Position: Home page » Pool » Application of ore washing machine

Application of ore washing machine

Publish: 2021-03-29 20:01:09
1. The generator bar is the stator coil. Because it is thick, it can't be wound like the general coil, so it is made into a bar form, which is embedded in the stator core slot ring field installation, and then welded.
2.

Ore washing and screening
ore washing is the separation of ore and slime by hydraulic washing or additional mechanical scrubbing. Commonly used equipment are washing screen, cylinder washing machine and trough washing machine
ore washing is often accompanied by screening, such as washing directly on the vibrating screen or sending the ore (clean ore) from the ore washing machine to the vibrating screen for screening. Screening can be used as an independent operation to separate procts with different particle sizes and grades for different purposes< Gravity separation
at present, gravity separation is only used to separate manganese ores with simple structure and coarse grain size, especially for manganese oxide ores with high density. The common methods are dense medium dressing, jigging dressing and shaking table dressing
at present, the technological process of manganese oxide ore treatment in China is to crush the ore to 6-0 mm or 10-0 mm, then divide it into groups, carry out jigging in coarse grade, and send it to shaker in fine grade. Most of the equipments are Hartz type reciprocating jig and 6-s type shaker
3. High intensity magnetic separation
manganese minerals belong to weak magnetic minerals [specific magnetic coefficient X = 10] × 10-6~600 × It can be recovered in the high intensity magnetic separator with magnetic field intensity ho = 800-1600ka / M (10000-20000oe), and the grade of manganese can be increased by 4% - 10%
because of its simple operation, easy control and strong adaptability, magnetic separation can be used for the separation of all kinds of manganese ores, and has been playing a leading role in manganese ore dressing in recent years. Various new types of high intensity magnetic machines for coarse, medium and fine particles have been developed. At present, the most common application of domestic manganese ore is medium grain high intensity magnetic separator, coarse and fine grain high intensity magnetic separators are also graally applied, and fine grain high intensity magnetic separators are still in the experimental stage< At present, the newly built and rebuilt gravity magnetic separation plants in China include Liancheng, Fujian, Longtou, Jingxi and Xialei manganese mines in Guangxi. For example, Liancheng Manganese Mine gravity magnetic separation plant mainly deals with leaching manganese oxide ore, and uses am-30 jig to treat 30-3mm washed ore, which can obtain high-quality manganese concentrate with more than 40% manganese. After manual separation, it can be used as raw material for battery manganese powder. The grade of manganese concentrate should be increased by 24% ~ 25% to 36% ~ 40% after jigging tailings and washed ore less than 3mm are grinded to less than 1m and separated by high intensity magnetic separator
5. High intensity magnetic flotation
at present, only Zunyi Manganese ore is used in high intensity magnetic flotation process. The ore is a low manganese, low phosphorus and high iron manganese ore mainly composed of manganese carbonate ore
according to the instrial test, the grinding process is rod mill ball mill, and the equipment scale is 100% φ 2100mm × 3000mm wet grinding machine. Shp-2000 high intensity magnetic separator is used for high intensity magnetic separation, and CHF air flotation machine is mainly used for flotation. After many years of proction test, the performance is good, it is very suitable for Zunyi Manganese ore dressing application. The successful test of high intensity magnetic flotation process and its application in proction indicate that the deep separation of manganese ore in China has made a big step forward
6. Pyrometallurgical enrichment
pyrometallurgical enrichment of manganese ore is a kind of separation method for treating refractory poor manganese ore with high phosphorus and high iron, which is generally called manganese rich slag method. Its essence is a high temperature separation method of selective separation of manganese, phosphorus and iron by controlling the rection temperature of manganese, phosphorus and iron in blast furnace or electric furnace
pyrometallurgical enrichment has been used for nearly 40 years in China. In 1959, experiments were carried out on a 9.4m3 small blast furnace in Zijiang iron works, Shaoyang, Hunan Province, and preliminary results were obtained. Then, in 1962, Shanghai ferroalloy plant and Shijingshan iron and steel plant smelted manganese rich slag in blast furnace respectively. In 1975, the blast furnace of Manaoshan manganese mine in Hunan Province not only smelted manganese rich slag, but also recovered lead, silver and pig iron (commonly known as semi steel) from the bottom of the furnace, providing a basis for comprehensive utilization. Since the 1980s, the proction of manganese rich slag has developed rapidly, and the proction of manganese rich slag has been developed successively in Hunan, Hubei, Guangdong, Guangxi, Jiangxi, Liaoning, Jilin and other places
pyrometallurgical enrichment process is simple and stable, which can effectively separate iron and phosphorus from ore, and obtain manganese rich, low iron and low phosphorus manganese rich slag, which generally contains 35% - 45% Mn, Mn / Fe? 12~38,P/Mn< 002, is a kind of high-quality manganese alloy raw materials, but also the general natural rich manganese ore is difficult to achieve the above three indicators of artificial rich ore. Therefore, pyrometallurgical enrichment is a promising method for refractory mineral processing with high phosphorus, high iron and low manganese in China< There are a lot of researches on chemical separation of manganese in China, among which there are many experiments, and the most promising ones are bisulfite method, black manganese ore method and bacterial leaching method. At present, it has not been put into instrial proction< At present, sintering method is widely used in China. Only when the manganese concentrate or fine ore is very fine and - 200 mesh is more than 80% and no resial carbon is allowed in the proct, pelletizing or briquetting is adopted
