cpu算力gpu
① 相同功耗的前提下,cpu和gpu哪个算力更强
也就是比性能/功耗呗。比这个,gpu远胜cpu。当初正是因为cpu要把大量功耗和晶体管花在控制电路和cache上,gpu才会被做成独立芯片,并进一步有gpgpu。
② CPU和GPU是什么关系
因为设计的目标不同,当今的CPU和GPU功能上有本质的不同。作为通用处理器的CPU,顾名思义,它是设计用来处理通用任务的处理、加工、运算以及系统核心控制等等的。CPU中包含的最基本部件有算术逻辑单元和控制单元,CPU的微架构是为高效率处理数据相关性不大的计算类、复杂繁琐的非计算类的等等百花八门的工作而优化的,在处理日常繁复的任务中应付自如。 计算机的“灵魂”——操作系统,以及几乎100%的系统软件都主要仰仗CPU来顺利运行。CPU面对的算术、逻辑运算以及控制处理是非常繁琐和复杂的,面对处理的数据和信息量不仅数量多而是种类多。CPU运算和控制多面手的这种设计,让它在计算机中得心应手,位置不可动摇。GPU设计的宗旨是实现图形加速,现在最主要的是实现3D 图形加速,因此它的设计基本上是为3D图形加速的相关运算来优化的,如z-buffering 消隐,纹理映射(texture mapping),图形的坐标位置变换与光照计算(transforming & lighting)等等。这类计算的对象都是针对大量平行数据的,运算的数据量大,但是运算的类型却并不复杂,大多类似和雷同,计算性强但是逻辑性不强,如矩阵运算就是图形运算的典型特性。GPU在图形计算方面的一些特长在是今天的CPU无法比拟的,当然将来融合了GPU的CPU就另当别论了。相比CPU的通用运算和复杂逻辑处理,GPU要想代替CPU来运行操作系统和系统软件,是不是有点“越俎代庖”的艺术夸张了。当然,只有一种可能,就是GPU做成了CPU,加入了大量CPU核心设计的GPU。不过,这样的GPU还叫GPU吗?在主流市场,将来把GPU集成到CPU中是大势所趋,对于高端市场——如高端3D游戏应用,CPU + 独立GPU的并存方案依然会延续很长时间。GPU中强大的平行数据的并行计算能力,特别是在3D、浮点运算方面,在没有图形运算任务的时候,如果可以开发出来支持CPU在科学计算方面的应用,当然是件好事。
③ cpu与gpu的关系
GPU这几年的声势鹊起,除了原本的图形运算外,其他平行运算,绘图厂商也戮力开拓平行运算的应用领域, GPU在平行运算的优势,补足了CPU的不足,在未来的PC系统中,GPU与CPU将会紧密合作各司其职,不过两者的分工比例,GPU将会逐渐增加。
技术与需求向来是互为影响的两端,这类循环在IT产业尤其明显,在影音领域也是一样,早期硬体技术不足,所能呈现出来的影音效果有限,这时影像数据以CPU(Central Processing Unit;中央处理器)进行运算已经足够。随著IT技术的全面发展,影音档案解析度愈来愈高,CPU已不胜负荷,绘图厂商开始推动GPU(Graphic Processing Unit;图形处理器)概念,1999年NVIDIA推出业界GeForce 256,GPU正式鸣枪起跑,时至今日,GPU在IT产业已然生根,成为影像运算处理的重要核心。
GPU与CPU相同,都是拥有运算能力的晶片,比较两者,CPU可说是泛用型晶片,负责各种指令数值的运算、执行;GPU则是专用型,以图形数值运算为主。
④ cpu和GPU有什么区别。
CPU和GPU主要区别:
1、CPU是电脑的中央处理器。
2、GPU是电脑的图形处理器。
3、CPU是一块超大规模的集成电路,其中包含ALU算术逻辑运算单元、Cache高速缓冲存储器以及Bus总线。
4、CPU是一台计算机的控制和运算核心,它的主要功能便是解释计算机发出的指令以及处理电脑软件中的大数据。
5、GPU是图像处理器的缩写,它是一种专门为PC或者嵌入式设备进行图像运算工作的微处理器。
6、GPU的工作与上面说过的CPU类似,但又不完全像是,它是专为执行复杂的数学和几何计算而生的,而这游戏对这方面的要求很高,因此不少游戏玩家也对GPU有着很深的感情。
所以,CPU和GPU是两个完全不一样的东西,他们只是名字听起来差不多。
(4)cpu算力gpu扩展阅读:
