當前位置:首頁 » 算力簡介 » 量子算力定義

量子算力定義

發布時間: 2022-05-18 05:52:07

1. 量子力學是什麼意思

量子力學是研究微觀粒子的運動規律的物理學分支學科,它主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論,它與相對論一起構成了現代物理學的理論基礎。量子力學不僅是近代物理學的基礎理論之一,而且在化學等有關學科和許多近代技術中也得到了廣泛的應用。
量子力學的基本原理包括量子態的概念,運動方程、理論概念和觀測物理量之間的對應規則和物理原理。

2. 量子力學中的「量子」到底是什麼東西怎麼解釋呢

在物理學的認識中,我們聽到最多的就是質子中子和電子,分子,可能對於量子這一個名詞非常的陌生,其實量子顧名思義就是可以被量化的粒子,在宇宙中存在著千千萬萬的物質,那麼除了輻射以及紫外線還有其他的塵埃之外,還存在著一些非常非常小的物質,當來衡量這些非常小的物質的時候可以用量子來形容。

不能分割,並且他具有最小單位的那麼就是量子,在不同的物質,或者是不同的角度,或者是電荷,以及其他的物質中在整個物理系中,他就是存在著一個量子化的特徵以及表現。關於對量子的研究,以及學習來構成了我們的量子力學。


3. 有誰知道量子力學最基本的概念或者定義

量子力學是描寫微觀物質的一個物理學理論,與相對論一起被認為是現代物理學的兩大基本支柱,許多物理學理論和科學如原子物理學、固體物理學、核物理學和粒子物理學以及其它相關的學科都是以量子力學為基礎.
量子力學是研究微觀粒子的運動規律的物理學分支學科,它主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論.
19世紀末,經典力學和經典電動力學在描述微觀系統時的不足越來越明顯.量子力學是在20世紀初由馬克斯·普朗克、尼爾斯·玻爾、沃納·海森堡、埃爾溫·薛定諤、沃爾夫岡·泡利、路易·德布羅意、馬克斯·玻恩、恩里科·費米、保羅·狄拉克等一大批物理學家共同創立的.通過量子力學的發展人們對物質的結構以及其相互作用的見解被革命化地改變.通過量子力學許多現象才得以真正地被解釋,新的、無法直覺想像出來的現象被預言,但是這些現象可以通過量子力學被精確地計算出來,而且後來也獲得了非常精確的實驗證明.除通過廣義相對論描寫的引力外,至今所有其它物理基本相互作用均可以在量子力學的框架內描寫(量子場論).
量子力學的數學基礎是由埃爾溫·薛定諤,保羅·狄拉克,帕斯庫爾·約當和約翰·馮·諾伊曼相繼建立和嚴格化的.在這些數學框架下,一個物理系統的量子力學描述有三個主要部分:量子態、可觀察量和動力學(即其演化).此外物理對稱性也是一個非常重要的特性.

