南京算力峰會
① 亂花漸欲迷人眼,AI如何才能真正落地
人工智慧歷史上經歷過數次沉浮,如今再次被引爆。
從政府、學術界、企業界、投資界到創業者們,無一不將人工智慧視為未來方向;而分析師和媒體從業者們的海量分析報道,更是讓人工智慧快速佔領了每一個普通人的視聽。
於是,正如歷史上每一個產業的興起,人工智慧在歌舞昇平的同時,也逐漸變得有些「亂花漸欲迷人眼」。
從積極的一面來看,人工智慧催生了大量新技術、新企業和新業態,為個人、企業、國家乃至全球提供了新的經濟增長點,甚至將驅動第四次技術革命,創造巨大的價值。
IDC預計,全球人工智慧支出到2020年將達到2758億人民幣,未來五年復合年增長率將超過50%。中國人工智慧技術支出將達到325億元,佔全球整體支出的12%。
從消極的一面來看,盡管人工智慧揭開了一個全新的時代,但也在不斷滋生著「泡沫」,吹捧有之,跟風有之,噱頭有之,近兩年,數十家中美AI創業企業密集倒閉,大量AI創業項目中途夭折,不免讓人感慨,人工智慧是否只是「看上去很美」?
那麼,人工智慧的未來到底會發展成怎樣?如何才能真正落地?如何才能實現規模商業化?盡管人工智慧的概念的提出已經有六十餘年,但理論、技術和應用、商業的結合並沒有太多前人的足跡。
故而,在人工智慧產業的發展中,「拓荒者」和「領頭羊」的角色就顯得尤為重要。
「場景驅動」是AI落地關鍵
在人工智慧的諸多玩家中,阿里巴巴已經正在努力成為這一角色。對於AI的未來,阿里已經有了清晰的認知,以及與眾不同的AI發展路徑。
12月20日,在雲棲大會·北京峰會上,阿里雲總裁胡曉明提出了「AI for Instries」(產業AI)的理念:人工智慧不應僅僅是實驗室里的、PPT里的「概念上的AI」,更應是「產業AI」。
胡曉明表示,「產業AI」的提出,是基於阿里巴巴對人工智慧的三個判斷:
「第一,必須要有場景驅動,我們在解決什麼問題,為這個社會的成本降低了多少,效率提高了多少;第二,在人工智慧背後是否是有足夠的數據來驅動AI能力的提升;第三,是否有足夠的計算能力支撐我們的演算法、深度學習;只有三個場景同時具備的前提下,人工智慧才會有價值」。
阿里將「場景驅動」放在了首位,這正是阿里「產業AI」戰略的核心,也是阿里獨特的AI發展路徑,更是阿里能夠將AI實現落地的獨家秘笈。
和很多企業和機構的做法不同,阿里的AI旅程並不是從實驗室中的研究和討論開始,而是反其道行之,從基礎業務部門開始推動,讓AI從日常場景中「長出來」。
例如,手機淘寶中能夠讓用戶通過拍照的方式實現「以圖搜圖」的「拍立淘」功能,就是源於電商場景,之後通過解決一個個的技術問題,最終形成成熟的AI解決方案。
電商平台為阿里提供了AI生長的優良土壤。大量消費者普遍的、或者個性化的需求造就了不同的應用場景;海量數據為AI提供了充足的「原料」;而阿里雲強大的計算能力則成為了AI實現的加速器。三要素齊備,阿里得以讓人工智慧快速發揮出價值。
事實證明,阿里選擇的這條「自下而上」、「從場景中來」、「再到場景中去」的產業AI路徑方向正確,並行之有效,推動了AI技術在行業應用場景中的真正落地。
「雙11」當天,機器人客服「阿里小蜜」承擔了95%的客服咨詢;機器智能推薦系統生成了超過567億個專屬貨架;AI設計師「魯班」在雙11期間設計了4.1億張商品海報;而阿里華北數據中心運維機器人接替了運維人員30%的重復性工作。
不僅在零售領域,阿里「產業AI」布局已經覆蓋城市、金融、司法、農業、教育、航空、工業、安全、環境、醫療十大垂直領域,並已相繼開花結果,目標以AI技術對垂直產業進行全局重塑。
例如,在金融領域,阿里通過雲計算和智能演算法,將南京銀行申請貸款過程中的人工視頻驗證減少54%;在工業領域,阿里雲ET工業大腦幫助天合光能將電池A品率提升7%;在智慧城市領域,阿里雲ET城市大腦在杭州接管了128個路口的紅綠燈,通過對視頻等數據的全量分析來優化道路運營速度和效率,在試點區域的道路上通行時間減少了15.3%。
在胡曉明看來,過去每一次產業革命都是技術與產業的深度融合,從而引發經濟和社會變革,AI也不例外。未來AI要深入各行各業,去解決生活、生產和社會環境中遇到的棘手問題,這樣才能引領真正的產業革命。
通過「產業AI」布局,阿里正在這條「產業與AI深度結合」的路上漸行漸遠。
「ET大腦」讓行業共享AI紅利
一年前,阿里雲發布了人工智慧ET,全面整合了阿里巴巴的語音、圖像、人臉、自然語言理解等能力。在12月20日的雲棲大會·北京峰會上,阿里雲正式推出整合城市管理、工業優化、輔助醫療、環境治理、航空調度等全局能力為一體的ET大腦,將ET從單點的技能升級為具備全局智能的ET大腦,全面布局產業AI。
ET大腦LOGO
據阿里雲機器智能首席科學家閔萬里介紹,ET大腦的核心能力是「量子拓撲」,其誕生主線要追溯到1905年愛因斯坦發布的關於布朗運動的論文:「從一個巨大的網路上,怎麼樣從這些傳播的表象上找到它最核心的路徑?而這一點恰恰是ET大腦最核心的一個能力,也是與眾不同的能力。」
閔萬里表示,相較於其他AI產品,阿里雲ET大腦將AI技術、雲計算大數據能力與垂直領域行業知識相結合,基於類腦神經元網路物理架構及模糊認知反演理論,實現從單點智能到多體智能的技術跨越,打造出具備多維感知、全局洞察、實時決策、持續進化等類腦認知能力的超級智能體。