CPU和GPU因为最初用来处理的任务就不同,所以设计上有不小的区别,而某些任务和GPU最初用来解决的问题比较相似,所以用GPU来算了,GPU的运算速度取决于雇了多少小学生,CPU的运算速度取决于请了多么厉害的教授,教授处理复杂任务的能力是碾压小学生的,但是对于没那么复杂的任务,还是顶不住人多。
当然现在的GPU也能做一些稍微复杂的工作了,相当于升级成初中生高中生的水平,但还需要CPU来把数据喂到嘴边才能开始干活,究竟还是靠CPU来管的。
⑤ 电脑中的CPU和GPU是什么意思
CPU :中央处理器,是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心( Control Unit)。它的功能主要是解释计算机指令以及处理计算机软件中的数据。
GPU:图形处理器,又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。
CPU和GPU它们分别针对了两种不同的应用场景
1、CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。
2、GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。
(5)cpu算力gpu扩展阅读
CPU和GPU应用的方向
1、CPU所擅长的像操作系统这一类应用,需要快速响应实时信息,需要针对延迟优化,所以晶体管数量和能耗都需要用在分支预测、乱序执行、低延迟缓存等控制部分。
2、GPU适合对于具有极高的可预测性和大量相似的运算以及高延迟、高吞吐的架构运算。
⑥ cpu和gpu的区别有哪些
CPU即中央处理器,GPU即图形处理器。其次,要解释两者的区别,要先明白两者的相同之处:两者都有总线和外界联系,有自己的缓存体系,以及数字和逻辑运算单元。两者都为了完成计算任务而设计。
CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。
两者的区别在于存在于片内的缓存体系和数字逻辑运算单元的结构差异:CPU虽然有多核,但总数没有超过两位数,每个核都有足够大的缓存和足够多的数字和逻辑运算单元,并辅助有很多加速分支判断甚至更复杂的逻辑判断的硬件;GPU的核数远超CPU,被称为众核(NVIDIA Fermi有512个核)。每个核拥有的缓存大小相对小,数字逻辑运算单元也少而简单(GPU初始时在浮点计算上一直弱于CPU)。从结果上导致CPU擅长处理具有复杂计算步骤和复杂数据依赖的计算任务,如分布式计算,数据压缩,人工智能,物理模拟,以及其他很多很多计算任务等。GPU由于历史原因,是为了视频游戏而产生的(至今其主要驱动力还是不断增长的视频游戏市场),在三维游戏中常常出现的一类操作是对海量数据进行相同的操作,如:对每一个顶点进行同样的坐标变换,对每一个顶点按照同样的光照模型计算颜色值。GPU的众核架构非常适合把同样的指令流并行发送到众核上,采用不同的输入数据执行。在2003-2004年左右,图形学之外的领域专家开始注意到GPU与众不同的计算能力,开始尝试把GPU用于通用计算(即GPGPU)。之后NVIDIA发布了CUDA,AMD和Apple等公司也发布了OpenCL,GPU开始在通用计算领域得到广泛应用,包括:数值分析,海量数据处理(排序,Map-Rece等),金融分析等等。
简而言之,当程序员为CPU编写程序时,他们倾向于利用复杂的逻辑结构优化算法从而减少计算任务的运行时间,即Latency。当程序员为GPU编写程序时,则利用其处理海量数据的优势,通过提高总的数据吞吐量(Throughput)来掩盖Lantency。目前,CPU和GPU的区别正在逐渐缩小,因为GPU也在处理不规则任务和线程间通信方面有了长足的进步。另外,功耗问题对于GPU比CPU更严重。
总的来讲,GPU和CPU的区别是个很大的话题,甚至可以花一个学期用32个学时十几次讲座来讲,所以如果提问者有更具体的问题,可以进一步提出。我会在我的知识范围内尝试回答。
⑦ gpu和cpu的区别是什么
gpu和cpu的区别:
1、作用不同:CPU是指中央处理器,他的作用偏向于调度、协调、管理,当然也有一定的计算能力。GPU是指图像处理器,他的作用主要在图像处理及大型矩阵运算方面,比如学习算法等等。
2、结构不同:CPU的结构可以大致分为运算逻辑部件、寄存器部件和控制部件等。GPU,是一块高度集成的芯片,其中包含了图形处理所必须的所有元件
