數學之美數字貨幣
A. 數學之美這本書講的是什麼
數學之美(數學中讓人愉悅的東西)
作者: 吳軍 人民郵電出版社
版年: 2012-5
頁數: 304
定價: 45.00元
ISBN: 9787115282828
部分內容
數學美與其它美的區別還在於它是蘊涵在其中的美。打個比方來說,大家一定都有這種感覺,絕大部分同學對音體美容易產生興趣,而對數學感興趣的不多。我認為,這主要有兩個方面的原因:一是音體美中所表現出來的美是外顯的,這種美同學們比較容易感受、認識和理解;而數學中的美雖然也有一些表現在數學對象的外表,如精美的圖形、優美的公式、巧妙的解法等等,但總的來說數學中的美還是深深地蘊藏在它的基本結構之中,這種內在的理性美學生往往難以感受、認識和理解,這也是數學區別於其它學科的主要特徵之一。二是長期以來,我們的數學教材過分強調邏輯體系和邏輯推演,忽視數學美感、數學直覺的作用,長此以往,學生將數學與邏輯等同起來。一味注重數學的邏輯性而忽視了數學本身的美,學習的過程中就會感到枯燥無味缺乏興趣。
大多數的數學家會由他們的工作及一般數學里得出美學的喜悅。他們形容數學是美麗的來表示這種喜悅。有時,數學家會形容數學是一種藝術的形式,或至少是一個創造性的活動。通常拿來和音樂和詩歌相比較。
數學之美還在於其對生活的精確表述、對邏輯的完美演繹。可以說正是這種精確性才成就了現代社會的美好生活。
說實在的,我們估計看著比較頭疼~~
B. 數學之美梗概1000字梗概
美是人類創造性實踐活動的產物,是人類本質力量的感性顯現。通常我們所說的美以自然美、社會美以及在此基礎上的藝術美、科學美的形式存在。數學美是自然美的客觀反映,是科學美的核心。簡言之數學美就是數學中奇妙的有規律的讓人愉悅的美的東西。
歷史上許多學者、數學家對數學美從不同的側面作過生動的闡述。普洛克拉斯早就斷言:「哪裡有數學,哪裡就有美。」亞里士多德也曾講過:「雖然數學沒有明顯地提到善和美,但善和美也不能和數學完全分離。因為美的主要形式家是「秩序、勻稱和確定性」,這些正是數學研究的原則。」
我國著名數學家華羅庚說過:「就數學本身而言,是壯麗多彩、千姿百態、引人入勝的……認為數學枯燥乏味的人,只是看到了數學的嚴謹性,而沒有體會出數學的內在美。」數學家徐利治說:「作為科學語言的數學,具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。」
以上的論述可見,數學中充滿著美的因素,數學美是數學科學的本質力量的感性和理性的呈現,它不是什麼虛無飄渺、不可捉摸的東西,而是有其確定的客觀內容。
區別
數學美有別與其它的美,它沒有鮮艷的色彩,沒有美妙的聲音,沒有動感的畫面,它卻是一種獨特的美。
德國數學家克萊因曾對數學美作過這樣的描述:「音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科技可以改善物質生活,但數學卻能提供以上一切。」
數學美與其它美的區別還在於它是蘊涵在其中的美。打個比方來說,大家一定都有這種感覺,絕大部分同學對音體美容易產生興趣,而對數學感興趣的不多。我認為,這主要有兩個方面的原因:一是音體美中所表現出來的美是外顯的,這種美同學們比較容易感受、認識和理解;而數學中的美雖然也有一些表現在數學對象的外表,如精美的圖形、優美的公式、巧妙的解法等等,但總的來說數學中的美還是深深地蘊藏在它的基本結構之中,這種內在的理性美學生往往難以感受、認識和理解,這也是數學區別於其它學科的主要特徵之一。二是長期以來,我們的數學教材過分強調邏輯體系和邏輯推演,忽視數學美感、數學直覺的作用,長此以往,學生將數學與邏輯等同起來。一味注重數學的邏輯性而忽視了數學本身的美,學習的過程中就會感到枯燥無味缺乏興趣。
大多數的數學家會由他們的工作及一般數學里得出美學的喜悅。他們形容數學是美麗的來表示這種喜悅。有時,數學家會形容數學是一種藝術的形式,或至少是一個創造性的活動。通常拿來和音樂和詩歌相比較。
數學之美還在於其對生活的精確表述、對邏輯的完美演繹。可以說正是這種精確性才成就了現代社會的美好生活。
感覺
伯特蘭·羅素以下列文字來形容他對數學之美的感覺:
Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry. (The Study of Mathematics, inMysticism and Logic, and Other Essays, ch. 4, London: Longmans, Green, 1918.)