4. 量子力學的相關概念

振動粒子的量子論詮釋
物質的粒子性由能量E 和動量p 刻劃,波的特徵則由電磁波頻率γ 和其波長λ 表達,這兩組物理量的比例因子由普朗克常數h(h=6.626*10^-34J·s) 所聯系。
E=hγ , E=mc^2 聯立兩式,得:m=hγ/c^2(這是光子的相對論質量,由於光子無法靜止,因此光子無靜質量)而p=mv
則p=vhγ/c^{2}(p 為動量)
粒子波的一維平面波的偏微分波動方程,其一般形式為
dξ/dx=(1/γ)(dξ/dt) [5]
三維空間中傳播的平面粒子波的經典波動方程為
dξ/dx+dξ/dy+dξ/dz=(1/γ)(dξ/dt) [6]
波動方程是借用經典力學中的波動理論,對微觀粒子波動性的一種描述。通過這個橋梁,使得量子力學中的波粒二象性得到了很好的表達。
經典波動方程1,1'式或[6]式中的u,隱含著不連續的量子關系E=hγ和德布羅意關系λ=h/p,由於u=γλ,故可在u=vλ的右邊乘以含普朗克常數h的因子(h/h),就得到
u=(γh)(λ/h)
=E/p
等關系u=E/p,使經典物理與量子物理,連續與不連續(定域)之間產生了聯系,得到統一 .
粒子波 德布羅意物質波
德布羅意關系λ=h/p,和量子關系E=hγ(及薛定諤方程)這兩個關系式實際表示的是波性與粒子性的統一關系, 而不是粒性與波性的兩分.德布羅意物質波是粒波一體的真物質粒子,光子,電子等的波動.
海森堡測不準原理
即物體動量的不確定性乘以其位置的不確定性至少為一個確定的常數。 量子力學與經典力學的一個主要區別,在於測量過程在理論中的地位。在經典力學中,一個物理系統的位置和動量,可以無限精確地被確定和被預言。至少在理論上,測量對這個系統本身,並沒有任何影響,並可以無限精確地進行。在量子力學中,測量過程本身對系統造成影響。
要描寫一個可觀察量的測量,需要將一個系統的狀態,線性分解為該可觀察量的一組本徵態的線性組合。測量過程可以看作是在這些本徵態上的一個投影,測量結果是對應於被投影的本徵態的本徵值。假如,對這個系統的無限多個拷貝,每一個拷貝都進行一次測量的話,我們可以獲得所有可能的測量值的機率分布,每個值的機率等於對應的本徵態的系數的絕對值平方。
由此可見,對於兩個不同的物理量A和B的測量順序,可能直接影響其測量結果。事實上,不相容可觀察量就是這樣的,即 。 最著名的不相容可觀察量,它是一個粒子的位置x和動量p。它們的不確定性Δx和Δp的乘積,大於或等於普朗克常數的一半:
海森堡1927年發現的「不確定性原理」,也常稱為「不確定關系」或者「測不準關系」,說的是兩個不對易算符所表示的力學量(如坐標和動量,時間和能量等),不可能同時具有確定的測量值。其中的一個測得越准確,另一個就測得越不準確。它說明:由於測量過程對微觀粒子行為的「干擾」,致使測量順序具有不可交換性,這是微觀現象的一個基本規律。實際上,像粒子的坐標和動量這樣的物理量,並不是本來就存在而等待著我們去測量的信息,測量不是一個簡單的「反映」過程,而是一個「變革」過程,它們的測量值取決於我們的測量方式,正是測量方式的互斥性導致了測不準關系。
機率
通過將一個狀態分解為可觀察量本徵態的線性組合,可以得到狀態在每一個本徵態的機率幅ci。這機率幅的絕對值平方|ci|2就是測量到該本徵值ni的概率,這也是該系統處於本徵態的概率。ci可以通過將投影到各本徵態上計算出來:
因此,對於一個系綜的完全相同系統的某一可觀察量,進行同樣地測量,一般獲得的結果是不同的;除非,該系統已經處於該可觀察量的本徵態上了。通過對系綜內,每一個同一狀態的系統,進行同樣的測量,可以獲得測量值ni的統計分布。所有試驗,都面臨著這個測量值與量子力學的統計計算的問題。
同樣粒子的不可區分性和量子糾纏
往往一個由多個粒子組成的系統的狀態,無法被分離為其組成的單個粒子的狀態,在這種情況下,單個粒子的狀態被稱為是糾纏的。糾纏的粒子有驚人的特性,這些特性違背一般的直覺。比如說,對一個粒子的測量,可以導致整個系統的波包立刻塌縮,因此也影響到另一個、遙遠的、與被測量的粒子糾纏的粒子。這個現象並不違背狹義相對論,因為在量子力學的層面上,在測量粒子前,你不能定義它們,實際上它們仍是一個整體。不過在測量它們之後,它們就會脫離量子糾纏這狀態。 作為一個基本理論,量子力學原則上,應該適用於任何大小的物理系統,也就是說不僅限於微觀系統,那麼,它應該提供一個過渡到宏觀「經典」物理的方法。量子現象的存在提出了一個問題,即怎樣從量子力學的觀點,解釋宏觀系統的經典現象。尤其無法直接看出的是,量子力學中的疊加狀態,如何應用到宏觀世界上來。1954年,愛因斯坦在給馬克斯·波恩的信中,就提出了怎樣從量子力學的角度,來解釋宏觀物體的定位的問題,他指出僅僅量子力學現象太「小」無法解釋這個問題。
這個問題的另一個例子是由薛定諤提出的薛定諤的貓的思想實驗。
直到1970年左右,人們才開始真正領會到,上述的思想實驗,實際上並不實際,因為它們忽略了不可避免的與周圍環境的相互作用。事實證明,疊加狀態非常容易受周圍環境的影響。比如說,在雙縫實驗中,電子或光子與空氣分子的碰撞或者發射輻射,就可以影響到對形成衍射非常關鍵的各個狀態之間的相位的關系。在量子力學中,這個現象被稱為量子脫散。它是由系統狀態與周圍環境影響的相互作用導致的。這個相互作用可以表達為每個系統狀態與環境狀態的糾纏。其結果是只有在考慮整個系統時(即實驗系統+環境系統)疊加才有效,而假如孤立地只考慮實驗系統的系統狀態的話,那麼就只剩下這個系統的「經典」分布了。量子脫散是今天量子力學解釋宏觀量子系統的經典性質的主要方式。
對於量子計算機來說,量子脫散也有實際意義。在一台量子計算機中,需要多個量子狀態盡可能地長時間保持疊加。脫散時間短是一個非常大的技術問題。

