eth激素
1. 植物中ETH是什么物质
是植物激素乙烯(ethylene, ETH)。
乙烯的生理作用
1、三重反应(抑制茎伸长,使茎加粗,失去负向地性)偏上生长
2、促进果实成熟
3、促进花的分化
4、促进器官脱落
5、促进次生物排泌
2. 请问:激素 Eth 是什么
脱皮诱发激素
3. 常见激素的缩写急求…
1、生长激素:GH
生长激素作用于整个机体,对蛋白质合成、糖代谢、调节肾功能(肾小球滤过率)和水代谢、增加细胞对氨基酸的通透性都有作用,因而可促进躯体(骨、肌肉和器官)的生长。
2、促黑色细胞激素:MSH
MSH主要作用于黑色素细胞。体内黑色素细胞分布于皮肤及毛发、眼球虹膜色素层及视网膜色素层、软脑膜。
3、促肾上腺皮质激素:ACTH
促肾上腺皮质激素(ACTH)是脊椎动物脑垂体分泌的一种多肽类激素,它能促进肾上腺皮质的组织增生以及皮质激素的生成和分泌。ACTH的生成和分泌受下丘脑促肾上腺皮质激素释放因子(CRH)的直接调控。
4、抗利尿激素:ADH
ADH主要由下丘脑视上核,少量由室旁核合成,再由下丘脑神经核与一种特异性蛋白质结合,而以神经分泌颗粒的形式沿着神经轴突向垂体后叶移动,并储存于后叶。
5、甲状旁腺激素:PTH
甲状旁腺分泌过多甲状旁腺素 (PTH)而引起的钙磷代谢失常。简称甲旁亢。甲状旁腺功能亢进症(hyperparathyroidism,简称甲旁亢),是由于PTH合成和释放过多,引起高血钙、低血磷症临床分原发和继发性两种。
(3)eth激素扩展阅读:
激素的单位:
有些药物如维生素、激素、抗生素、抗毒素类生物制品等,它们的化学成分不恒定或至今还不能用理化方法检定其质量规格,往往采用生物实验方法并与标准品加以比较来检定其效价。通过这种生物检定,具有一定生物效能的最小效价单元就叫”单位”(u);经由国际协商规定出的标准位,称为”国际单位”(IU)。
1931年国际联盟卫生组织的维生素委员会,首先规定了各种维生素的国际单位,如每1个国际单位的维生素A相当于0.3微克,若是它的乙酸盐则为0.344微克,维生素D相当于0.025微克,维生素E相当于1毫克等等。虽然许多维生素现今已改为重量表示,但仍有一些还在沿用国际单位。
各种激素1国际单位折合国际标准制剂的重量为:黄体酮1毫克、绒毛膜促性腺素0.1毫克、垂体激素0.5毫克、催乳激素0.1毫克、胰岛素45.4微克。
4. 植物的五大内源激素是什么
对植物激素的初步研究确定了五种主要类别:脱落酸,植物生长素,细胞分裂素,乙烯和赤霉素。
1.脱落酸ABA:存在于植物的所有部位,其在任何组织中的浓度似乎可以调节其作用并起激素的作用。它在植物中的降解,或更确切地说是分解代谢,影响代谢反应以及细胞生长和其他激素的产生。植物以高ABA水平的种子出生。一种抑制生长的植物激素,因能促使叶子脱落而得名。除促使叶子脱落外尚有其他作用,如使芽进入休眠状态、促使马铃薯形成块茎等。对细胞的延长也有抑制作用。
2.生长素IAA(合成代表物为α-萘乙酸):生长素是积极影响细胞增大,芽形成和根部萌发的化合物。它们还促进其他激素的产生,并与细胞分裂素一起控制茎,根和果实的生长,并将茎转化为花。生长素是发现的第一类生长调节剂。促进生长;促进插条不定根的形成;对养分的调运作用;诱导维管束分化;维持顶端优势;诱导雌花分化单性结实;促进光合产物的运输;叶片的扩大和气孔的开放;抑制花朵脱落。不同器官的最适浓度不同,茎端最高,芽次之,根最低。极低的浓度就可促进根生长。所以能促进主茎生长的浓度往往对侧芽和根生长有抑制作用。
3.细胞分裂素CTK(合成代表物为激动素):细胞分裂素是影响细胞分裂和芽形成的一组化学物质。它们还有助于延迟组织的衰老,负责调节植物中生长素的运输,并影响节间长度和叶片生长。诱导细胞分裂,调节其分化,解除顶端优势、促进芽的萌动,提高成花率,促进果实发育,抑制叶绿素分解、延迟植物的衰老,提高作物抗寒能力。