in the early 1950s, the sintering pot and local method were used to sinter manganese ore powder in China. With the development of iron and steel proction, indigenous sintering can not meet the requirements, so one after another to build sintering machine or other efficient briquetting equipment. In 1970, China's first fine manganese ore sintering machine (18m2) was built and put into operation in Xiangtan Manganese Mine. In 1972, Jiangxi Xinyu Iron and steel plant built two 24m2 sintering machines. In 1977, China's first manganese concentrate pelletizing equipment 80m2 belt roaster was built and put into operation in Zunyi Manganese Mine. In the 1980s, Xiangtan Manganese Mine, Bayi manganese mine and Xiangxiang ferroalloy plant have successively built more than 18-24m2 sintering machines, and Shanghai ferroalloy plant has imported ball pressing equipment as fine ore briquetting
the development of briquetting technology has brought greater economic benefits to the smelting of manganese alloys. Taking Jiangxi Xinyu Iron and steel works as an example, the technical indexes of blast furnace smelting can be greatly improved by increasing the clinker ratio and replacing hot sinter with cold sinter< (3) smelting of manganese ore
manganese ore mainly includes high carbon ferromanganese, medium and low carbon ferromanganese, manganese silicon alloy and metallic manganese, which are commonly known as
high carbon ferromanganese. Blast furnace is mainly used in China. In the 1950s, there was no special factory to proce blast furnace ferromanganese (high carbon ferromanganese), but some iron and steel plants smelted and sold by themselves, and the proction volume was very small. Since 1958, Xiangtan Manganese Mine has built 6.5m3 and 33m3 blast furnaces for smelting ferromanganese. After 1960s, Xinyu, Yangquan, No.3 plant of Masteel and No.4 plant of Chongqing Iron and Steel Co., Ltd. have transformed into blast furnace ferromanganese. In 1980s, the development of blast furnace ferromanganese is faster. The output of ferromanganese increased from 200000 tons in 1981 to 400000 tons in 1995
the procts proced by electric furnace include carbon ferromanganese, medium and low carbon ferromanganese, manganese silicon alloy and manganese metal. Jilin Ferroalloy Plant was the first one to proce EAF in China. It was built and put into operation in 1956. The maximum capacity of EAF is 12500kVA; In the early 1960s, Hunan, Zunyi and Shanghai ferroalloy plants were built and put into operation one after another. These plants can proce carbon ferromanganese, medium and low carbon ferromanganese and manganese silicon alloys; Zunyi ferroalloy plant also uses silicothermic method to proce manganese metal. According to the Ministry of metallurgical instry's main technical and economic indicators of national ferroalloy in 1995, 11 of the 15 major ferroalloy plants in China proced manganese series alloy procts in 1994. Through continuous development and expansion, these key ferroalloy plants have made important contributions to the proction of iron and steel instry
since the 1980s, local small and medium-sized ferroalloy enterprises have developed rapidly. According to statistics, the proportion of ferroalloy proction of local small and medium-sized enterprises in the whole country increased from 32.39% in 1980 to 54.01% in 1989, and reached 69.85% in 1996, with more than 1000 enterprises. Most of these small and medium-sized enterprises use 1800kVA small electric furnace, with backward equipment and poor proct quality
the equipment used in the proction of ferromanganese and silicomanganese alloy is basically the same, both of them are submerged arc furnace, and the transformer capacity of the furnace is generally 1800-12500kva. Hunan and Zunyi ferroalloy plants have imported 3000kva and 31500kVA Mn Si electric furnaces from Germany respectively, which have been put into operation
flux process is generally used in the proction of high carbon ferromanganese in electric furnace in China. The proction of manganese silicon alloy generally adopts slag method
the proction of medium and low carbon ferromanganese mainly includes electric furnace method, oxygen blowing method and shaking ladle method. Shaking ladle process includes direct proction of medium low carbon ferromanganese in shaking ladle and shaking ladle electric furnace process. The process of shaking ladle electric furnace is advanced, the proction is stable, and the technical and economic effect is good< There are pyrometallurgical and Hydrometallurgical methods for manganese proction. Pyrometallurgy of manganese began in 1959 in China. It was first successfully trial proced by Zunyi ferroalloy plant with silicothermic method, and has been exclusively proced up to now. The first step is to refine manganese ore into manganese rich slag; In the second step, manganese rich slag is used to refine high silicon silicon manganese alloy. In the third step, manganese rich slag is used as raw material, high silicon silicon manganese is used as recing agent and lime is used as flux. Hydrometallurgy is mainly electrolytic method, often called electrolytic manganese metal. In 1956, the first electrolytic manganese plant was built in Shanghai 901 plant. By the early 1990s, there were more than 50 large and small electrolytic manganese plants, with an annual total proction capacity of more than 40000 tons. The proction process is roughly divided into three proction processes: preparation of manganese sulfate solution, electrolysis and post-treatment. After treatment is the completion of electrolysis, including proct purification, washing, drying, stripping, packaging and other series of operations. Finally, the qualified EMM procts with Mn content of 99.70% ~ 99.95% were obtained