ET大腦的發布,意味著阿里雲的AI能力已經從單點技術進化到面向垂直行業的全局能力,在過去的一年中,ET大腦在城市、工業、醫療等領域獲得大量實踐,量變引發質變,進而能夠升級為各行業的「大腦」。閔萬里表示,ET大腦將被設定為一個開放的生態,讓創業公司、開發者和行業公司一起來分享技術的紅利。
除了ET大腦,阿里雲在雲棲大會·北京峰會上還發布了ET航空大腦,用運籌優化、機器學習等人工智慧方法分配停機位,預計每天調度1700架次航班,幫助乘客節省5000個小時,大大提高航班中轉效率,從而降低延誤率。
據閔萬里介紹,為機場提供停機位的智能調度只是ET航空大腦的功能之一,航空大腦還希望深入航空的其他場景。此前,阿里雲天池平台曾聯合廈門航空、白雲機場啟動智慧航空AI大賽,向全球工程師發出邀請,用智能演算法解決航空場景下的問題。未來,ET航空大腦將繼續為航班智能恢復、機場地勤人員調度、航空公司航線規劃等提供人工智慧解決方案,打造智慧航空。
在雲棲大會·北京峰會上,阿里雲還宣布推出具備智能風控、千人千面、關系網路、智能客服等能力的智能決策金融方案——ET金融大腦。
據阿里雲金融事業部總經理徐敏介紹,ET金融大腦可輔助銀行、證券、保險等金融機構實現對貸款、徵信、保險等業務的智能決策及風控監管,可大幅降低資損率,提高信用卡等預測准確率,促進金融機構在互聯網消費金融、中小微企業金融服務等普惠金融方面的探索。
如今,ET金融大腦已經在南京銀行、浙商銀行、廣發銀行等金融機構得到應用,在智能風控、「千人千面」的金融服務、開拓「新金融」商業模式中大顯身手。
推落地促生態,讓AI「普惠」大眾
從《終結者》、《黑客帝國》到《西部世界》,人類表達了對於人工智慧的隱憂,未來,人工智慧是否將代替人類?MIT人類動力學實驗室主任、《智慧社會》的作者Alex Pentland曾經指出,其實我們要憂慮的並非是全球化人工智慧本身,而是它的幕後操縱者。
人工智慧是人類創造的工具。如今,業界更樂於將人工智慧定位於「增強智能」,其目標不是為了代替人類,而是增強人類的能力,為人類生產生活服務。故而,人工智慧不應被封閉在實驗室之中,而是要與人類生產生活緊密結合,普惠大眾。
阿里所提倡的「產業AI」,正是一種將其AI能力開放,普惠大眾的做法。阿里AI能力相繼在城市、工業、汽車、零售、金融、家居、航空等領域落地,在破解行業難題的同時,也切實為普通消費者的生活帶來了改變,讓消費者切實能夠從AI中獲益。
阿里也正在通過開放合作,讓AI能力惠及更多的行業和消費者。
在雲棲大會·北京峰會上,阿里雲和中國電信在安全領域展開合作,雙方將於明年共同推出定製化DDoS防護服務,為中小企業提供普惠安全;新華書店攜手阿里雲,布局智慧書店,在消費側與顧客建立緊密連接,打造全新的「悅讀生活」理念,滿足消費者多元化、個性化的需求。
同時,阿里雲同隆平高科、中信雲宣布達成戰略合作,計劃將ET大腦推進到農業領域,主要用於篩選育種、基建數據化、農事管理、基地選址及農作物生產預測。阿里雲與寶馬中國正式對外宣布,雙方將基於物聯網,為寶馬車主提供從家到車的一站式無縫連接的遠程服務,實現查詢汽車實時狀態以及遠程式控制制車輛的智能生活。
除了將AI技術和行業深入結合,普惠大眾,阿里還在積極參與人工智慧生態的建設和人才的培養,推動人工智慧在中國的加速落地。
在雲棲大會·北京峰會上,阿里雲聯合掌通家園、貝聊、智慧樹、小蟻科技、得圖等廠商發布了「AI視覺守護聯盟」,希望將人工智慧、視頻技術和工業、農業、教育等行業深度結合。
阿里雲深度融入了國家大數據戰略,包括深度參與兩個由政府發起的大數據國家工程實驗室;阿里雲「天池」大數據平台已經聚集了超過11萬名開發者;阿里亦已和307所中國大學開啟了普惠計劃,將雲計算、大數據、人工智慧等新技術帶進高校,培養人才。
綜上,中國人工智慧的發展和落地,既需要「拓荒者」和「領頭羊」,也需要整個生態的繁榮和健康發展。在這個過程中,阿里及其所布局的「產業AI」,都扮演了關鍵的角色。
② 第九屆數據中心標准峰會舉行,騰訊數據中心智能化與未來探索
騰訊數據中心上海技術專場
11月24日,CDCC第九屆數據中心標准峰會在上海舉行。會上,騰訊雲正式發布騰訊智維全新產品體系,同時以一場技術專場,向外界分享騰訊數據中心在智能化領域的探索與實踐,探討雙碳背景下數據中心行業的未來趨勢。
展望
騰訊數據中心高級總監楊曉偉與智維平台研發中心總監岳上出席了本次大會。
楊曉偉指出,「數據中心基礎設施建設當前迎來高速發展的窗口期,在雙碳背景下,騰訊數據中心將結合自身豐富的技術優勢和運營管理實踐經驗,助力數據中心行業朝著綠色智能方向快步前行。」
岳上表示,「騰訊數據中心產品化發展戰略和優秀運營體系是騰訊智維得以快速發展的動力源泉。在雙碳的大變革下,我們藉助本次大會的平台,發布了全新的產品體系,技術體系和生態體系。在未來,我們有決心有能力,和生態夥伴一起,為數據中心行業的發展,為綠色數據中心和智能數據中心的達成貢獻力量。」
③ 邊緣智能真的是人工智慧的最後一公里嗎
小蟻科技創始人兼CEO達聲蔚,在AI WORLD 2018世界人工智慧峰會上,介紹了小蟻科技在過去幾年裡所取得的成果,並以此為切入點,深入分析了計算機視覺的未來發展。一、 邊緣智能,重構智能演算法引擎
什麼是邊緣智能?顧名思義就是互聯網和物聯網的邊緣,最邊緣是大量的感測器,攝像頭CMOS,是最重要的感測器之一。我們專注於圖像領域,所以計算機視覺的最後一公里應用就是小蟻科技專注的領域,這個領域的發展,必須採用邊緣智能端雲結合,也就是邊緣和雲端結合的處理方式,也就是邊緣智能架構。