4.乙烯ETH(合成代表物为乙烯利):乙烯与其他主要植物激素不同,乙烯是一种气体,是一种非常简单的有机化合物,仅由六个原子组成。它通过蛋氨酸的分解而形成,蛋氨酸是所有细胞中的一种氨基酸。乙烯在水中的溶解度非常有限,因此不会在细胞内积聚,通常会扩散出细胞并逸出植物。其作为植物激素的有效性取决于其产生速率与其逃逸到大气中的速率。在迅速生长和分裂的细胞中,尤其是在黑暗中,乙烯以更快的速度产生。新的生长和新发芽的幼苗产生的乙烯多于逃脱植物的乙烯,这导致乙烯含量升高,抑制了叶片的膨胀。促进果实成熟;促进根毛生长,打破某些植物种子和芽休眠;促进凤梨科开花;促进水生植物地下部伸长生长;加速叶片衰老;促进脱落。
5.赤霉素GA:包含多种植物内部和真菌天然产生的化学物质。它们是在包括黑泽荣一在内的日本研究人员注意到由一种名为“赤霉赤霉菌”的真菌产生的化学物质在水稻植物中异常生长时发现的。后来发现,GA也是由植物本身产生的,并在整个生命周期中控制着多个方面的发育。种子发芽时,GA的合成在种子中强烈上调,发芽需要其存在。在幼苗和成虫中,GA强烈促进细胞伸长。遗传算法还促进营养生长和生殖生长之间的过渡,并且受精过程中花粉功能也是必需的。最突出的作用是刺激茎的伸长,明显增加植物高度而不改变茎间的数目,保花保果。在一定浓度范围内,随着浓度的提高,刺激生长的效应增大。
5. 常见的激素
人和动物:胰岛素、生长激素、甲状腺激素、肾上腺素、胰高血糖素、脑啡肽、雄激素、雌激素……
植物:生长素(IAA)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(ABA)、乙烯(ETH)和油菜素甾醇(BR)
6. 常见激素的英文缩写
生长素Auxin、赤霉素 GA、细胞分裂素 CTK、脱落酸 ABA。
乙烯 ethyne ETH、动物激素:促甲状腺激素释放激素 TRH、促性腺激素释放激素 GnRH。
生长素释放抑制激素(生长抑素)GHRIH、神经递质:乙酰胆碱 Acetylcholine Ach、肾上腺素 Epinephrine A。
去甲肾上腺素 Norepinephrine NE、多巴胺 Dopamine DA。
激素作用特点:
① 调节三大物质代谢和水盐代谢。
② 促进生长、发育,影响衰老。
③ 影响CNS及生育(生殖器官的发育与成熟)。
④ 使机体更好地适应环境。
特点:高度专一性包括组织专一性和效应专一性。前者指激素作用于特定的靶细胞、靶组织、靶器官。后者指激素有选择地调节某一代谢过程的特定环节。
例如,胰高血糖素、肾上腺素、糖皮质激素都有升高血糖的作用,但胰高血糖素主要作用于肝细胞,通过促进肝糖原分解和加强糖异生作用,直接向血液输送葡萄糖。
7. 各种植物激素的功能
植物激素有六大类
即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethyne,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响植物发芽、生根、开花、结实、性别的决定、休眠和脱落等。所以,植物激素对植物的生长发育有重要的调节控制作用。
生长素:
吲哚乙酸可以人工合成。生产上使用的是人工合成的类似生长素的物质如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-D、4-碘苯氧乙酸等,可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。愈伤组织容易生根;反之容易生芽。
8. 在北京地区哪里可以买到植物激素,如IAA、GA、CTK、ABA、ETH等等
在北京地区哪里可以买到植物激素,如IAA、GA、CTK、ABA、ETH等等
网络搜索一下:激素性皮炎健桥专科,就可以找到最著名专家教授医生详细解答的治疗和预防的方案了,希望能够帮到你吧。
希望你搜索到有用的信息哦&
9. 非甾体抗炎药是不是激素药..