3. Consultation reference for manganese ore processing equipment:
http://hi..com/_% D0% Fe% EC% c7zo11 / blog / item / 9b3bc8d05913f82be4dd3b69. HTML

ore washing is the separation of ore and mud by hydraulic washing or additional mechanical scrubbing. Commonly used equipment are washing screen, cylinder washing machine and trough washing machine
ore washing is often accompanied by screening, such as washing directly on the vibrating screen or sending the ore (clean ore) from the ore washing machine to the vibrating screen for screening. Screening can be used as an independent operation to separate procts with different particle sizes and grades for different purposes. Manganese ore 2. Gravity separation
at present, gravity separation is only used to separate manganese ore with simple structure and coarse particle size, especially for manganese oxide ore with high density. The common methods are dense medium dressing, jigging dressing and shaking table dressing
at present, the technological process of manganese oxide ore treatment in China is to crush the ore to 6-0 mm or 10-0 mm, then divide it into groups, carry out jigging in coarse grade, and send it to shaker in fine grade. Most of the equipments are Hartz type reciprocating jig and 6-s type shaker.
4.

According to their different structures and working reasons, stone washer can be divided into bucket wheel type stone washer and screw type stone washer and two types:

Qingzhou Rio Tinto bucket wheel type stone washer has a novel sealing structure and reliable transmission device, with reasonable structure, large handling capacity, low power consumption, high cleanliness and less sand loss in the process of sand washing. The transmission part of the stone washing machine is isolated from water and sand, and the failure rate is much lower than that of the common stone washing machines in the current market. It is an excellent choice for upgrading the domestic stone washing instry

Qingzhou Rio Tinto

the spiral stone washer has the characteristics of simple structure, stable operation, clean sand washing and high output. It is widely used in construction sites, sand and gravel yards, glass factories, power stations, concrete pre stone making, electrical and other departments

5.