二、 1300萬全球用戶,每日視頻數據超過100PB
過去四年中小蟻科技取得的國內和國際計算機視覺方面的專利和著作,獲得了大量的海外專利。小蟻科技下一步的發展將會在AI賦能的視頻硬體領域進一步發力,覆蓋168個國家和地區,並且在中國、美國和以色列三個地方有研發中心,每天產生大量的視頻數據。
三、 EI的三大核心競爭力:算力、演算法的自我成長模型和賦能商業
算力是一個人工智慧企業的「核能力」。雲+端的全球算力。小蟻科技已經出售了1300多台設備,未來會指數級增長,這些設備中的算力也是指數級增長。其次,小蟻科技的深度神經演算法,在雲端採用千層以上的深度學習神經網路,在終端更多的是採用嵌入式、小比特神經網路。小蟻科技在每Gflop等效算力達到最高,應該是業界非常領先的。
四、 重構的空間能夠給人解決什麼—實時主動決策
六、 小蟻邊緣智能賦能智慧零售
小蟻科技提供的是智能數字空間的解決方案,就是線下零售的可視化解決方案,這些解決方案當中包含智能新零售店的產品和智能貨架的產品,還有一系列和視頻相關的完整的系統,最後還包含提供軟體服務給智慧零售的現場管理和決策。
④ 怎樣開通聯通5G網路
您無須換卡換號,可通過以下方式開通5G體驗包開通5G,使用5G手機即可享受5G網路。
【方式一】5G體驗包辦理方式:登錄「中國聯通手機營業廳-服務-辦理-流量包辦理-5G體驗包」頁面,點擊申請領取5G體驗包;
【方式二】5G體驗包:0元/月,每月享受100G國內流量(不含台港澳),超出後按所屬套餐資費標准收取。體驗包生效期間,在國內可享受聯通5G網路下最高1Gbps的5G高速上網,如果沒有5G網路,也可以享受4G/3G上網服務;
【方式三】體驗包僅限領取號碼使用、不能共享。體驗包有效期為生效日起至2019年10月31日24時,到期自動失效。流量當月使用有效,不計入達量封頂、達量限速閥值范圍。 同一個號碼、同一部5G手機限領取1次。
⑤ 2020年世界人工智慧大會的八大鎮館之寶分別是什麼
2020年世界人工智慧大會的八大鎮館之寶分別是微軟硅石項目、全國首個「智能方艙醫院」解決方案、ABB的Yumi雙臂機器人、華為Atlas900訓練集群、優必選Walker機器人、IBM人工智慧辯論系統、四足機器人OpenCat、智能放牧機器人。
1、微軟硅石項目
微軟硅石項目位於「AI先導區」,它使在玻璃中存儲大量數據成為現實。藉助這種載體,7.5平方厘米的玻璃片中竟可儲存多達75.8G的數據。
2、全國首個「智能方艙醫院」解決方案
達闥科技打造的全國首個「智能方艙醫院」解決方案在「AI+醫療」展區集中亮相。新冠疫情防控期間,其清潔、消毒、安保等30多台智能機器人在湖北武昌方艙醫院大展身手。
3、ABB的Yumi雙臂機器人
ABB的Yumi雙臂機器人在「AI+工業」板塊展出,此次Yumi攜帶從生物科技、基因檢測、制葯到物流,涵蓋醫院全鏈條的智慧醫療解決方案重磅亮相,觀眾還可傾聽Yumi五年來人機協作的成長故事。
4、華為Atlas900訓練集群
華為Atlas900訓練集群位於「AI+基礎技術」展區。Atlas900由數千顆升騰910AI處理器集成,其算力相當於50萬台計算機,代表了當今全球算力的巔峰。
Atlas900通過強大的算力可以幫助研究人員從事預測天氣、勘探石油、探索生命奧秘、加速自動駕駛的商用進程等工作,未來將作為「中國造」為人類世界造福。
5、優必選Walker機器人
優必選Walker機器人在「AI+教育」展區出現。該款機器人集成了人工智慧和機器人核心技術,具備36個高性能伺服關節以及力覺、視覺、聽覺和平衡等全方位的感知系統,在全身運動控制、復雜地形靈活行走、自平衡、手眼協調、視覺識別、智能安全交互等方面實現了突破。
6、IBM人工智慧辯論系統
IBM人工智慧辯論系統將參與此次大會SAIL獎評選。辯論是一種主觀的藝術形式和技巧,是人類的語言,IBM人工智慧辯論系統被公認為AI領域的重大挑戰之一。未來,更多的人生活在社交媒體空間與碎片化時間中,該系統將幫助人類做出更明智的決定。
7、四足機器人OpenCat
來自矽谷的創業團隊Petoi研發的四足機器人OpenCat在「AI產業生態圈」中,首次於國內亮相。小小的身軀擁有超強大腦、敏銳的感知以及活動能力,擁有人機交互、自動平衡、靈活避障等能力。此外,Petoi的二代產品機器狗Bittle也將全球首發。
8、智能放牧機器人
智能放牧機器人是西藏自治區農業工作的重大專項成果,此次也是首度亮相。該款產品解決了牧民最關心的養牛存活率問題,包括發病早期氂牛的及時醫治、定位驅趕等,將綜合提升牧民的經濟效益。
⑥ navigate是什麼品牌
在以「智·變」為主題的2020 NAVIGATE領航者峰會上,紫光旗下新華三集團發布AI in All智能戰略,旨在使自身的產品和解決方案更具智能,助力客戶的業務與運營更智能。
在峰會4月20日的主題演講中,新華三集團聯席總裁、首席技術官尤學軍認為,實現智能要在算力、演算法、數據三大要素方面分別達到不同要求,包括算力按需調度、數據順暢流淌、演算法敏捷高效,同時也需要六大技術能力,包括智能基礎設施、智能雲平台、智能安全、智能運維、智能數據平台和智能演算法。
(6)南京算力峰會擴展閱讀