非甾体类抗炎药是与激素相对而言的,这一类药物其化学结构中缺乏激素所具有的甾环,故而得名。它具有解热、镇痛和抗炎作用,是治疗风湿性疾病的一线药物。对于一些风湿性疾病,如早期类风湿关节炎、老年性关节炎及早期强直性脊柱炎等是首选药物。此类药物种类很多,目前最常用的有乙酰水杨酸(即阿司匹林)、消炎痛、布洛芬、芬必得、扶他林和奇诺力等。尽管这—类药都是通过减少体内前列腺素的合成起作用,但各种药物之间还存在一些细微的差别,具体用什么,怎么用,还需要医生根据病人的具体情况进行指导。病人在应用非甾体类抗炎药过程中的一个常见的现象是,不少病人因害怕药物的副反应而不能连续服药,往往“三天打渔,两天晒网”,只在症状严重,疼痛不能忍受时才用药,因而影响疗效,病人产生“药物有无疗效”的疑问,应该指出的是:绝大部分非甾体类抗炎药都是比较安全的,只要遵嘱用药,均可获较好疗效。非甾体类抗炎药(NSAIDs)是当今世界各国广泛应用的一类药物,每天全世界约有3千万人使用,每年的处方量达5亿。40%使用者年龄超过40岁,由于非处方药的增加、人口老龄化,而且认识到不仅应用于类风湿关节炎、骨关节炎、其他类型的关节炎;还可治疗与关节炎有关的疾病,以及其他类型的疼痛,并且用于结肠癌、阿尔茨海默病的预防等,因此,非甾体类抗炎药的用量正在逐年增加。
非甾体类抗炎药是治疗类风湿关节炎的首选药物,这一大类抗炎药有百余种之多,我国目前上市的抗炎药物的种类和剂型也不少。有不同结构的药物:如水杨酸类的阿司匹林,吲哚类的消炎痛,苯乙酸类的双氯芬酸钠(扶他林)和丙酸类的布洛芬及芬必得等。有不同半衰期的药物:如短效的布洛芬,中效的萘普生,长效的炎痛喜康等。药物剂型有普通片剂、肠溶片、缓释剂、栓剂、凝胶剂、针剂等。现择其常用的几种介绍于下:
(1) 阿司匹林(Asprin) 又称醋柳酸或乙酰水杨酸。水杨酸是1838年从柳木的树皮中提取出来的,1852年化学合成, 1890年合成阿司匹林,至今已是百岁寿星。阿司匹林是一种和缓的抗炎、止痛剂。 阿司匹林应用剂量,以能充分缓解症状而不引起中毒为宜。有规律地而不是零星地用药效果较好。多数成年人每日3~5克。老年病人一般对大剂量耐受性较差。症状控制后剂量减半。为减少对胃黏膜的刺激作用,可饭后服用,并在睡前或清晨与食物或抗酸剂同时服用。阿司匹林肠溶片不能完全缓解胃炎问题,而且有不易吸收的缺点。
应用阿司匹林可能产生眩晕、恶心、呕吐、耳鸣、视力减退。据报道,70%病例大便隐血出现阳性,引起溃疡病;极少数可引起过敏反应,如哮喘、皮疹、血管神经水肿等。对肝、肾功能不全或溃疡病、凝血酶原缺乏症的病人,应慎用。
(2)贝诺酯 为阿司匹林与对乙酰氨基酚的酯化物,可减少阿司匹林的不良反应,具有抗炎、解热、镇痛的作用。本药疗效可靠、适应性强、毒性低,对胃肠道等不良反应少。每次 0.5~1克,每日3次。
(3)吲哚美辛(消炎痛,lndometh~in) 消炎、退热、止痛作用较阿司匹林强。剂量每次25毫克,每日2—3次,饭后或餐中服用。少数每周可增加25毫克,直到获得满意效果或每日最大量150毫克。超过该剂量一般不增加药物效果,却能增加不良反应。
吲哚美辛禁用于孕妇、哺乳期妇女、帕金森病的病人;有精神病、癫痫史,以及对其过敏的病人、活动性或复发的胃及十二指肠溃疡病人则相对禁忌;小儿慎用或忌用。副作用:主要出现胃肠道疾病和消化性溃疡、头痛及其他大脑功能障碍。胃肠道疾患包括消化不良、恶心、腹痛、隐匿性出血及消化性溃疡。头痛为时常感觉前额跳动性疼痛,尤以醒后最甚。其他报道的大脑症状有眩晕、头昏目眩、精神错乱、抑郁、昏昏欲睡、幻觉《抽搐和晕厥。还可有角膜后沉着、视力模糊、肝大、血液病(再生障碍性贫血、溶血性贫血、骨髓抑制、粒细胞缺乏症、血小板减少性紫癜、过敏反应(皮疹、哮喘)、听力障碍、水肿(以眼睑多见)、结节性红斑和脱发等。目前吲哚美辛有普通片剂、肠溶片、胶囊、缓释胶囊、栓剂、针剂6种。据我们观察、,在作用与副作用方面,栓剂优于片剂、胶囊,胶囊又优于片剂,针剂虽能肌内注射,起效较快,但毕竟不太方便,不能常用。