Hello, the thermal centrifuge is mainly used to increase the proction of uranium ore for the development of nuclear power
first of all, let's talk about the raw materials that are put in, the ore is powdered. After powdering, they are put into the ore washing machine, and the raw materials from the ore washing machine can be put into the thermal centrifuge
when the thermal centrifuge works, it depends on both electric energy and thermal energy. Needless to say, the electric energy can be connected to the generator. If it's thermal energy, make a button, put it on the top of the thermal centrifuge and turn it on to heat it

the thermal centrifuge needs a lot of power. You can connect the centrifuge and MFSU together. After connecting the power supply, put the mineral slag you want to centrifuge in, wait for the centrifuge to heat up (about 2 minutes), and then start centrifuging. If you interrupt the centrifugation, the heat will slow down. If you want to centrifuge again, you need to wait for the heat

6.

Manganese ore and its compounds are used in various fields of national economy, among which iron and steel instry is the most important field, accounting for 90% ~ 95% of manganese consumption. It is mainly used as deoxidizer and desulfurizer in the process of iron making and steel making, as well as to make alloys

the remaining 10% - 5% of manganese is used in other instrial fields, such as chemical instry (manufacturing various manganese salts), light instry (for batteries, matches, printing paints, soaps, etc.), building materials instry (colorants and fading agents for glass and ceramics), national defense instry, electronic instry, environmental protection, agriculture and animal husbandry, etc

Manganese has a very important strategic position in the national economy

Extended data:

< H2 >

the vast majority of manganese ore in China belongs to lean ore and must be beneficiated. However, because most manganese ores are fine or fine disseminated, and there are a considerable number of high phosphorus ores, high iron ores and symbiotic (associated) beneficial metals, it is very difficult to process

the common beneficiation methods of manganese ore in China are mechanical beneficiation (including ore washing, screening, gravity separation, high intensity magnetic separation and flotation), pyrometallurgical enrichment and chemical beneficiation

ore washing is often accompanied by screening, such as washing directly on the vibrating screen or sending the ore (clean ore) from the ore washing machine to the vibrating screen for screening. Screening can be used as an independent operation to separate procts with different particle sizes and grades for different purposes

7.