翻譯:數學,如果正確地看它,則具有……至高無上的美——正像雕刻的美,是一種冷而嚴肅的美,這種美不是投合我們天性的微弱的方面,這種美沒有繪畫或音樂的那些華麗的裝飾,它可以純凈到崇高的地步,能夠達到嚴格的只有最偉大的藝術才能顯示的那種完美的境地。一種真實的喜悅的精神,一種精神上的亢奮,一種覺得高於人的意識——這些是至善至美的標准,能夠在詩里得到,也能夠在數學里得到。(研究數學,在神秘主義和邏輯,與其他論文,概括。4、倫敦:中國政法大學,綠色,1918年。)
保羅·埃爾德什形容他對數學不可言說的觀點,而說:「為何數字美麗呢?這就像是在問貝多芬第九號交響曲為什麼會美麗一般。若你不知道為什麼,其他人也沒辦法告訴你為什麼。我知道數字是美麗的。且若它們不是美麗的話,世上也沒有事物會是美麗的了。」
C. 數學之美的作品目錄
出版說明序言1序言2前言第1章文字和語言 vs 數字和信息第2章自然語言處理 — 從規則到統計第3章統計語言模型第4章談談中文分詞第5章隱含馬爾可夫模第6章信息的度量和作用第7章賈里尼克和現代語言處理第8章簡單之美 — 布爾代數和搜索引擎的索引第9章圖論和網路爬蟲第10章PageRank — Google的民主表決式網頁排名技術第11章如何確定網頁和查詢的相關性第12章地圖和本地搜索的最基本技術 — 有限狀態機和動態規劃第13章Google AK-47的設計者 — 阿米特 · 辛格博士第14章餘弦定理和新聞的分類第15章矩陣運算和文本處理中的兩個分類問題第16章信息指紋及其應用第17章由電視劇《暗算》所想到的 — 談談密碼學的數學原理第18章閃光的不一定是金子 — 談談搜索引擎反作弊問題第19章談談數學模型的重要性第20章不要把雞蛋放到一個籃子里 — 談談最大熵模型第21章拼音輸入法的數學原理第22章自然語言處理的教父馬庫斯和他的優秀弟子們第23章布隆過濾器第24章馬爾可夫鏈的擴展 — 貝葉斯網路第25章條件隨機場和句法分析第26章維特比和他的維特比演算法第27章再談文本自動分類問題 — 期望最大化演算法第28章邏輯回歸和搜索廣告第29章各個擊破演算法和Google雲計算的基礎附錄後記索引
D. 數學之美的表述
美是人類創造性實踐活動的產物,是人類本質力量的感性顯現。通常我們所說的美以自然美、社會美以及在此基礎上的藝術美、科學美的形式存在。數學美是自然美的客觀反映,是科學美的核心。簡言之數學美就是數學中奇妙的有規律的讓人愉悅的美的東西。
歷史上許多學者、數學家對數學美從不同的側面作過生動的闡述。普洛克拉斯早就斷言:「哪裡有數學,哪裡就有美。」亞里士多德也曾講過:「雖然數學沒有明顯地提到善和美,但善和美也不能和數學完全分離。因為美的主要形式家是「秩序、勻稱和確定性」,這些正是數學研究的原則。」
我國著名數學家華羅庚說過:「就數學本身而言,是壯麗多彩、千姿百態、引人入勝的……認為數學枯燥乏味的人,只是看到了數學的嚴謹性,而沒有體會出數學的內在美。」數學家徐利治說:「作為科學語言的數學,具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。」
以上的論述可見,數學中充滿著美的因素,數學美是數學科學的本質力量的感性和理性的呈現,它不是什麼虛無飄渺、不可捉摸的東西,而是有其確定的客觀內容。 數學美有別與其它的美,它沒有鮮艷的色彩,沒有美妙的聲音,沒有動感的畫面,它卻是一種獨特的美。
德國數學家克萊因曾對數學美作過這樣的描述:「音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科技可以改善物質生活,但數學卻能提供以上一切。」
數學美與其它美的區別還在於它是蘊涵在其中的美。打個比方來說,大家一定都有這種感覺,絕大部分同學對音體美容易產生興趣,而對數學感興趣的不多。我認為,這主要有兩個方面的原因:一是音體美中所表現出來的美是外顯的,這種美同學們比較容易感受、認識和理解;而數學中的美雖然也有一些表現在數學對象的外表,如精美的圖形、優美的公式、巧妙的解法等等,但總的來說數學中的美還是深深地蘊藏在它的基本結構之中,這種內在的理性美學生往往難以感受、認識和理解,這也是數學區別於其它學科的主要特徵之一。二是長期以來,我們的數學教材過分強調邏輯體系和邏輯推演,忽視數學美感、數學直覺的作用,長此以往,學生將數學與邏輯等同起來。一味注重數學的邏輯性而忽視了數學本身的美,學習的過程中就會感到枯燥無味缺乏興趣。
大多數的數學家會由他們的工作及一般數學里得出美學的喜悅。他們形容數學是美麗的來表示這種喜悅。有時,數學家會形容數學是一種藝術的形式,或至少是一個創造性的活動。通常拿來和音樂和詩歌相比較。
數學之美還在於其對生活的精確表述、對邏輯的完美演繹。可以說正是這種精確性才成就了現代社會的美好生活。 伯特蘭·羅素以下列文字來形容他對數學之美的感覺:
Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry. (The Study of Mathematics, in Mysticism and Logic, and Other Essays, ch. 4, London: Longmans, Green, 1918.)
翻譯:數學,如果正確地看它,則具有……至高無上的美——正像雕刻的美,是一種冷而嚴肅的美,這種美不是投合我們天性的微弱的方面,這種美沒有繪畫或音樂的那些華麗的裝飾,它可以純凈到崇高的地步,能夠達到嚴格的只有最偉大的藝術才能顯示的那種完美的境地。一種真實的喜悅的精神,一種精神上的亢奮,一種覺得高於人的意識——這些是至善至美的標准,能夠在詩里得到,也能夠在數學里得到。(研究數學,在神秘主義和邏輯,與其他論文,概括。4、倫敦:浪漫書屋,綠色,1918年。)
保羅·埃爾德什形容他對數學不可言說的觀點,而說:「為何數字美麗呢?這就像是在問貝多芬第九號交響曲為什麼會美麗一般。若你不知道為什麼,其他人也沒辦法告訴你為什麼。我知道數字是美麗的。且若它們不是美麗的話,世上也沒有事物會是美麗的了。」 它的最美之處莫過於在無形之中就讓你思維變得敏捷.考慮事情時,不在那麼偏激,那麼單一.
作為一個公民來說了不了解它是一個後話,至少應該不否定它.尤其是學生.
讓我們先來看看看下面的算式:
1 x 8 + 1= 9
12 x 8 + 2= 98
123 x 8 + 3= 987
1234 x 8 + 4= 9876
12345 x 8 + 5= 98765
123456 x 8 + 6= 987654
1234567 x 8 + 7= 9876543
12345678 x 8 + 8= 98765432
123456789 x 8 + 9= 987654321
1 x 9 + 2= 11
12 x 9 + 3= 111
123 x 9 + 4= 1111
1234 x 9 + 5= 11111
12345 x 9 + 6= 111111
123456 x 9 + 7= 1111111
1234567 x 9 + 8= 11111111
12345678 x 9 + 9= 111111111
123456789 x 9 +10= 1111111111
9 x 9 + 7= 88
98 x 9 + 6= 888
987 x 9 + 5= 8888
9876 x 9 + 4= 88888
98765 x 9 + 3= 888888
987654 x 9 + 2= 8888888
9876543 x 9 + 1= 88888888
98765432 x 9 + 0= 888888888
1 x 1= 1
11 x 11= 121
111 x 111= 12321
1111 x 1111= 1234321
11111 x 11111= 123454321
111111 x 111111= 12345654321
1111111 x 1111111= 1234567654321
11111111 x 11111111= 123456787654321
111111111 x 111111111= 12345678987654321
3 x 4=12
33 x 34=1122
333 x 334=111222
3333 x 3334=11112222
33333 x 33334=1111122222
333333 x 333334=111111222222
142857 x1=142857
142857x 2=285714
142857x 3=428571
142857x 4=571428
142857x 5=714285
142857x 6=857142
142857x 7=999999
11x 101=1111
12x 101=1212
13x 101=1313
14x 101=1414
15x 101=1515
16x 101=1616
17x 101=1717
18x 101=1818
19x 101=1919
20x 101=2020
E. 求一篇關於數學之美的作文1000字
我發現了數學之美
一年級的時候,媽媽給我報了一個數學興趣班,目的是讓我在數學方面超過同學,讓老師更加喜歡我。
上了興趣班以後,我開始廣泛接觸數學,習題也做了不少。漸漸地,我感到做題很辛苦,但是我並沒有放棄繼續上數學興趣班,而是發現了數學那種特有的美。
四年級時,我開始接觸奧數題。
奧數可比一般的計算題那多了。有一次,我做題時遇到一道題,非常難,這是一大屬於劃船問題的奧數題。我琢磨了半天,絞盡腦汁也不知道該怎麼做,就決定問老師。經過老師一點撥,我恍然大悟,原來這道題的解法這么簡單呀,我怎麼沒有繞過這個彎呀。從此以後,我做題時又多了一份認真。
有兩種題是「數圖形」和「數線段」。剛剛接觸時,我常常數的頭暈眼花,令我頭疼。那一段兒時間,我天天詛咒它們快點消失。過了幾天,老師講了這兩種題的簡便計算公式:(點數-1)×點數÷2.