(4)氨糖美辛 每片含盐酸氨基葡萄糖75毫克,吲哚美辛Z5毫克。氨基葡萄糖是一种海洋生物制剂,是硫酸软骨素的基本成分,能促进黏多糖的合成,提高关节滑液的黏性。本品能改善关节软骨的代谢,有利于关节软骨的修复,具有明显的消炎镇痛作用,且能缓解非甾体类抗炎药对蛋白多糖化合物合成的阻滞作用,从而降低消炎痛原有的毒副作用。每次1—2片,每日 2—3次。肾功能不全及孕妇禁用,胃与十二指肠溃疡及小儿慎用。
(5)舒林酸(奇诺力,Sulindac) 在结构上是消炎痛一类吲哚乙酸的衍生物。它以前体—亚砜形式服用,然后在体内代谢为活性的硫化代谢产物和无活性的砜代谢产物。活性的代谢产物具有可逆的抑制环氧化酶的作用,减少致炎的前列腺素的合成。因为活性的硫化代谢产物在到达肾脏前已变为无活性的砜,或者在肾脏内被氧化酶转变为无活性代谢物,因此对肾脏影响较其他非甾体类抗炎药为小。另外,与其他非甾体类抗炎药不同:本品抑制血小板聚集作用很小,延长出血时间的作用也较阿司匹林为小。本晶对血压控制的影响,也较其他非甾体类抗炎药小。尤其适用于老年病人。每次200毫克,每日2次。
(6)布洛芬(Ibuprofen) 又称异丁苯丙酸。其消炎作用较弱、镇痛作用较强,且具有和阿司匹林、扑热息痛相似的退热效果,并且较其更持久,每次0.2—0.4克,一日3-4次。应用时对胃肠道副作用较少,肝毒性反应较小。
(7)芬必得 即布洛芬的缓释胶囊。虽然布洛芬具有镇痛作用较强,胃肠道副作用少,对肝毒性低等优点,但由于其半衰期短,一天需服3—4次,更由于病人血液中药物浓度的波动,会使疼痛再现,特别是在夜间更明显。芬必得则较普通剂型疗效稳定,并且药效可延长。它使药物分布在数百个微小的颗粒中,通过特殊的生产工艺,使布洛芬能定时、定量和长时间地释放,并且加大了药物在胃肠内的覆盖面,从而减少了对胃肠的刺激每次0.3—0.6克,每日2次。
(8)酮洛芬(Ketopmfen) 又称优布芬。有解热、镇痛、消炎作用。对于多种关节炎有良好的镇痛效果,其疗效优于布洛芬,比阿司匹林强100倍,副作用低于吲哚美辛;。每次50毫克,一日3—4次。其缓释片100毫克,每日1次。
(9)萘普生(Napro~en) 为中效抗炎药。经动物实验证明,其消炎作用较保泰松强,止痛、解热作用比阿司匹林强。萘普生是一种酸性药物,加服碳酸氢钠能加速本品吸收;同时它在血中的浓度也高,而氢氧化铝和氧化镁则相反。用量为每次250毫克,每日2次。服药后有少数病人出现轻度消化不良、腹部不适、胀气;恶心、食欲减退等胃肠道不良反应;对阿哥匹林过敏者、怀孕前后、哺乳期等禁用;有胃及十二指肠溃疡、肾功能不全、高血压、冠Jb病者禁用。
(10)吡罗昔康(Piroxicam) 又称炎痛喜康。具有消炎、镇痛作用,每日服20毫克(一片)。其特点是服药量小,药物的生物利用度较高,口服吸收快,作用时间长。副作用有头晕、浮肿、胃部不适、腹泻、胸闷等现象。有消化性溃疡史者慎用;孕妇和哺乳期妇女、儿童及对本品过敏者忌用。
10. 常见的植物激素
植物激素有六大类 即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethyne,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响植物发芽、生根、开花、结实、性别的决定、休眠和脱落等。所以,植物激素对植物的生长发育有重要的调节控制作用。 植物激素的化学结构已为人所知,有的已可以人工合成,如吲哚乙酸;有的还不能人工合成,如赤霉素。目前市场上售出的赤霉素试剂是从赤霉菌的培养过滤物中制取的。这些外加于植物的吲哚乙酸和赤霉素,与植物体自身产生的吲哚乙酸和赤霉素在来源上有所不同,所以作为植物生长调节剂,也有称为外源植物激素。 最近新确认的植物激素有,多胺,水杨酸类,茉莉酸(酯)等等。 植物体内产生的植物激素有赤霉素、激动素、脱落酸等。现已能人工合成某些类似植物激素作用的物质如2,4-D(2,4-二氯苯酚代乙酚)等。 植物自身产生的、运往其他部位后能调节植物生长发育的微量有机物质称为植物激素。人工合成的具有植物激素活性的物质称为生长调节剂。已知的植物激素主要有以下5类:生长素、赤霉素、细胞分裂素、脱落酸和乙烯。