The vast majority of manganese ore in China belongs to lean ore, which must be treated by mineral processing. However, because most manganese ores are fine or fine disseminated, and there are a considerable number of high phosphorus ores, high iron ores and symbiotic (associated) beneficial metals, it is very difficult to process. The commonly used beneficiation methods of manganese ore in China are mechanical separation (including ore washing, screening, gravity separation, high intensity magnetic separation and flotation), pyrometallurgical enrichment and chemical beneficiation
1. Ore washing and screening
ore washing uses hydraulic washing or additional mechanical scrubbing to separate ore from slime. Commonly used equipment are washing screen, cylinder washing machine and trough washing machine
ore washing is often accompanied by screening, such as washing directly on the vibrating screen or sending the ore (clean ore) from the ore washing machine to the vibrating screen for screening. Screening can be used as an independent operation to separate procts with different particle sizes and grades for different purposes
2. Gravity separation
gravity separation is only used to separate manganese ores with simple structure and coarse grain size, especially for manganese oxide ores with high density. The common methods are dense medium dressing, jigging dressing and shaking table dressing
at present, the technological process of manganese oxide ore treatment in China is to crush the ore to 6-0 mm or 10-0 mm, then divide it into groups, carry out jigging in coarse grade, and send it to shaker in fine grade. Most of the equipments are Hartz type reciprocating jig and 6-s type shaker
3. High intensity magnetic separation
manganese minerals belong to weak magnetic minerals [specific magnetic coefficient X = 10] × 10-6~600 × It can be recovered in the high intensity magnetic separator with magnetic field intensity ho = 800-1600ka / M (10000-20000oe), and the grade of manganese can be increased by 4% - 10%
e to the simple operation, easy control and strong adaptability of magnetic separation, it can be used for the separation of various manganese ores, and it plays a leading role in the beneficiation of manganese ores. Various new types of high intensity magnetic machines for coarse, medium and fine particles have been developed. The most common application of manganese ore in China is medium grain high intensity magnetic separator, coarse and fine grain high intensity magnetic separators are also graally applied, and fine grain high intensity magnetic separators are still in the experimental stage< At present, the newly built and rebuilt gravity magnetic separation plants in China include Liancheng, Fujian, Longtou, Jingxi and Xialei manganese mines in Guangxi. For example, Liancheng Manganese Mine gravity magnetic separation plant mainly deals with leaching manganese oxide ore, and uses am-30 jig to treat 30-3mm washed ore, which can obtain high-quality manganese concentrate with more than 40% manganese. After manual separation, it can be used as raw material for battery manganese powder. The grade of manganese concentrate should be increased by 24% ~ 25% to 36% ~ 40% after jigging tailings and washed ore less than 3mm are grinded to less than 1m and separated by high intensity magnetic separator
5. High intensity magnetic flotation
only Zunyi Manganese ore is used. The ore is a low manganese, low phosphorus and high iron manganese ore mainly composed of manganese carbonate ore
according to the instrial test, the grinding process adopts rod mill ball mill stage grinding, and the equipment scale is 100% φ 2100mm × 3000mm wet grinding machine. Shp-2000 high intensity magnetic separator is used for high intensity magnetic separation, and CHF air flotation machine is mainly used for flotation. After many years of proction test, the performance is good, it is very suitable for Zunyi Manganese ore dressing application. The successful test of high intensity magnetic flotation process and its application in proction indicate that the deep separation of manganese ore in China has made a big step forward
6. Pyrometallurgical enrichment
pyrometallurgical enrichment of manganese ore is a kind of separation method for treating refractory poor manganese ore with high phosphorus and high iron, which is generally called manganese rich slag method. Its essence is a high temperature separation method of selective separation of manganese, phosphorus and iron by controlling the rection temperature of manganese, phosphorus and iron in blast furnace or electric furnace
pyrometallurgical enrichment has been used for nearly 40 years in China. In 1959, experiments were carried out on a 9.4m3 small blast furnace in Zijiang iron works, Shaoyang, Hunan Province, and preliminary results were obtained. Then, in 1962, Shanghai ferroalloy plant and Shijingshan iron and steel plant smelted manganese rich slag in blast furnace respectively. In 1975, the blast furnace of Manaoshan manganese mine in Hunan Province not only smelted manganese rich slag, but also recovered lead, silver and pig iron (commonly known as semi steel) from the bottom of the furnace, providing a basis for comprehensive utilization. Since the 1980s, the proction of manganese rich slag has developed rapidly, and the proction of manganese rich slag has been developed successively in Hunan, Hubei, Guangdong, Guangxi, Jiangxi, Liaoning, Jilin and other places
pyrometallurgical enrichment process is simple and stable, which can effectively separate iron and phosphorus from ore and obtain manganese rich, low iron and low phosphorus manganese rich slag, which generally contains 35% - 45% Mn, 12-38 Mn / Fe, P / Mn & lt; 002, is a kind of high-quality manganese alloy raw materials, but also the general natural rich manganese ore is difficult to achieve the above three indicators of artificial rich ore. Therefore, pyrometallurgical enrichment is a promising method for refractory mineral processing with high phosphorus, high iron and low manganese in China< There are a lot of researches on chemical separation of manganese in China, among which there are many experiments, and the most promising ones are bisulfite method, black manganese ore method and bacterial leaching method. At present, it has not been put into instrial proction

