當前位置:首頁 » 算力簡介 » 去中心調節效應

去中心調節效應

發布時間: 2022-01-25 06:21:23

⑴ 如何做SPSS的調節效應

顯變數的調節效應分析方法:分為四種情況討論。當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做Y=aX+bM+cXM+e 的層次回歸分析:1、做Y對X和M的回歸,得測定系數R12。2、做Y對X、M和XM的回歸得R22,若R22顯著高於R12,則調節效應顯著。或者,作XM的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按 M的取值分組,做 Y對 X的回歸。若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX +bM +cXM +e的層次回歸分析。

⑵ 如何做SPSS的調節效應

做SPSS的調節效應方法:

  1. 用回歸,回歸也有兩種方法來檢驗調節效應,看下面的兩個方程,y是因變數,x是自變數,m是調節變數,mx是調節變數和自變數的交互項,系數是a b c c'。檢驗兩個方程的R方該變數,如果該變數顯著,說明調節作用顯著,也可以直接檢驗c'的顯著性,如果顯著也可以說明調節作用。

    ⑶ 用SPSS做調節效應分析。交互項顯著,但是調節變數不顯著。這樣可否判斷是否具有調節效應

    可以判斷具有調節效應。

    交互項顯著說明有調節效應,調節變數不顯著說明這個調節變數在控制了自變數和調節項之後單獨的作用不顯著,簡單說就是「調節效應存在」。

    可以這樣理解:調節效應存在,但是調節變數對因變數的影響不顯著,所以才會出現交互項顯著,但是調節變數不顯著結果。這個模型找到文獻支持可以成立的。

    (3)去中心調節效應擴展閱讀

    用SPSS做調節效應分析主要看交互項,交互項顯著即有調節效應,反之則沒有。調節效應應該檢驗交互因子的系數,這個系數顯著,就可以說明調節效應了。

    調節作用研究X對Y的影響時,是否會受到調節變數Z的干擾;比如開車速度(X)會對車禍可能性(Y)產生影響,這種影響關系受到是否喝酒(Z)的干擾,即喝酒時的影響幅度,與不喝酒時的影響幅度
    是否有著明顯的不一樣。

    例如,R變化值僅為0.001非常非常低,而且△F值沒有呈現出顯著性,說明F值變化不顯著,也即說明分層2在分層1的基礎上加入交互項,並沒有對Y起著更多的作用,而且具體看交互項的回歸系數值為0.020,沒有呈現出顯著性,也即說明交互項沒有呈現出顯著性,進一步說明沒有調節作用產生。

    ⑷ 自變數與調節變數都是分類變數時怎麼分析調節效應

    根據自變數和調節變數的數據類型,可以分為以下四種情況:

    ⑸ 數據,交互變數一定要去中心化嗎

    不一定,中心化處理只不過是為了方便解釋而已,並不影響各項回歸系數。(南心網 調節效應中心化處理)