5. 量子力學的含義

量子力學是在舊量子論的基礎上發展起來的。舊量子論包括普朗克的量子假說、愛因斯坦的光量子理論和玻爾的原子理論。
1900年,普朗克提出輻射量子假說,假定電磁場和物質交換能量是以間斷的形式(能量子)實現的,能量子的大小同輻射頻率成正比,比例常數稱為普朗克常數,從而得出黑體輻射能量分布公式,成功地解釋了黑體輻射現象。
1905年,愛因斯坦引進光量子(光子)的概念,並給出了光子的能量、動量與輻射的頻率和波長的關系,成功地解釋了光電效應。其後,他又提出固體的振動能量也是量子化的,從而解釋了低溫下固體比熱問題。
1913年,玻爾在盧瑟福原有核原子模型的基礎上建立起原子的量子理論。按照這個理論,原子中的電子只能在分立的軌道上運動,在軌道上運動時候電子既不吸收能量,也不放出能量。原子具有確定的能量,它所處的這種狀態叫「定態」,而且原子只有從一個定態到另一個定態,才能吸收或輻射能量。這個理論雖然有許多成功之處,但對於進一步解釋實驗現象還有許多困難。
在人們認識到光具有波動和微粒的二象性之後,為了解釋一些經典理論無法解釋的現象,法國物理學家德布羅意於1923年提出了物質波這一概念。認為一切微觀粒子均伴隨著一個波,這就是所謂的德布羅意波。
德布羅意的物質波方程:E=ħω,p=h/λ,其中ħ=h/2π,可以由E=p²/2m得到λ=√(h²/2mE)。
由於微觀粒子具有波粒二象性,微觀粒子所遵循的運動規律就不同於宏觀物體的運動規律,描述微觀粒子運動規律的量子力學也就不同於描述宏觀物體運動規律的經典力學。當粒子的大小由微觀過渡到宏觀時,它所遵循的規律也由量子力學過渡到經典力學。
量子力學與經典力學的差別首先表現在對粒子的狀態和力學量的描述及其變化規律上。在量子力學中,粒子的狀態用波函數描述,它是坐標和時間的復函數。為了描寫微觀粒子狀態隨時間變化的規律,就需要找出波函數所滿足的運動方程。這個方程是薛定諤在1926年首先找到的,被稱為薛定諤方程。
當微觀粒子處於某一狀態時,它的力學量(如坐標、動量、角動量、能量等)一般不具有確定的數值,而具有一系列可能值,每個可能值以一定的幾率出現。當粒子所處的狀態確定時,力學量具有某一可能值的幾率也就完全確定。這就是1927年,海森伯得出的測不準關系,同時玻爾提出了並協原理,對量子力學給出了進一步的闡釋。
量子力學和狹義相對論的結合產生了相對論量子力學。經狄拉克、海森伯(又稱海森堡,下同)和泡利(pauli)等人的工作發展了量子電動力學。20世紀30年代以後形成了描述各種粒子場的量子化理論——量子場論,它構成了描述基本粒子現象的理論基礎。
量子力學是在舊量子論建立之後發展建立起來的。舊量子論對經典物理理論加以某種人為的修正或附加條件以便解釋微觀領域中的一些現象。由於舊量子論不能令人滿意,人們在尋找微觀領域的規律時,從兩條不同的道路建立了量子力學。
1925年,海森堡基於物理理論只處理可觀察量的認識,拋棄了不可觀察的軌道概念,並從可觀察的輻射頻率及其強度出發,和玻恩、約爾丹一起建立起矩陣力學;1926年,薛定諤基於量子性是微觀體系波動性的反映這一認識,找到了微觀體系的運動方程,從而建立起波動力學,其後不久還證明了波動力學和矩陣力學的數學等價性;狄拉克和約爾丹各自獨立地發展了一種普遍的變換理論,給出量子力學簡潔、完善的數學表達形式。
海森堡還提出了測不準原理,原理的公式表達如下:ΔxΔp≥ħ/2
量子力學的基本內容
量子力學的基本原理包括量子態的概念,運動方程、理論概念和觀測物理量之間的對應規則和物理原理。
在量子力學中,一個物理體系的狀態由態函數表示,態函數的任意線性疊加仍然代表體系的一種可能狀態。狀態隨時間的變化遵循一個線性微分方程,該方程預言體系的行為,物理量由滿足一定條件的、代表某種運算的算符表示;測量處於某一狀態的物理體系的某一物理量的操作,對應於代表該量的算符對其態函數的作用;測量的可能取值由該算符的本徵方程決定,測量的期待值由一個包含該算符的積分方程計算。