用這個公式來計算這一類型的題,比我以前用的笨方法不知快了多少,而且正確率也提高了好多好多倍呢!
慢慢的,我便不滿足於現狀,我不再是那隻等著媽媽餵食的小鳥,我開始自己去尋食,自己在數學的海洋里探索,去研究那一個個令人棘手的問題,去尋找更高的目標,在蔚藍的天空自由自在的翱翔。
每當我克服了一道道難關,我的心裡就會盪漾起幸福的漣漪,每當這時,心中總有一種成就感在我心中流過,那是一種甜蜜的滋味。
是的,是數學那獨特的美吸引著我,引領我在數學的世界裡遨遊,如果沒有它,我就不會愛上數學,更不會數學那麼痴迷。
我發現了數學之美。
F. 數學之美
數學美的概念
美是人類創造性實踐活動的產物,是人類本質力量的感性顯現。通常我們所說的美以自然美、社會美以及在此基礎上的藝術美、科學美的形式存在。數學美是自然美的客觀反映,是科學美的核心。簡言之數學美就是數學中奇妙的有規律的讓人愉悅的美的東西。 歷史上許多學者、數學家對數學美從不同的側面作過生動的闡述。普洛克拉斯早就斷言:「哪裡有數學,哪裡就有美。」亞里士多德也曾講過:「雖然數學沒有明顯地提到善和美,但善和美也不能和數學完全分離。因為美的主要形式家是「秩序、勻稱和確定性」,這些正是數學研究的原則。」 我國著名數學家華羅庚說過:「就數學本身而言,是壯麗多彩、千姿百態、引人入勝的……認為數學枯燥乏味的人,只是看到了數學的嚴謹性,而沒有體會出數學的內在美。」數學家徐利治說:「作為科學語言的數學,具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。」 以上的論述可見,數學中充滿著美的因素,數學美是數學科學的本質力量的感性和理性的呈現,它不是什麼虛無飄渺、不可捉摸的東西,而是有其確定的客觀內容。
G. 求《數學之美》非掃描版電子書
說實話,數學的美,是要用心去學,理解,專業的學術著作才會發現的。數學之美這書我看過,就是說一些數學里淺顯的,看著比較有趣的東西來吸引人。但是數學根本就不是淺顯的學科,我不建議看這樣的書得到誤導。要看只看專業的學術著作。
H. 「數學之美」有什麼例子
淺談數學之美
數學美是自然美的客觀反映,是科學美的核心。「那裡有數學,哪裡就有美」,數學美不是什麼虛無縹緲、不可捉摸的東西,而是有其確定的客觀內容。數學美的內容是豐富的,如數學概念的簡單性、統一性,結構系統的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等,都是數學美的具體內容。本文主要圍繞數學美的三個特徵:簡潔性、和諧性和奇異性進行闡述。
【關鍵詞】數學,數學美,美學特徵
數學美的表現形式是多種多樣的,從外在形象上看:她有體系之美、概念之美、公式之美;從思維方式上看:她有簡約之美、無限之美、抽象之美、類比之美;從美學原理上看:她有對稱之美、和諧之美、奇異之美等。此外,數學還有著完美的符號語言、特有的抽象藝術、嚴密的邏輯體系、永恆的創新動力等特點。但這些都離不開數學美的三大特徵,即:簡潔性、和諧性和奇異性。