    ⑹ 如何運用SPSS及AMOS進行中介效應與調節效應分析

    3
    調節變數可以是定性的,也可以是定量的.在做調節效應分析時,通常要將自變數和調節變數做中心化變換.簡要模型:Y = aX + bM + cXM + e .Y 與X 的關系由回歸系數a + cM 來刻畫,它是M 的線性函數,c 衡量了調節效應(moderating effect) 的大小.如果c 顯著,說明M 的調節效應顯著.2、調節效應的分析方法 顯變數的調節效應分析方法:分為四種情況討論.當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做 Y=aX+bM+cXM+e 的層次回歸分析:1、做Y對X和M 的回歸,得測定系數R1 2 .2、做Y對X、M 和XM 的回歸得R2 2 ,若R2 2 顯著高於R1 2 ,則調節效應顯著.或者,作XM 的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按 M 的取值分組,做 Y 對 X 的回歸.若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX +bM +cXM +e 的層次回歸分析.潛變數的調節效應分析方法:分兩種情形:一是調節變數是類別變數,自變數是潛變數;二是調節變數和自變數都是潛變數.當調節變數是類別變數時,做分組結構 方程分析.做法是,先將兩組的結構方程回歸系數限制為相等,得到一個χ 2 值和相應的自由度.然後去掉這個限制,重新估計模型,又得到一個χ 2 值和相應的自 由度.前面的χ 2 減去後面的χ 2 得到一個新的χ 2,其自由度就是兩個模型的自由度之差.如果χ 2 檢驗結果是統計顯著的,則調節效應顯著;當調節變數和自變 量都是潛變數時,有許多不同的分析方法,最方便的是Marsh,Wen 和Hau 提出的無約束的模型.3.中介變數的定義 自變數X 對因變數Y 的影響,如果X 通過影響變數M 來影響Y,則稱M 為中介變數.Y=cX+e1,M=aX+ e2 ,Y= c′X+bM+e3.其中,c 是X 對Y 的總效應,ab 是經過中介變數M 的中介效應,c′是直接效應.當只有一個中介變數時,效應之間有 c=c′+ab,中介效應的大小用c-c′=ab 來衡量.4、中介效應分析方法 中介效應是間接效應,無論變數是否涉及潛變數,都可以用結構方程模型分析中介效應.步驟為:第一步檢驗系統c,如果c 不顯著,Y 與X 相關不顯著,停止中介 效應分析,如果顯著進行第二步;第二步一次檢驗a,b,如果都顯著,那麼檢驗c′,c′顯著中介效應顯著,c′不顯著則完全中介效應顯著;如果a,b至少 有一個不顯著,做Sobel 檢驗,顯著則中介效應顯著,不顯著則中介效應不顯著.Sobel 檢驗的統計量是z=^a^b/sab ,中 ^a,^b 分別是 a,b 的估計,sab=^a2sb2 +b2sa2,sa,sb 分別是 ^a,^b 的標准誤.5.調節變數與中介變數的比較 調節變數M 中介變數M 研究目的 X 何時影響Y 或何時影響較大 X 如何影響Y 關聯概念 調節效應、交互效應 中介效應、間接效應 什麼情況下考慮 X 對Y 的影響時強時弱 X 對Y 的影響較強且穩定 典型模型 Y=aM+bM+cXM+e M=aX+e2 Y=c′X+bM+e3 模型中M 的位置 X,M 在Y 前面,M 可以在X 前面 M 在X 之後、Y 之前 M 的功能 影響Y 和X 之間關系的方向(正或負) 和強弱 代表一種機制,X 通過它影響Y M 與X、Y 的關系 M 與X、Y 的相關可以顯著或不顯著(後者較理想) M 與X、Y 的相關都顯著 效應 回歸系數c 回歸系數乘積ab 效應估計 ^c ^a^b 效應檢驗 c 是否等於零 ab 是否等於零 檢驗策略 做層次回歸分析,檢驗偏回歸系數c 的顯著性(t 檢驗);或者檢驗測定系數的變化(F 檢驗) 做依次檢驗,必要時做 Sobel 檢驗 6.中介效應與調節效應的SPSS 操作方法 處理數據的方法 第一做描述性統計,包括M SD 和內部一致性信度a(用分析里的scale 里的 realibility analsys) 第二將所有變數做相關,包括統計學變數和假設的X,Y,M 第三做回歸分析.(在回歸中選線性回歸linear) 要先將自變數和M 中心化,即減去各自的平均數 1、現將M(調節變數或者中介變數)、Y 因變數,以及與自變數、因變數、M 調節變數其中任何一個變數相關的人口學變數輸入indpendent 2、再按next 將X 自變數輸入(中介變數到此為止) 3、要做調節變數分析,還要將X與M 的乘機在next 里輸入作進一步回歸.檢驗主要看F 是否顯著

熱點內容
比特幣場外交易被騙怎麼辦 發布:2025-05-12 17:27:53 瀏覽:151
不賣礦機賣什麼 發布:2025-05-12 15:40:56 瀏覽:848
eth在哪個交易所要合法 發布:2025-05-12 15:05:10 瀏覽:901
元宇宙涉及電子行業 發布:2025-05-12 15:01:29 瀏覽:798
元宇宙可行嗎 發布:2025-05-12 14:49:17 瀏覽:505
區塊鏈運動app 發布:2025-05-12 14:28:28 瀏覽:81
實名認證不屬於去中心化嗎 發布:2025-05-12 14:00:46 瀏覽:79
區塊鏈APP查詢 發布:2025-05-12 13:34:49 瀏覽:922
達沃斯論壇里2019陽光區塊鏈 發布:2025-05-12 13:34:49 瀏覽:593
比特幣現金會歸零嗎 發布:2025-05-12 13:25:05 瀏覽:720