同時具備了智能三大要素和六大技術能力的數字大腦,在2020版本中成功實現了關鍵升級:原業務能力平台升級為雲與智能平台;實現統一的雲計算和智能服務能力,適應幾乎無處不雲,無處不智能的新時代。
增加視頻雲的能力,支持安防領域的重大建設;通過AI全面植入,提升數字大腦「4+N」中四大構成部分每一個關鍵部件的能力。與此同時,「數字大腦計劃2020「也將繼續發揮STARS核心價值,加速智能化時代的到來。
⑦ 2018年,中國自主研製出的速度最高的巨型計算機是()
2018和2019年都是美國的頂點第一。
2018年11月12日,新一期全球超級計算機500強榜單在美國達拉斯發布,美國超級計算機「頂點」蟬聯冠軍,中國超算上榜總數仍居第一,數量比上期進一步增加,佔全部上榜超算總量的45%以上。中國超算「神威·太湖之光」和「天河二號」分別位列第三、四名。
2019年11月19日,新一期全球超級計算機500強榜單面世,美國超級計算機「頂點」蟬聯冠軍,中國則繼續擴大數量上的領先優勢,在總算力上與美國的差距進一步縮小。
(7)南京算力峰會擴展閱讀:
頂點的性能數據
Summit超級計算機使用IBMPower9微處理器和NVIDIAVoltaGPU進行數學協同處理。「峰會」的前身「泰坦」超級計算機擁有超過18000個節點,「峰會」將擁有約3400個節點。每個節點至少有500GB的一致內存和800GB的非易失性內存。
峰會上的超級計算機最初計劃為150千萬億次浮點運算,現在交付了200千萬億次浮點運算。中國的太湖之光超級計算機的性能目標為93千萬億次浮點運算,峰值性能為124.5千萬億次浮點運算。IBM的超級計算機交易據說價值3.25億美元。
⑧ 杭州順其軟體科技有限公司在企業信息化行業內的口碑怎麼樣
2020年的安防圈,彷彿被按下了暫停鍵,項目停滯、融資緩慢、研發縮減,沒有人能預料到,中國安防的新十年,是以這樣的狀態開始,不少企業也以這樣的方式結束。
過去十年裡,近千家安防產業鏈廠商,經過無數次物競與天擇,僅留下數十家企業,擁有充沛的資金和技術儲備,迎接新十年。
站在安防新十年的這個節點之上,9月5日,由雷鋒網 & AI 掘金志主辦的第三屆中國人工智慧安防峰會,在杭州正式召開。
本屆峰會以「洗牌結束,格局重塑」為主題,會上代表未來新十年的15家企業,為現場1000餘位聽眾和線上幾十萬觀眾,分享迎接安防新十年的經營理念與技術應用方法論。
以下是本次大會的精彩回顧:
國際人工智慧聯合會首位華人理事會主席楊強:「聯邦學習下的數據價值與模型安全」
楊強在大會中指出,目前很多行業並沒有真正意義上的大數據,產學兩界都缺乏高質量、有標注、不斷更新的數據。
如何保證各方數據私密不外傳,又能保證數據更新?這就是分布性數據隱私保護、聯合建模的挑戰和需求——把小數據聚合起來成為大數據。
加上現在人們愈發重視隱私,政府紛紛立法,對技術的監管趨嚴,聯邦學習正為保護隱私帶來了技術上的新思路。
如何理解聯邦學習?「邦」是指每個實體參與者地位相同,無論大小,提供的價值才是他們存在的意義;「聯」是用一種方式把它們聯合起來,保護隱私,一起做有意義的事情。
聯邦學習的宗旨是「數據不動模型動」,目標是「數據可用不可見」。數據可以用,但是這些原始數據是合作方彼此之間見不到的,所以一些散亂的小數據就可以成為虛擬的大數據。
楊強教授介紹稱,目前聯邦學習主要有橫向聯邦(樣本不同、特徵重疊)和縱向聯邦(樣本重疊、特徵不同)兩種做法,前者更適用於to C場景,後者適合to B場景。
他強調,聯邦學習和分布式AI、聯邦資料庫的區別在於:過去這二者的數據形態、分布、表徵皆為同類,但在聯邦學習里它們可以是異構的;且過去聯邦資料庫目的是並行計算、增加效率,但現在數據本身屬於不同的屬主,所以需要做加密情況下保護隱私的計算。
隨後,楊強也談到了聯邦學習在安防等領域的應用。此外,楊強團隊還推動制定世界上第一個聯邦學習國際標准,同時也發布了開源平台FATE,並且積極籌措聯邦學習聯盟,共建聯邦學習生態。
海康威視EBG解決方案部總裁李亞亞:「賦能數字轉型,服務千行百業」
李亞亞介紹,海康目前的業務主要分為三塊:綜合安防、大數據服務和智慧業務。
數字經濟和數字化轉型成為必然趨勢下,人工智慧交付問題依然面臨挑戰,難點有三:一是泛在需求,這是場景碎片化、需求差異化必然帶來落地難問題;二是復雜交付,涉及產品、施工、演算法優化、信息系統打通、業務流程轉型等諸多問題。三是成本可控,關注投入產出比非常必要。
李亞亞認為,解決落地難,仍然是要回歸商業本質。要從產品的品質抓起,目的是讓各行業都享受到技術革新的紅利,通過場景化、差異化的問題解決,提升用戶的業務價值回報。
數字化轉型是一個逐步進階的過程,場景化是路徑,因此要通過系統的產品體系去支撐場景化應用。面向企業領域的數字化業務的開展和落地,海康威視從拉近管理距離,提升業務效率,規范作業行為,防範安全隱患四個維度出發為行業賦能。
海康威視秉持開放融合的合作理念,攜手合作夥伴,共同實踐數字化轉型之路;秉善篤行,不斷創新技術和產品賦能千行百業,為社會的安全和發展開拓新視界。
大華股份先進技術研究院院長殷俊:「AI 行業應用,產業升級」
殷俊認為,AI經歷了理論研究的1.0、智能落地的2.0,目前處於行業智能的3.0階段。
AI 1.0時期是「兩耳不聞窗外事,一心只讀聖賢書」,計算力不夠,數據有限,演算法不成熟;2.0階段是「紙上得來終覺淺,絕知此事要躬行」,演算法、算力有了突破,成熟的演算法尋找落地場景;3.0階段是「忽如一夜春風來,千樹萬樹梨花開」,行業最需要的不僅是一套演算法、一套系統,而是企業解決客戶痛點和需求的能力。
