-12 15:01:29 瀏覽:798
元宇宙可行嗎 發布:2025-05-12 14:49:17 瀏覽:505
區塊鏈運動app 發布:2025-05-12 14:28:28 瀏覽:81
實名認證不屬於去中心化嗎 發布:2025-05-12 14:00:46 瀏覽:79
區塊鏈APP查詢 發布:2025-05-12 13:34:49 瀏覽:922
達沃斯論壇里2019陽光區塊鏈 發布:2025-05-12 13:34:49 瀏覽:593
比特幣現金會歸零嗎 發布:2025-05-12 13:25:05 瀏覽:720