3、CPU是主动运行的,从手机开启开始就一直在运行,在熄屏状态CPU也在运行。而GPU是被动运行的,在CPU指派了任务之后才会开始工作,任务完成后又将沉寂等待下一个任务。
(7)cpu算力gpu扩展阅读
应用
目前智能手机屏幕越来越大,系统越来越华丽,游戏特效越来越眩目,传统手机纯CPU处理的方式已经完全不能满足现今智能手机发展的需要了。
以前的智能机,其实都是不带显示核心的,所有的软件、游戏都是由CPU进行处理,呈现在屏幕上。但是CPU的图形处理能力很低很低,这也导致了传统的智能手机玩稍微大一点的游戏往往力不从心,大型3D游戏更是成为了奢望。
随着近几年智能机的高速发展,3D加速芯片的引入为智能机的娱乐性注入了强大的生命力。有了3D加速芯片,我们可以流畅地运行各种3D游戏和3D应用程序,体验到前所未有的感觉。
早期的3D加速芯片功能比较单一,性能也比较低,仅仅只为3D程序提供一定的辅助处理作用。而随着科技的发展,现在的3D加速芯片早已演化成真正意义上的GPU(Graphic Processing Unit,图形处理器),已经不只是传统的3D加速器。
GPU不仅仅是负责必要的3D处理,准确地说,它将所有图形显示功能从CPU那里都接管了过来,并且还提供了视频播放、视频录制和照相时的辅助处理,使得CPU被大大解放,可以专心地处理纯指令,而不再需要去负责繁重的图形处理任务了。
系统的3D性能得到极大的提升。所以,手机GPU的诞生,是移动市场的一次大革命。
⑧ CPU跟GPU是怎么协调的,
CPU和GPU在今天计算机中的作用和位置(作者:赵军)
CPU的作用: CPU 作为一台计算机的核心,它的作用被证明是无法替代的,过去是这样,今天依然是这样,将来应该还是这样,只不过可能被增加和赋予了更多更复杂的功能。
为什么CPU能够胜任计算机的核心,应付自如地控制一台复杂而精密的电脑系统 ?为什么CPU可以当之无愧地被称为电脑之“脑”而不是其他部件?这是因为CPU主要是面向执行操作系统、系统软件、调度和运行各式各样应用程序以及协调和控制整个计算机系统而设计的。CPU具有通用性的特点,也就是“全才”或者“通才”,什么都要会,当然这并不表示CPU每项任务都具有顶尖水平。
集成了百万计,千万计,甚至数亿计晶体管的CPU芯片,除了具有计算能力的电路和结构,还拥有控制和指挥其他硬件电路相配合的中央控制器,现代CPU还拥有更多具有“思维”能力的电路和结构,如逻辑判断,推测执行,预测执行等等。只有具有了这些特质,CPU才可能胜任电脑之“脑”的工作。
那么CPU靠什么来“思维、指挥和控制”呢?答案是指令集。指令集是CPU能够处理的全部指令的集合,没有指令集的芯片不可能被称为是CPU,指令集可是说是CPU的思维语言,是CPU的“智能属性”,也是它有别于其他芯片的根本属性。类似于人脑,任何人的思维过程都有语言的参与,中国人用中文思考,美国人用英文思考,如果习惯于讲方言,人们甚至用方言思考,人们在本能或者下意识状况下都是用自己最熟悉的语言思考。指令集就是电脑之脑CPU的语言,CPU就是用指令集来“思考”。
大家所熟悉的x86指令集就是我们今天大多数人使用的CPU的语言,x86指令集是由英特尔公司发明、开发并不断增强和完善的。所有英特尔架构的CPU和兼容CPU都采用x86指令集。任何程序不管采用什么高级程序设计语言编写的,都需要通过高级语言编译程序或者解释程序先翻译成 x86指令才可以被CPU执行。
如C语言,C++语言,Pascal语言等等高级程序语言都是供编程人员使用的,人们可以把自己的“思维和指令”通过高级程序设计语言表达出来,通过编译程序或者解释程序转换成CPU可以明白的指令,CPU就可以遵照人们的“思维和指令”一丝不苟、不折不扣地执行。其实编译程序和解释程序也是由CPU来执行的。
有了指令系统,CPU就可以通过它来控制、指挥、协调和调度整个计算机系统的各个子系统,让它们相互配合、有条不紊的完成各种各样的任务。
GPU的作用:除了CPU(中央处理单元,也叫中央处理器),计算机系统中还有众多的PU——处理单元,统称xPU。由于它们不具有CPU的通用性,而具有专用性,习惯上它们都叫控制器或芯片。如内存控制器,中断控制器,以太网网卡芯片,USB控制器等等,虽然这种叫法不常见,但是我们依然可以把它们也叫成: Memory PU —— 内存处理单元 Interrupt PU —— 中断处理单元 Ethernet PU —— 以太网处理单元 USB-PU —— USB 处理单元