在行業智能背景下,人工智慧需要具備的基礎能力包括:一是AI技術泛化、快速遷移新應用的能力;二是應用牽引,快速適配新需求的能力。
殷俊認為在3.0階段是應用主導個性化和AI解決方案的敏捷交付。在這個過程中,首先要構建人工智慧解決方案的端到端體系化能力,大華已經在四個方向做了重點布局:系統架構、數據智能、智能工程化、智能技術。
除了構建以上核心能力,大華還開放全棧能力,賦能行業生態,並在實戰中持續積累人工智慧核心技術,針對全場景理解、小規模數據、泛化能力、多任務學習和AutoML等人工智慧的五大技術挑戰,開展實踐探索,並已取得實戰應用成果。
最後,殷俊強調,AI目前還是依賴人工為主,大華希望未來在行業共同努力下,能夠真正轉向AI的自我智能,推動行業智慧化落地。
西部數據智慧視頻產品首席技術官孫煜:「AI安防與存儲的變革」
孫煜提到人工智慧在監控行業的應用四個主要要素:晶元、軟體、存儲和廠商。
晶元不斷提升算力,並降低成本,軟體提供高效實用的演算法,海量數據需要被存儲才能被利用,廠商集成以上要素並落地。這個生態中,各方要素一起合作才能使得AI真正落地。
AI應用,使得視頻監控的存儲架構從以前的端和邊,變為現在的端、邊、雲,連接方式雲化,其中,存儲器需要更高順序讀寫性能、更大的存儲容量、更高地隨機讀寫性能、更快地響應時間。
西部數據通過提供視頻監控行業從終端到核心的存儲產品組合,協助視頻監控行業的AI落地。
孫煜演示了西部數據專門為整個視頻監控行業打造的從端、邊、雲的各個產品組合,以及專門隨時檢測硬碟監控狀態的軟體WDDA,Western Digital 設備分析 (WDDA) 是 Western Digital 的監控優化存儲產品系列支持的全新設備分析功能。WDDA使管理員能前瞻式地管理存儲設備並保持性能優化,防止意外故障。
孫煜強調AI進入後傳統監控盤力不從心,系統廠商通過合並通道單碼流,順序地寫入,大大減少了硬碟的飛行時間和次數,把飛行機會轉移到資料庫訪問,提升存儲系統的性能。
西部數據認為提高數據利用率的關鍵,是告別簡單粗放模式,進行精細化的分層存儲策略,他們還建立起一套四層存儲架構體系:熱存儲、溫存儲、冷存儲、極冷存儲,分而治之,極大地提高數據利用效率。
商湯科技智慧城市事業群產品副總裁朱鑫:「AI 驅動城市智能化變革」
數字化轉型的核心技術是雲計算、移動互聯網、物聯網以及大數據,更多是在於更高效的信息組織,更順暢的一些信息流動,以及更便捷的信息訪問,從而去改善企業以及行業的效率,生產力是百分比提升。
智能化變革,機器將取代人工,如此會形成一個自主的組織生產,最關鍵的是,隨著數字技術、晶元、摩爾定律以及雲計算能力相關規律影響,機器成本會持續下降,規模化後機器成本會趨向極低的成本。彼時對生產力的提升不是百分比,可能是倍數,甚至是指數級。
大量的城市物聯設備、規劃的城市群,以及城市裡形成的大量人流、物流、車流、金融流、數據流,組成了城市互聯網。
朱鑫總結了城市互聯網市場下,真正推動一個城市智能化變革的三大支柱系統。
一是新一代的聯網匯聚平台。視覺數據是城市最豐富的數據資源,前端設備收集的數據通過聯網匯聚,形成城市動態的數據資源池,動態數據經過AI系統處理後,成為城市數據資產。二是超級計算底座。每個城市需要一個新型的超算中心。三是城市級演算法系統。系統有三大板塊:城市的主演算法系統、城市級場景演算法系統和通過融合、關聯、決策,形成一個完整的城市的演算法系統。
商湯在這幾個支柱下面形成了一整套體系與方案,從最底層的基礎建設開始,從數據中心基礎設施到城市智能的計算中心,再到城市智能雲賦能中心,把整體演算法系統能力都放在雲賦能中心。
宇視副總裁、首席架構師姚華:「AI 如何得到人民的好口碑」
姚華回顧了2018年提出的AI與安防的七座大山,並指出如今視圖數據全鏈路計算邏輯已經形成,AI在安防已經從0跨越過1。宇視的AI部署已經在從城市到郊區、鄉村,解決群眾的小事和瑣事。
業務狀態出現新挑戰,比如動態人口服務和管理難、案件有效線索率低。姚華列舉「宇視追影系統」應用的三個案例:疫情期間24小時找回出走口罩少女,男子沿街威脅案件,合夥扒竊案,以上成功案例中,最關鍵的技術是ReID(跨鏡追蹤)。
姚華指出,ReID應用有七大技術難點:第一,不同姿態、角度、解析度下的人體之間的匹配;第二,復雜場景、有遮擋,密集人群等場景下的匹配;第三,不同交通工具上的人體的匹配;第四,不同時間段以及著裝變化後的行人匹配;第五,跨攝像頭模態行人匹配;第六,目標行人著裝發生變化後的匹配問題;第七,在較小訓練集上匹配演算法訓練較為受限問題。
宇視聯合博觀(擁有國際三大主流ReID數據集、Vehicle ReID等世界紀錄的演算法公司),設計了基於現有樣本的GAN對抗網路,較好地模擬了人體的多角度、多姿態特徵。同時,輔以多種預處理演算法,極大地擴充了原始樣本基數,使得在較小訓練集上匹配演算法訓練受限的問題迎刃而解。
其次,宇視在演算法中採取結合全局特徵和多尺度局部特徵的混合向量提取解決方案,並在訓練中採用遷移學習,再者,對每個人體的局部特徵進行重定位的匹配訓練,通過實現對人體局部位置的精準定位,可將人臉識別與ReID聯動結合,解決跨鏡追蹤應用的諸多難點。