而油菜素甾醇也逐渐被公认为第六大类植物激素。 生长素 Charles.D.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的结晶,经鉴定为吲哚乙酸。促进>橡胶树漆树等排出乳汁。在植物中,则吲哚乙酸通过酶促反应从色氨酸合成。十字花科植物中合成吲哚乙酸的前体为吲哚乙腈,西葫芦中有相当多的吲哚乙醇,也可转变为吲哚乙酸。已合成的生长素又可被植物体内的酶或外界的光所分解,因而处于不断的合成与分解之中。 编辑本段 生长素在低等和高等植物中普遍存在。 生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。 用胚芽鞘切段证明植物体内的生长素通常只能从植物的上端向下端运输,而不能相反。这种运输方式称为极性运输,能以远快于扩散的速度进行。但从外部施用的生长素类药剂的运输方向则随施用部位和浓度而定,如根部吸收的生长素可随蒸腾流上升到地上幼嫩部位。 低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。种子中较高的脱落酸含量是种子休眠的主要原因。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性增加,有利于细胞体积增大。生长素还能促进RNA和蛋白质的合成,促进细胞的分裂与分化。生长素具有双重性,不仅能促进植物生长,也能抑制植物生长。低浓度的生长素促进植物生长,过高浓度的生长素抑制植物生长。2,4-D曾被用做选择性除草剂。 吲哚乙酸可以人工合成。生产上使用的是人工合成的类似生长素的物质如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-D、4-碘苯氧乙酸等,可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。愈伤组织容易生根;反之容易生芽。 赤霉素 1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多种赤霉素,分别被命名为GA1,GA2等。以后从植物中发现有十多种细胞分裂素,赤霉素广泛存在于菌类、藻类、蕨类、裸子植物及被子植物中。商品生产的赤霉素是GA3、GA4和GA7。GA3又称赤霉酸,是最早分离、鉴定出来的赤霉素,分子式为C19H22O6。即6-呋喃氨基嘌呤。 高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位,由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。目前在啤酒工业上多用赤霉素促进a-淀粉酶的产生,赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物, 干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促进果实发育和单性结实,打破块茎和种子的休眠,促进发芽。 干种子吸水后,胚中产生的赤霉素能诱导糊粉层内a-淀粉酶的合成和其他水解酶活性的增加,常用赤霉素来提高茎叶用蔬菜的产量。促使淀粉水解,在蔬菜生产上,加速种子发芽。赤霉素也促进禾本科植物叶的伸长。目前在啤酒工业上多用赤霉素促进a-淀粉酶的产生,避免大麦种子由于发芽而造成的大量有机物消耗,从而节约成本。 编辑本段 细胞分裂素 这种物质的发现是从激动素的发现开始的。由韧皮部向下或双向运输。1955年美国人F.斯库格等在烟草髓部组织培养中偶然发现培养基中加入从变质鲱鱼精子提取的DNA,可促进烟草愈伤组织强烈生长。后证明其中含有一种能诱导细胞分裂的成分,称为激动素。第一个天然细胞分裂素是1964年D.S.莱瑟姆等从未成熟的玉米种子中分离出来的玉米素。以后从植物中发现有十多种细胞分裂素,GA等。都是腺嘌呤的衍生物。 高等植物细胞分裂素存在于植物的根、叶、种子、果实等部位。根尖合成的细胞分裂素可向上运到茎叶,但在未成熟的果实、种子中也有细胞分裂素形成。