8. There are many kinds of crushers, and there are many differences in functions and applications. They are mainly divided into the following types. Customers should choose according to their own needs, and don't buy blindly, which will bring unnecessary losses to themselves
1. Jaw crusher
purpose: this series is widely used in mining, smelting, building materials, highway, railway, water conservancy, chemical instry and many other departments, crushing various materials with compressive strength less than 320 MPa. Jaw crusher is divided into two types: coarse crushing and fine crushing. The jaw crusher is mainly used for primary crushing of various materials such as mining, smelting, building materials, etc
2. Cone crusher
purpose: in metallurgical instry, building materials instry, road construction instry, chemical instry and silicic acid instry, it is suitable for crushing various ores and rocks with medium and above hardness. Deyi cone crusher has the characteristics of large crushing force, high efficiency, high handling capacity, low operation cost, convenient adjustment and economic use
3. Hammer crusher
purpose: it is suitable for crushing various medium hardness and brittle materials, such as coal, cement, Baiya, gypsum, alum, brick, tile, limestone, etc. The compressive strength of the material is not more than 100 MPa, and the humidity is not more than 15%. Deyi hammer crusher is mainly used for small-scale crushing< Purpose: all kinds of coarse, medium and fine materials (granite, limestone, concrete, etc.) are widely used in hydropower, highway, artificial aggregate, crushing and other instries. Impact crusher is mainly used for secondary crushing of materials in mineral processing, construction and other instries.
9. Hello, the thermal centrifuge is mainly used to increase the proction of uranium ore for the development of nuclear power
first of all, let's talk about the raw materials that are put in, the ore is powdered. After powdering, they are put into the ore washing machine, and the raw materials from the ore washing machine can be put into the thermal centrifuge
when the thermal centrifuge works, it depends on both electric energy and thermal energy. Needless to say, the electric energy can be connected to the generator. If it's thermal energy, make a button, put it on the top of the thermal centrifuge and turn it on to heat it
the thermal centrifuge needs a lot of power. You can connect the centrifuge and MFSU together. After connecting the power supply, put the mineral slag you want to centrifuge in, wait for the centrifuge to heat up (about 2 minutes), and then start centrifuging. If you interrupt the centrifugation, the heat will slow down. If you want to centrifuge again, you need to wait for the heat
10. Mineral properties: pumice, also known as light stone, is a light colored porous glassy rock. It is formed by the rapid escape and expansion of internal gas e to the sharp decrease of pressure ring magma eruption. According to the shape and size of the eruption, the name is different. From bean size to egg size is called volcanic ash, smaller than beans is called volcanic ash. Pumice is acidic volcanic rock with hardness of 6 and density less than LG / cm3, which can float on water surface; Good thermal insulation; It is porous and the walls are sharp. It has high chemical activity, strong adsorption and obvious hydraulic gelation property under the action of hydraulic activator. The chemical composition of pumice is unstable, with 501 accounting for 65% - 75%, al0i9% - 12%, Cao, MgO and Fe2O3 accounting for about 30%. Chemical composition of pumice (%): Japan Asama: SiO2 (62.67), Al2O3 (16.01), Fe2O3 (2.32), Cao (6.44), MgO (3.72), loss on ignition (0.89). The volcanic ash of leucite in Italy: SiO2 (46.0), Al2O3 (16.50), Fe2O3 (15.50), Cao (10.0), MgO (3.0), loss on ignition (5.0). Kedong County, Heilongjiang Province: SiO2 (51.63), Al2O3 (14.33), Fe2O3 (6.27), Cao (5.79), MgO (6.54). Mineral uses: pumice has many uses, mainly used as natural lightweight aggregate, thermal insulation materials, fillers, etc. The main uses of pumice and volcanic ash in China are as follows. Building materials: natural lightweight aggregate for concrete. Such as exterior wall panel, floor, roof panel; Roof insulation layer, heat insulation layer; Small hollow block; Heat resistant concrete; Cement active mixture material; Preparation of cement without clinker; Department of building decoration materials; Sound insulation materials. Chemical instry: grinding powder is used as filter agent, desiccant and catalyst, and molecular sieve as enzyme storage carrier in petrochemical instry. Plastics and fillers instry: optical glass advanced abrasive, plastic polishing agent, rubber fillers, hard plastic fillers, toothpaste, soap and other daily chemical fillers. Others: pesticide carrier, fertilizer control agent. The main uses of pumice and volcano abroad are as follows: building materials: light concrete, such as plastering, decorative board, filler, 2% lighter than ordinary mixed soil, 2% higher fire resistance; Block brick, building board, load-bearing components, hydraulic, thermal, bridge construction components; Railway ballast; Cement (with pumice as raw material). Grinding instry: glass and glasses abrasives, soft metal and plastic polishing agent, picture tube and fluorescent screen polishing agent, polishing metal before electroplating (silver, copper, furniture, musical instruments). Cleaning and rubbing wood, metal surface, stone. Filler: metal tableware cleaning agent, circuit board cleaning abrasive, soap, detergent powder for work clothes washing. Daily chemical: cosmetic materials, toothpaste, machine soap and cosmetics fillers. Petrochemical Instry: molecular sieve, fillers such as glue, asphalt, paper, paint, filter agent, pesticide carrier, ceramic glaze, enamel ingredients. Instead of light calcium carbonate as plastic filler. Thermal insulation materials: with pumice as the main raw material, mineral wool and its procts are made by high temperature melting, which are used for ceiling sound insulation. Mineral and ore types: e to the different temperature and pressure of volcanic eruption, the mineral composition and composition are very different. According to the composition, pumice deposits can be divided into basalt, rhyolite, andesite and trachyte deposits. China is rich in pumice resources. There are pumice minerals in the volcanic distribution areas from Heilongjiang Province in the north and Hainan Island in the south. Most of them are in the north with good quality and relatively new eruption age. Basaltic pumice is the main pumice resource in China, rhyolite pumice is only found in Chang Mountain area, andesitic rocks are rare, only found in Chang Mountain Tianchi. Instrial requirements: ore quality general requirements: bulk density & lt; 1g/cm3 Chemical composition, compressive strength, particle size distribution, water absorption and mud content. The proct quality requirements are shown in the table below. For example: Yuanchi zeolite deposit in Antu County, Jilin Province, the minimum minable thickness is 0.5m, the removal thickness of rock inclusion is more than 0.2m, and the stripping ratio is 0.5:1. In the Chifeng pumice deposit of Helong County, Jilin Province, the minimum minable thickness is 0.5 m, the thickness of stone inclusion is 0.2 m, and the stripping ratio is 0.5:1.0. Comprehensive utilization of mineral resources: comprehensive utilization of pumice in China: most of the existing pumice mining enterprises in China are township enterprises. It will be mined in three days. The processing method is extremely simple. The ore is usually broken to 20-40mm and sold according to particle size classification 1) Fushi mine in Antu County, Jilin Province has two mining areas: Yuanchi and Erhe, with an annual output of 2x10 ^ 4 m3. The processing principle is as follows: raw ore → washing → screening → drying → packaging. The main equipments are cage crusher, bulldozer, agitator washer and pulverizer. Procts and specifications: pumice particles, 0.5-1.0cm, 1-2cm; Pumice block, 3-5cm, 5-8cm, 8-12cm; The pumice is 0.043mm, 0.06mm and 0.09mm 2) Located in Kedong County, Heilongjiang Province, the volcanic ash mine was established in 1974. It was put into proction in 1976. The main proction of small hollow block. Comprehensive utilization of foreign pumice: the processing process and method of foreign pumice are relatively simple, usually according to the characteristics of resources, according to the size of grading sale. The processing flow of pumice for construction is as follows: raw ore separation → crushing → drying → screening or water floatation purification → proct classification. The processing process of instrial pumice powder is: raw ore crushing → drying → purification → wet grinding → micron grade procts. Comprehensive evaluation: pumice ash is a cheap natural gas
Hot content
Inn digger Publish: 2021-05-29 20:04:36 Views: 341
Purchase of virtual currency in trust contract dispute Publish: 2021-05-29 20:04:33 Views: 942
Blockchain trust machine Publish: 2021-05-29 20:04:26 Views: 720
Brief introduction of ant mine Publish: 2021-05-29 20:04:25 Views: 848
Will digital currency open in November Publish: 2021-05-29 19:56:16 Views: 861
Global digital currency asset exchange Publish: 2021-05-29 19:54:29 Views: 603
Mining chip machine S11 Publish: 2021-05-29 19:54:26 Views: 945
Ethereum algorithm Sha3 Publish: 2021-05-29 19:52:40 Views: 643
Talking about blockchain is not reliable Publish: 2021-05-29 19:52:26 Views: 754
Mining machine node query Publish: 2021-05-29 19:36:37 Views: 750