所以现在图形计算能力比较强的图形芯片被称为GPU,即“图形处理单元”就不足为奇了。GPU具有专用性的特点,擅长图形计算和处理。
GPU的前身就是显示卡的主芯片。显示卡和显示器等等组成计算机系统中的图形子系统。最早的显示卡功能比较简单,所以也叫显示器适配 卡(简称显卡),它是连接主机与显示器的接口卡。现在的显卡都是3D图形加速卡,主芯片也被冠以GPU的新名字了。
今天显卡的主要作用并没有发生根本的变化,其作用还是将CPU的输出信息和指令转换成字符、图形和颜色等信息,传送到显示器上显示。不过,今天的显卡在执行CPU发出的图形指令时具有更强的执行能力和图形计算能力。下面我就来给大家解释一下。
早期显卡的图形处理能力非常弱,基本上只是起到传递的作用,CPU如果想在图形方式下画个简单的图形,如正方形,园等线条图形,都需要把组成图形的每个点需要显示的位置、点的大小、颜色都一一告诉显卡,显卡然后按部就班在显示器上画出来。
随着操作系统和应用程序对复杂且高质量的图形要求越来越高,CPU专职来做这些图形处理工作就力不从心了,也得不偿失,而且也会造成CPU的效率低下。因为CPU的设计是用来处理系统任务和程序调度的,不是为图形处理优化的。
于是图形加速功能就被赋予到新的显卡当中(现在主芯片可以叫GPU了),支持2D图形加速的显卡出现了,它大大缓解了CPU的图形处理压力。有了2D图形加速功能的显卡,CPU如果想画二维图形,现在只需要发个指令给显卡,如“在坐标位置(x, y) 画个长和宽为a * b大小的长方形”,显卡的图形加速器(GPU)就可以迅速在显示器上指定位置画出大小相符的图形,画完后GPU就通知CPU,“我画完了”,然后等待CPU发出下一条图形指令。
现在的GPU除了具有2D 图形加速功能,更多的是在不断加强3D图形加速的能力。 同样的道理,GPU也把繁复的3D图形处理的工作从CPU分担过来,CPU现在只要发个指令,如“画个圆球”,给GPU就可以了,GPU完成三维图形的绘制,然后通知CPU完成的情况,等待下一条指令。
有了图形加速器,CPU就从这类图形处理的任务中解放出来,可以执行其他更多的系统任务,这样就提高计算机的整体性能。
不过,并不是所有和3D图形处理相关的运算一下子都被GPU接管过去,“任务”的交接也是逐步进行的,对于GPU不能实现或者尚未实现的计算还是“有劳”CPU来完成。例如,图形的几何坐标变化和光照模型的计算(T&L)在主流的GPU都实现了,以前都是由CPU来完成的。对于当前一些集成在芯片组中的GPU,如果没有T&L的加速,仍然用“软件”方式实现T&L计算——就是CPU来完成。另外,3D图形的着色计算也逐渐转移从CPU转移到GPU中,如顶点着色和像素着色 (Vertex Shader & Pixel Shader)。
从上面的简单介绍我们可以看出,CPU和GPU工作的重点不一样,CPU担当的责任要大的多,面对的是整个计算机系统,要照顾到方方面面,除了要保证整个系统高速运行,还要确保系统稳定运行。任何错误都可能会是致命的,所以CPU很难做到“专心致志”。它会经常被打断,停下手头的工作,去处理正常的或者非正常的紧急任务, 否则系统就会崩溃。相比CPU而言,GPU的责任就要轻的多,图形计算如果出了错,并不会影响程序本身的运行,最多是屏幕上显示的图形错位了或者是颜色乱了等等,而且GPU不会为图形程序运行的结果负责。
没有GPU加速2D和3D的年代,CPU包揽了和图形计算与加速相关的所有活,“活”的不轻松,今天这些工作中的很多都由GPU来代劳了,CPU被解放出来把宝贵的CPU运算和控制资源更多的用于执行系统层面的核心任务以及其他非GPU类的应用上来。GPU相当于CPU的一位具有图形计算和处理专长的高级助理。
对于非图形方面的任务,CPU需要的是其他专长的高级助理。GPU今天在计算机系统中的贡献主要是高端3D游戏的三维图形方面的,对于其他更广泛的应用,它是无能为力的。如系统安全方面的加密解密,多媒体数字内容的加工和处理,系统的虚拟化,游戏中的人工智能等等举不胜举。
将来有机会,我会具体介绍一些“CPU和GPU擅长和不擅长的各个方面”。