细胞分裂素的主要生理作用是促进细胞分裂和防止叶子衰老。绿色植物叶子衰老变黄是由于其中的蛋白质和叶绿素分解;而细胞分裂素可维持蛋白质的合成,从而使叶片保持绿色,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。延长其寿命。细胞分裂素还可促进芽的分化。在组织培养中当它们的含量大于生长素时,愈伤组织容易生芽;反之容易生根。可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。 人工合成的细胞分裂素苄基腺嘌呤常用于防止莴苣、芹菜、甘蓝等在贮存期间衰老变质。2,4-D、4-碘苯氧乙酸等, 编辑本段 脱落酸 60年代初美国人F.T.阿迪科特和英国人P.F.韦尔林分别从脱落的棉花幼果和桦树叶中分离出脱落酸,其分子式为C15H20O4。 脱落酸存在于植物的叶、休眠芽、成熟种子中。通常在衰老的器官或组织中的含量比在幼嫩部分中的多。它的作用在于抑制RNA和蛋白质的合成,从而抑制茎和侧芽生长,因此是一种生长抑制剂,有利于细胞体积增大。与赤霉素有拮抗作用。脱落酸通过促进离层的形成而促进叶柄的脱落,在于它能使细胞壁环境酸化、水解酶的活性增加,还能促进芽和种子休眠。种子中较高的脱落酸含量是种子休眠的主要原因。经层积处理的桃、红松等种子,芽次之,因其中的脱落酸含量减少而易于萌发,脱落酸也与叶片气孔的开闭有关。小麦叶片干旱时,保卫细胞内脱落酸含量增加,气孔就关闭,从而可减少蒸腾失水。根尖的向重力性运动与脱落酸的分布有关。 乙烯 早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。乙烯广泛存在于植物的各种组织、器官中,是由蛋氨酸在供氧充足的条件下转化而成的。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,在高等植物体内,并使细胞膜的透性增加, 加速呼吸作用。因而果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。乙烯还可使瓜类植物雌花增多,在植物中,促进橡胶树、漆树等排出乳汁。乙烯是气体,在田间应用不方便。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。 其他植物激素 主要有油菜素甾醇、水杨酸、茉莉酸等,目前比较公认的第六大类植物激素是油菜素甾醇(Brassinosteroid)。油菜素甾醇是甾体类激素,与动物甾体激素的作用机理不同。其具有促进细胞伸长和细胞分裂、促进维管分化、促进花粉管伸长而保持雄性育性、加速组织衰老、促进根的横向发育、顶端优势的维持、促进种子萌发等生理作用。而目前油菜素甾醇的信号转导途径也是目前研究的前沿和热点之一。 植物生长抑制素 它能使茎或枝条的细胞分裂和伸长速度减慢,抑制植株及枝条加长生长。主要有以下几种: b9:又叫必久,b995,阿拉,有抑制生长,促进花芽分化,提高抗寒能力,减少生理病害等作用。 矮壮素(ccc):又叫三西,碌化碌代胆碱。纯品为白色结晶,易溶于水,是人工合成的生长延缓剂。它抑制伸长,但 不抑 制细胞分裂,使植株变矮,茎杆变粗,节间变短,叶色深绿 。 脱落酸(aba):是植物体内存在的一种天然抑制剂,广泛存在于植物器官组织中。在将要脱落和休眠的组织器官中含量更高,它与生长素,赤霉素,细胞分裂素的作用是对抗的。它有抑制萌芽和枝条生长提早结束生长的,增强抗寒能力及延长种子休眠等作用。 青鲜素(mh):又叫抑芽丹,纯品为白色结晶,微溶于水。它有抑制细胞分裂和伸长提早结束生长,促进枝条成熟,提高抗寒能力等作用。 整性素: 又叫形态素,抑制生长,对抑制发芽作用更为明显,可使植株矮化,破坏顶端优势,促进花芽分化,促进离层形成,抑制植物体内赤霉素的合成等。 植物激素对生长发育和生理过程的调节作用,往往不是某一种植物激素的单独效果。能传到茎的伸长区引起弯曲。由于植物体内各种内源激素间可以发生增效或拮抗作用,只有各种激素的协调配合,才能保证植物的正常生长发育。