(一般而言,量子力學並不對一次觀測確定地預言一個單獨的結果.取而代之,它預言一組可能發生的不同結果,並告訴我們每個結果出現的概率.也就是說,如果我們對大量類似的系統作同樣地測量,每一個系統以同樣的方式起始,我們將會找到測量的結果為A出現一定的次數,為B出現另一不同的次數等等.人們可以預言結果為A或B的出現的次數的近似值,但不能對個別測量的特定結果做出預言.)
態函數的平方代表作為其變數的物理量出現的幾率。根據這些基本原理並附以其他必要的假設,量子力學可以解釋原子和亞原子的各種現象。
根據狄拉克符號表示,態函數,用<Ψ|和|Ψ>表示,態函數的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(ħ/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率為概率密度的空間積分。
態函數可以表示為展開在正交空間集里的態矢比如|Ψ(x)>=∑|ρ_i>,其中|ρ_i>為彼此正交的空間基矢,<m|n>=δm,n為狄拉克函數,滿足正交歸一性質。
態函數滿足薛定諤波動方程,iħ(d/dt)|m>=H|m>,分離變數後就能得到不含時狀態下的演化方程H|m>=En|m>,En是能量本徵值,H是哈密頓能量運算元。
於是經典物理量的量子化問題就歸結為薛定諤波動方程的求解問題。
關於量子力學的解釋涉及許多哲學問題,其核心是因果性和物理實在問題。按動力學意義上的因果律說,量子力學的運動方程也是因果律方程,當體系的某一時刻的狀態被知道時,可以根據運動方程預言它的未來和過去任意時刻的狀態。
但量子力學的預言和經典物理學運動方程(質點運動方程和波動方程)的預言在性質上是不同的。在經典物理學理論中,對一個體系的測量不會改變它的狀態,它只有一種變化,並按運動方程演進。因此,運動方程對決定體系狀態的力學量可以作出確定的預言。
但在量子力學中,體系的狀態有兩種變化,一種是體系的狀態按運動方程演進,這是可逆的變化;另一種是測量改變體系狀態的不可逆變化。因此,量子力學對決定狀態的物理量不能給出確定的預言,只能給出物理量取值的幾率。在這個意義上,經典物理學因果律在微觀領域失效了。
據此,一些物理學家和哲學家斷言量子力學擯棄因果性,而另一些物理學家和哲學家則認為量子力學因果律反映的是一種新型的因果性——幾率因果性。量子力學中代表量子態的波函數是在整個空間定義的,態的任何變化是同時在整個空間實現的。
20世紀70年代以來,關於遠隔粒子關聯的實驗表明,類空分離的事件存在著量子力學預言的關聯。這種關聯是同狹義相對論關於客體之間只能以不大於光速的速度傳遞物理相互作用的觀點相矛盾的。於是,有些物理學家和哲學家為了解釋這種關聯的存在,提出在量子世界存在一種全局因果性或整體因果性,這種不同於建立在狹義相對論基礎上的局域因果性,可以從整體上同時決定相關體系的行為。
量子力學用量子態的概念表徵微觀體系狀態,深化了人們對物理實在的理解。微觀體系的性質總是在它們與其他體系,特別是觀察儀器的相互作用中表現出來。
人們對觀察結果用經典物理學語言描述時,發現微觀體系在不同的條件下,或主要表現為波動圖象,或主要表現為粒子行為。而量子態的概念所表達的,則是微觀體系與儀器相互作用而產生的表現為波或粒子的可能性。
量子力學表明,微觀物理實在既不是波也不是粒子,真正的實在是量子態。真實狀態分解為隱態和顯態,是由於測量所造成的,在這里只有顯態才符合經典物理學實在的含義。微觀體系的實在性還表現在它的不可分離性上。量子力學把研究對象及其所處的環境看作一個整體,它不允許把世界看成由彼此分離的、獨立的部分組成的。關於遠隔粒子關聯實驗的結論,也定量地支持了量子態不可分離 . 不確定性指經濟行為者在事先不能准確地知道自己的某種決策的結果。或者說,只要經濟行為者的一種決策的可能結果不止一種,就會產生不確定性。