宇視追影系統發布一周年,實戰應用落地中國百餘個城市和地區,實戰案例超1000個,找回走失人口100餘人,小微案件偵破率提升50%。最後,姚華用「好AI,為人民服務」結束:小案件是群眾的「天」,無論鄉村還是城市,AI幫助解決小案件難題,能讓我們尊重每一個微小的個體。
360城市安全集團副總裁、360視覺科技總經理邱召強:「360 以安全為基礎的 AI 技術與應用 」
邱召強表示,當行業在享受技術帶來當先進性時,360通常用逆向思維思考:一個新的技術產生的同時會帶來哪些安全隱患。
邱召強指出了數字時代的四個特徵:第一,一切皆可編程,也造成漏洞無處不在;第二萬物均需互聯,虛擬世界的操作帶來了物理真實世界巨大的災難;第三大數據驅動業務,數據一旦匯總,安全性難以保證;第四軟體定義世界,世界架構在軟體之上,脆弱性前所未有。
360在過去15年,總結和打造出了一套雲端的安全平台。360安全架構是以安全大腦為核心,六大板塊,一個安全大腦,十個安全基礎設施,和一個運營的所發,一個專家的團隊,一個實戰演練機制和一個安全互通的標准。
背靠360城市安全集團,360視覺科技專注於人臉識別產品的開發和應用,打造出以大數據為基礎的視覺安全產品,包括了人臉識別門禁、人臉識別通道閘機、人證核驗設備等智能終端及針對辦公樓宇、酒店、商超、社區、學校,交通樞紐等場景解決方案,構建以安全為核心的智能生態。
360安全賦予了360視覺科技獨特的競爭力。針對人臉識別終端設備的安全,對核心庫和可執行性文件進行核心加固、對代碼加固、對應用程序加固,三重安全加固防護;此外,360視覺科技還獨創密鑰白盒技術,為人臉識別終端、雲平台環境中的數據加密及公私鑰身份認證,全程密鑰無明文。
最後,邱召強展示了360視覺科技人臉識別硬體家族,以及智慧園區、智慧樓宇、社區安全、智慧校園、機場安防、智慧辦事大廳等幾大行業解決方案。
華為機器視覺領域總裁段愛國:「華為 HoloSens ,點亮智能世界」
段愛國提出,一個真正的智能世界有三個非常典型的特徵或者基礎框架技術:一是萬物感知,二是萬物互聯,三是萬物智能。
在華為來看,萬物互聯、5G、光網路是華為的強項,華為機器視覺將成為華為在萬物感知的核心。
段愛國還認為,智能世界向前邁進有三大核心技術:以全息感知為核心的機器視覺,以萬物互聯為基礎的移動無線通信,以及萬物智能的AI技術,2020年這三個技術開始合攏。
所以華為在2020年率先提出,所有的視頻技術應該從人看向給機器看轉移,並正式把產品線更名為「機器視覺」,聚焦打造兩個核心的能力:一是前端的全息感知能力,二是在後端用數據驅動,反作用於物理世界,驅動於智能世界。
4G的時代,以智能手機為核心,出現了各種行業移動互聯網的應用。在華為來看,機器視覺就是5G時代的行業數字化的智能手機。段愛國還提到,過去5年,AI的成本在下降,AI已經進入到普惠的時代,他預測未來兩年智能攝像機一定會超過網路攝像機。
另外,華為將聚焦打造4個核心戰略產品和平台:前端的軟體定義攝像機,後端的智能視頻存儲,類似於智能手機應用市場的智能演算法應用商城,以及華為機器視覺雲服務。
在此基礎上提出四大戰略策略:戰略一,積極投入全棧全場景的AI研究;戰略二,重構產業架構,加速智能化升級;戰略三,平台+生態,賦能千行百業;戰略四:端邊雲協同,深度數據挖掘。
最後他強調, 會將開放進行到底,未來的智能世界很復雜,華為不可能一個人包攬全部的工作,希望大家一同成長。
曠視副總裁那正平:「城市大腦的條與塊」
那正平表示,城市治理數字化、智能化浪潮中,無論是智慧城市、城市大腦還是數字孿生概念,核心思想都是通過物聯網、人工智慧等技術,准確發現城市運行的內在規律,從而進行動態優化調節,解決城市面臨的安全、出行、環境、產業升級等諸多問題,最終提升城市治理水平。
那正平歸納出做好城市大腦和城市大腦的操作系統的幾大要點:深入研究城市發展規律;探尋業務本質;先具象再抽象;腳踏實地,長期主義。
曠視通過分析城市空間和管理對象,指出城市的日常運作管理需要秉持以人為本核心,城市大腦應圍繞條塊結合的方式實現綜合管理,實現條、塊、腦、OS的協同。
城市大腦中的條應用總量少,單體規模大、高並發、數據壁壘強;而塊總量大、IoT種類多,低並發、數據壁壘低,集成聯動潛力大。
基於此,曠視提出:構築城市大腦需要先圍繞「條」和「塊」打造城市級的超級應用,驗證產品、實現單一場景閉環,從而形成具有曠視特色的軟體和硬體產品矩陣,最終逐漸沉澱出城市級和建築級AIoT操作系統,實現城市物聯網的閉環。
曠視認為,人工智慧產業現在處於並將長期處於初級階段,我們必須正視並不能超越這個初級階段。第二,人工智慧產業的主要矛盾是市場日益增長的多樣化需求同落後的演算法生產力之間的矛盾。
雲從科技安防行業部總經理李夏風:「人機協同平台,助推社會治理現代化升級」
雲從認為人機協同有三部分:人機交互、人機融合、人機共創。
人機協同中,各個行業的專家、以機器代表的AI知識服務和用戶,三者形成一個閉環,首先專家把知識賦能給機器,機器轉換成智能化產品並提升客戶的體驗,用戶從中反饋出個性化的需求,後續提升專家的效率並反哺到產品或服務中。
雲從人機協的落地通過三部分實現:智能化終端設備收集數據,同時也是人機交互的入口,雲端大腦是整個數據的匯集、分析、提煉的中樞,當數據大腦經過分析,形成相關的服務後,通過嵌入式的模塊,即AI平台,實現人機協同在各個場景落地。