不確定性也指量子力學中量子運動的不確定性。由於觀測對某些量的干擾,使得與它關聯的量(共軛量)不準確。這是不確定性的起源。
不確定性,經濟學中關於風險管理的概念,指經濟主體對於未來的經濟狀況(尤其是收益和損失)的分布范圍和狀態不能確知。
在量子力學中,不確定性指測量物理量的不確定性,由於在一定條件下,一些力學量只能處在它的本徵態上,所表現出來的值是分立的,因此在不同的時間測量,就有可能得到不同的值,就會出現不確定值,也就是說,當你測量它時,可能得到這個值,可能得到那個值,得到的值是不確定的。只有在這個力學量的本徵態上測量它,才能得到確切的值。
在經典物理學中,可以用質點的位置和動量精確地描述它的運動。同時知道了加速度,甚至可以預言質點接下來任意時刻的位置和動量,從而描繪出軌跡。但在微觀物理學中,不確定性告訴我們,如果要更准確地測量質點的位置,那麼測得的動量就更不準確。也就是說,不可能同時准確地測得一個粒子的位置和動量,因而也就不能用軌跡來描述粒子的運動。這就是不確定性原理的具體解釋。
波爾波爾,量子力學的傑出貢獻者,波爾指出:電子軌道量子化概念。波爾認為,原子核具有一定的能級,當原子吸收能量,原子就躍遷更高能級或激發態,當原子放出能量,原子就躍遷至更低能級或基態,原子能級是否發生躍遷,關鍵在兩能級之間的差值。根據這種理論,可從理論計算出里德伯常理,與實驗符合的相當好。可波爾理論也具有局限性,對於較大原子,計算結果誤差就很大,波爾還是保留了宏觀世界中,軌道的概念,其實電子在空間出現的坐標具有不確定性,電子聚集的多,就說明電子在這里出現的概率較大,反之,概率較小。很多電子聚集在一起,可以形象的稱為電子雲。
量子力學詮釋:粒子的振動
、霍金膜上的四維量子論
類似10維或11維的「弦論」=振動的弦、震盪中的象弦一樣的微小物體。
霍金膜上四維世界的量子理論的近代詮釋(鄧宇等,80年代):
振動的量子(波動的量子=量子鬼波)=平動微粒子的振動;振動的微粒子;震盪中的象量子(粒子)一樣的微小物體。
波動量子=量子的波動=微粒子的平動+振動
=平動+振動
=矢量和
量子鬼波的DENG'S詮釋:微粒子(量子)平動與振動的矢量和
粒子波、量子波=粒子的震盪(平動粒子的震動)
「波」和「粒子」統一的數學關系
振動粒子的量子論詮釋
物質的粒子性由能量 E 和動量 p 刻劃,波的特徵則由電磁波頻率 ν 和其波長 λ 表達,這兩組物理量的比例因子由普朗克常數 h(h=6.626*10^-34J•s) 所聯系。
E=hv , E=mc^2 聯立兩式,得:m=hv/c^2(這是光子的相對論質量,由於光子無法靜止,因此光子無靜質量)而p=mc
則p=hv/c(p 為動量)
粒子波的一維平面波的偏微分波動方程,其一般形式為
∂ξ/∂x=(1/u)(∂ξ/∂t) 5
三維空間中傳播的平面粒子波的經典波動方程為
∂ξ/∂x+∂ξ/∂y+∂ξ/∂z=(1/u)(∂ξ/∂t) 6
波動方程實際是經典粒子物理和波動物理的統一體,是運動學與波動學的統一.波動學是運動學的一部分,是運動學的延伸,即平動與振動的矢量和.對象不同,一個是連續介質,一個是定域的粒子,都可以具有波動性.(鄧宇等,80年代)
經典波動方程1,1'式或4--6式中的u,隱含著不連續的量子關系E=hυ和德布羅意關系λ=h/p,由於u=υλ,故可在u=υλ的右邊乘以含普朗克常數h的因子(h/h),就得到
u=(υh)(λ/h)
=E/p
鄧關系u=E/p,使經典物理與量子物理,連續與不連續(定域)之間產生了聯系,得到統一.
2.粒子的波動與德布羅意物質波的統一
德布羅意關系λ=h/p,和量子關系E=hυ(及薛定諤方程)這兩個關系式實際表示的是波性與粒子性的統一關系, 而不是粒性與波性的兩分.德布羅意物質波是粒波一體的真物質粒子,光子,電子等的波動.
[]

6. 量子計算機的原理是利用平行世界的計算力

並不是如題所說
簡單來說:
量子計算機就是用量子比特代替原來的普通比特。
從物理層面上來看,量子計算機不是基於普通的晶體管,而是使用自旋方向受控的粒子(比如質子核磁共振)或者偏振方向受控的光子(學校實驗大多用這個)等等作為載體。當然從理論上來看任何一個多能級系統都可以作為量子比特的載體。
從計算原理上來看,量子計算機的輸入態既可以是離散的本徵態(如傳統的計算機一樣),也可以是疊加態(幾種不同狀態的幾率疊加),對信息的操作從傳統的「和」,「或」,「與」等邏輯運算擴展到任何幺正變換,輸出也可以是疊加態或某個本徵態。所以量子計算機會更加靈活,並能實現並行計算。
要解釋細節的話有些麻煩,給你些關鍵詞可以去查:
1.量子態,quatumState
2.量子疊加態,Quantumsuperposition
3,量子比特,Qubit
4,幺正變換UnitaryTransformation
5,量子邏輯,QuantumLogic
6,量子門,QuantumGate(對應於傳統的邏輯門,其實就是一些特殊的正變換)
7,量子演算法,quantumAlgorithm(當然量子計算機也能實現傳統的演算法)
8,然後關於從物理層面如何實現的最好從量子光學開始,因為偏振的光子是最簡單的。
深層來說:
普通的數字計算機在0和1的二進制系統上運行,稱為「比特」(bit)。但量子計算機要遠遠更為強大。它們可以在量子比特(qubit)上運算,可以計算0和1之間的數值。假想一個放置在磁場中的原子,它像陀螺一樣旋轉,於是它的旋轉軸可以不是向上指就是向下指。常識告訴我們:原子的旋轉可能向上也可能向下,但不可能同時都進行。但在量子的奇異世界中,原子被描述為兩種狀態的總和,一個向上轉的原子和一個向下轉的原子的總和。在量子的奇妙世界中,每一種物體都被使用所有不可思議狀態的總和來描述。
想像一串原子排列在一個磁場中,以相同的方式旋轉。如果一束激光照射在這串原子上方,激光束會躍下這組原子,迅速翻轉一些原子的旋轉軸。通過測量進入的和離開的激光束的差異,我們已經完成了一次復雜的量子「計算」,涉及了許多自旋的快速移動。
從數學抽象上看,量子計算機執行以集合為基本運算單元的計算,普通計算機執行以元素為基本運算單元的計算(如果集合中只有一個元素,量子計算與經典計算沒有區別)。
以函數y=f(x),x∈A為例。量子計算的輸入參數是定義域A,一步到位得到輸出值域B,即B=f(A);經典計算的輸入參數是x,得到輸出值y,要多次計算才能得到值域B,即y=f(x),x∈A,y∈B。
量子計算機有一個待解決的問題,即輸出值域B只能隨機取出一個有效值y。雖然通過將不希望的輸出導向空集的方法,已使輸出集B中的元素遠少於輸入集A中的元素,但當需要取出全部有效值時仍需要多次計算。