而AI訓練平台融合數據智能標注、OCR訓練、圖像訓練、NLP訓練、視頻結構化訓練於一體,根據場景數據,生成符合行業需求的AI模型演算法。雲從的智能解析引擎具備軟硬解耦特性,可以適配國有自主晶元,還能實現效率和使用維度的極大地性能提升。
基於雲從的數據分析引擎,提供面向數據全生命周期的分析、挖掘及應用服務,完成數據到知識的價值轉換,賦能各業務場景應用。
具體來說,匯聚感知數據,打造數據挖掘基礎,融合業務數據,靈活定製生成各類標簽,拓展業務對象,並依託認知信息,形成各類專家的決策,為決策提供有力的支撐,最後,依託可視化專家建模,固化專家經驗模型,積累與傳承業務知識。
從數據到知識是數據價值挖掘的必經之路,目前大部分數據資源沒有得到充分利用,雲從的知識生產與服務平台KaaS,通過將標簽、機器學習等知識模型化、在線化,加上AI 引擎, 變數據/經驗為在線知識。
通過數據智能模型為核心的知識體系構建實現從多維數據中挖掘隱形事件背後的關聯關系及規律現象,服務於風險防控、態勢預測、行為畫像、虛擬軌跡等各類實際業務決策。
比特大陸AI業務線CEO王俊:「安防新基建,AI 芯智能」
王俊認為,當市場容量足夠大時,總是會催生出更專注的產品,因為越是專注的產品,越容易獲得更高的效率,隨著AI市場的爆發,AI的計算硬體亦是如此。過去大家用GPU來取代CPU提供AI算力,現在正是從GPU切換至TPU或其他AI專用晶元以獲得更高效率的時代。
比特大陸算豐自研的TPU,覆蓋了雲、邊、端,專注於深度學習計算,相對於CPU和GPU,在獲得更高性能的同時,還具備更高的性價比和更低的功耗。安防行業已經完成了從看得見到看得清,看得清到看得懂的階段,而未來在更多專用AI晶元加持下,可繼續實現看得快、看得起。
王俊還提到,比特大陸算豐業務堅持專注、開放、合作共贏的理念,專注AI晶元及其相關硬體的研發,同時開放各個層次的軟體介面方便各種演算法的接入和優化,力求和各個演算法、應用等合作夥伴緊密合作,共同打造完整的AI解決方案。
同時,他們會打造基於比特大陸算豐晶元的算力平台,提供數據、演算法、應用的統一管理,這樣不同的應用需求,基於不同深度學習框架的不同演算法方案,都可簡單、高效的運行在該算力平台上。用戶可自由選擇最合適的方案,接入數據,並獲得智能分析的結果。如此,在真實的場景中,無論是人臉識別、視頻結構化這樣單一的應用,還是城市大腦這樣的綜合方案,比特大陸都可基於該平台,聯合合作夥伴,提供統一、高效、易用的AI算力服務。
澎思科技副總裁曲瀚:「AIoT 新基建,加速人工智慧進入普惠時代」
澎思科技認為人工智慧新基建的一個核心就是AI的基礎設施化,分為技術基礎設施和融合基礎設施。
在此趨勢下,智慧城市和AI安防將成為新基建的最佳試驗場。另外,AI安防也逐漸發展到了第二階段,AI在To B領域的發展開始從單一的場景向全社會各個領域延伸,每個細分的場景都展現出不同的AI服務需求,未來就是服務為王的時代,誰能夠快速精準地把握住客戶的需求,誰就能夠在未來的競爭中快速勝出。
曲瀚指出,AI普惠的產品有兩個核心要點:一是極致產品體驗,二是場景化的解決方案能力。實現AI普惠的終局在於四個方面:第一,萬物智聯,所有的AI終端實現在線化。第二,推動AI演算法向通用智能演算法演進,降低機器學習的成本,提高泛化能力。第三,構建一個豐富的產品生態。第四,場景的聯動和重塑。AI不是一個孤立的系統,需要和客戶的其他系統做連接和聯動,才能使得場景服務變成一個主動智能的服務。
澎思基於對普惠AI的理解,構建了澎思AIoT生態平台,包括四個關鍵的能力:第一,智能視圖大腦。演算法會從雲、邊、端三個維度全鏈條嵌入。第二,全系列自研的智能邊緣設備。第三,打造雲端智能服務的開放平台。第四,後端建立數據管理平台,使得數據在AI、硬體以及雲服務能夠充分地流動,實現業務和訓練數據的並軌。
曲瀚還表示,普惠AI最核心的是演算法能力,這是整個AIoT業務的底座,澎思的演算法在雲端和邊緣端都走在世界的前列。
最後,曲瀚還重點介紹了在智能城市「新基建」中,澎思在城市公共安全與治理、人居場景智能化兩大場景中的落地情況,以及深度參與新加坡等海外市場智慧城市的建設經驗。
的盧深視CEO戶磊:「大庫時代,落地千萬級刷臉系統的技術剖析與建庫經驗」
戶磊提到,大庫時代,金融支付、交通等眾多場景亟需千萬級精準人臉識別技術方案。目前行業內現有方案為多引擎,多層級,分庫管理模式,系統復雜、軟硬體開銷大、成本高、效率低。
因此理想的大庫識別方案應該具備以下幾點:精準,萬億分之一誤識別率,千萬級別底庫,魯棒性好,高度兼容性,以及價格適宜。而的盧深視是全國首個建立省級規模三維人像資料庫的AI公司。
的盧深視的千萬級精準識別的刷臉系統具有幾大關鍵技術點。
系統架構,分為三個層次,由前端多維智能感知系統、千萬大庫雲端中台和多模態關聯分析與預測組成。
其中高性能三維人臉識別演算法與前端相機深度集成,降低後端計算開銷,中台支撐千萬級大庫人臉的建庫、清洗、檢索,適配度高、效率高,多模態架構的兼容性好,分析預測環節基於大數據的邏輯推理,時空軌跡關聯分析,將2D/3D人臉、人體、物品、時間、地點等多維大數據融合,深度挖掘數據之間的關聯性,實現預測與預警。
其次是技術架構。核心演算法層,其中最重要的是3D演算法層;平台技術層,包括後端的技術,包括通信計算、協同優化等等技術;業務中台,對數據接入、數據管理、數據清洗、優選,而後融到庫裡面進行數據同步,最終支撐各種各樣應用。