7. 什麼是「量子計算機」對國家的發展有著怎樣的重要性

量子計算機是一類遵循量子力學規律進行高速數學和邏輯運算、存儲及處理量子信息的物理裝置, 量子計算機的精確高速的計算,可以解決什麼超級計算機解決不了的問題,推動科學研究的進步,同時推動我國在人工智慧研究方面的進一步發展

8. 量子計算機的定義

量子計算機(quantum computer)是一類遵循量子力學規律進行高速數學和邏輯運算、存儲及處理量子信息的物理裝置。當某個裝置處理和計算的是量子信息,運行的是量子演算法時,它就是量子計算機。量子計算機的概念源於對可逆計算機的研究。研究可逆計算機的目的是為了解決計算機中的能耗問題。

9. 什麼是量子力學

量子力學,為物理學理論,是研究物質世界微觀粒子運動規律的物理學分支,主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論。

它與相對論一起構成現代物理學的理論基礎。量子力學不僅是現代物理學的基礎理論之一,而且在化學等學科和許多近代技術中得到廣泛應用。

19世紀末,人們發現舊有的經典理論無法解釋微觀系統,於是經由物理學家的努力,在20世紀初創立量子力學,解釋了這些現象。

量子力學從根本上改變人類對物質結構及其相互作用的理解。除了廣義相對論描寫的引力以外,迄今所有基本相互作用均可以在量子力學的框架內描述(量子場論)。

(9)量子算力定義擴展閱讀:

量子力學產生了一些關於物質世界的非常奇怪的結論。在原子和電子的尺度上,許多經典力學方程,描述事物在日常大小和速度下移動的方式,不再有用。

在經典力學中,對象存在於特定時間的特定位置。然而,在量子力學中,物體卻存在於概率的陰霾中;它們有一定的機會在A(愛麗絲)點,另一個機會是在B(鮑勃)點等等。

量子力學(QM)發展了幾十年,開始作為一套有爭議的數學解釋的實驗,而經典力學的數學無法解釋。它開始於20世紀之交,大約在同一時間,阿爾伯特·愛因斯坦發表了他的相對論,這是物理學中一個單獨的數學革命,描述了物質高速運動。

然而,與相對論不同,量子力學的起源不能歸結於任何一位科學家。相反,在1900年至1930年間,許多科學家為三項革命性原則的基礎做出了貢獻,這些原則逐漸得到接受和實驗驗證。

熱點內容
區塊鏈英文白皮書 發布:2025-05-17 11:23:39 瀏覽:451
金門全聯福利中心怎麼去 發布:2025-05-17 11:21:38 瀏覽:451
GEC注冊送的礦機能挖幾個幣 發布:2025-05-17 11:07:02 瀏覽:496
京東e卡能用比特幣充值嗎 發布:2025-05-17 11:03:07 瀏覽:660
btctop客服 發布:2025-05-17 10:58:02 瀏覽:444
比特幣挖礦幹嘛用 發布:2025-05-17 10:48:59 瀏覽:971
星網銳捷與區塊鏈 發布:2025-05-17 10:47:29 瀏覽:993
mt5有比特幣嗎 發布:2025-05-17 10:40:44 瀏覽:261
比特幣暴跌十年 發布:2025-05-17 10:38:39 瀏覽:987
螞蟻礦池如何綁定錢包 發布:2025-05-17 10:37:06 瀏覽:544