再者,的盧深視建立三維數據標准及評價打分體系,這是後續進行三維應用的基礎,的盧深視對於各種數據類別,均提供數據質量要求及評價標准。
戶磊還總結了的盧深視3D識別的優勢:
准確率高,保證精度不損失的情況下,突破了三維人臉識別的量化技術,最終可以實現在千萬級庫上面秒級的反饋結果,可以保證萬億大庫下的高准確率 。
魯棒性好,實現了深度圖和紅外圖的識別,不受光線影響,包括大角度、濃妝識別的准確率,能夠融入15到20度大的角度的差異。
安全性高,尤其對於活體檢測,能夠實現2D平面偽裝攻擊方式100%防禦。
平安科技副總工程師王健宗:「聯邦智能——智慧城市的突圍之道」
目前,人工智慧在移動互聯網、雲計算、大數據、IOT、5G等新技術的驅動下得以迅猛發展, 不過在AI技術落地時總是有所欠缺,即人工智慧通用演算法在本地化部署過程中所面臨的數據困境,而這一塊恰恰是相關行業或企業所缺乏的。
王健宗認為,其數據困境主要是三點:數據孤島、法律法規監管日趨嚴格,以及傳統AI技術模式下的限制。
聯邦智能是以聯邦學習為龍頭,同時涵蓋聯邦數據部落、聯邦推理、聯邦激勵機制,共由四部分組成。面對目前日益苛刻的數據安全隱私的問題,通過構建聯邦學習的技術內核,建立聯邦數據部落,實現具備隱私保護的聯邦推理,並以聯邦激勵機制為紐帶形成一個完整的AI生態格局,從而打破數據壁壘,使人工智慧發展邁向新階段。
其中,聯邦學習是隱私保護下的分布式機器學習技術,以及「數據孤島問題」的解決方案。聯邦數據部落,在確保數據安全及用戶隱私的前提下,建立基於聯邦智能的大數據部落生態,充分發揮各行業參與方的數據價值,推動垂直領域案例落地。聯邦推理,在一個隱私與安全的鏈路過程中,發揮著引擎模型的聯邦推理作用。聯邦激勵機制,它的核心是一個遵循基本准則的閉環學習機制,通過聯合建模協議達成、貢獻度評估、激勵及資金劃定等環節,吸引外部企業參與,加入聯邦智能生態。
平安的蜂巢聯邦智能平台。在整個平台中,蜂巢依託平安集團這一綜合性集團背景,能夠提供智慧金融、智慧城市、智慧醫療商用級的一站式解決方案,希望能夠以此激活數據價值,這也是整個平台的使命。蜂巢平台的目標是跨企業、跨數據、跨領域,實現整個大數據AI生態。此外,它在營銷、獲客、定價、風控、智慧城市等等方面推出了相關的解決方案。
最後,王健宗總結道,聯邦智能作為樞紐,將會為智慧城市的未來提供更多新的機會。同時,隨著公民隱私安全意識的不斷加深,它將更好地為公眾帶來高品質的個性化服務,並在當前新基建的背景下,立足於數據,依託聯邦智能生態,加速精細化服務時代的到來,這也是聯邦智能的機會。
靈伴科技公共安全事業部總經理劉葉飛:「安防新十年,AR 來主宰」
劉葉飛認為AR在智能安防領域有獨特優勢,比如第一視角顯示,融合現實世界,人機交互自然,信息傳遞准確。AR技術如果運用到智能安防領域,在未來的十年,AR+AI必定推動整個安防市場。
杭州靈伴科技成立於2014年,從做語音識別、語音交互起家,隨後過度到視覺交互,主要體現在AR層面,在2020年,靈伴推出了全球首款光波導形態的AR智能眼鏡。
他還現場展示了靈伴科技在全球首款可量產的光波導智能眼鏡,可折疊,小巧輕便。基於光波導優質的顯示效果,可以不影響正常視線的情況下與外界進行交互。
劉葉飛還介紹,這款智能AR眼鏡具有人臉識別、紅外測溫、車牌識別、執法記錄、信息推送、遠程指揮等等功能,相當於取代三個信息化執法終端所有的功能。除了安防行業,還可在智慧園區、大型安保活動、監獄、海關/邊檢、軌道交通、機場等多種場景使用。此外,靈伴科技在博物館、兩會、疫情防控等場景下的均有落地案例。
安防「新十年」頒獎典禮
大會演講環節結束後,峰會進入到安防「新十年」頒獎環節。
AI與安防的融合,經由2018年的靜水深流、2019年的混沌廝殺,2020年的技術研究與方案落地將會更為清晰、成熟。
身處產業臨界節點,雷鋒網AI掘金志啟動安防「新十年」評選活動。
雷鋒網AI掘金志從商業維度出發,基於對AI安防產業四年的調研和資源積累,並聯合政、企、學、投資四界的評選委員,致力於尋找廣受市場認可的企業、產品,尋找人工智慧在各個行業的最佳應用。
五大城市代表企業榜
五大最佳行業解決方案榜
引領未來十年的五大新基建企業
⑨ 為何說人工智慧的發展得益於計算能力的高速增長
據報道,2017英特爾中國行業峰會昨日在蘇州舉行,會上,國際知名AI專家及技術創新企業家傑瑞·卡普蘭博士發表了演講,闡述了人工智慧的發展,以及人工智慧如何引領產業變革。
機器學習的興起,與當下的計算機的計算能力高速增長是分不開的,在過去的30年裡,計算機的速度翻了100萬倍。如果將30年前的計算機速度比做蝸牛,那麼現在就像是「火箭」的速度。
當計算機的速度越來越快,數據量大了之後,機器學習就成為了更好的匹配,尤其是我們即將進入到5G時代,這更加推動了演繹與推理、感知與真實世界互動,未來我們可以造出全新靈活的機器人,有很強的感知能力。
希望人工智慧技術可以取得更大的發展!
⑩ 我看最近關於HelloFil&算力方舟的新聞挺多的,感覺挺厲害的樣子
像火訊財經舉辦的觀火年度評選「最具影響力分布式儲存品牌」獎和「最具影響力分布式存儲品牌」還有考拉財經舉辦的2020年礦業領袖峰會在其中獲得了「2020年度最具有Filecoin礦機質量獎」和「2020年度IPFS最具有影響力企業」兩個獎項。可謂是十分優秀的。