46位以太坊钱包地址
『壹』 从什么地方可以查阅到以太网帧格式中的“类型”字段是怎样分配的
RFC5342对以太网帧格式中的“类型”字段的更多取值有相应的规定,需要时可以查阅。
『贰』 以太帧中有7个字节的前导、1个字节的起始帧字节和4个字节的校验字节
一、 典型帧结构:Ethernet_II
Ethernet_II中所包含的字段:
前导码:包括同步码(用来使局域网中的所有节点同步,7字节长)和侦标志(帧的起始标志7,1字节)两部分;
目的地址:接收端的MAC地址,6字节长;
源地址:发送端的MAC地址,6字节长;
类型:数据包的类型(即上层协议的类型),2字节长;
数据:被封装的数据包,46-1500字节长;
校验码:错误检验,4字节长。
Ethernet_II的主要特点是通过类型域标识了封装在帧里的数据包所采用的协议,类型域是一个有效的指针,通过它,数据链路层就可以承载多个上层(网络层)协议。但是,Ethernet_II的缺点是没有标识帧长度的字段。
二、 原始的802.3
原始的802.3帧是早期的Novell NetWare网络的默认封装。它使用802.3的帧类型,但没有LLC域。同Ethernet_II的区别:将类型域改为长度域,解决了原先存在的问题。但是由于缺省了类型域,因此不能区分不同的上层协议。
三、802.2SAP/SNAP:
为了区别802.3数据帧中所封装的数据类型, IEEE引入了802.2SAP和SNAP的标准。它们工作在数据链路层的LLC(逻辑链路控制)子层。通过在802.3帧的数据字段中划分出被称为服务访问点(SAP)的新区域来解决识别上层协议的问题,这就是802.2SAP。LLC标准包括两个服务访问点,源服务访问点(SSAP)和目标服务访问点(DSAP)。每个SAP只有1字节长,而其中仅保留了6比特用于标识上层协议,所能标识的协议数有限。因此,又开发出另外一种解决方案,在802.2SAP的基础上又新添加了一个2字节长的类型域(同时将SAP的值置为AA),使其可以标识更多的上层协议类型,这就是802.2SNAP。
『叁』 什么是以太网为什么要叫做“以太”网
以太网简介:
以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802.3系列标准相类似。包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网。它们都符合IEEE802.3。
标准:
IEEE802.3规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准。如令牌环、FDDI和ARCNET。历经100M以太网在上世纪末的飞速发展后,千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
常见的802.3应用为:
10M: 10base-T (铜线UTP模式),
100M: 100base-TX (铜线UTP模式),
100base-FX(光纤线),
1000M: 1000base-T(铜线UTP模式)
以太网具有的一般特征概述如下:
共享媒体:所有网络设备依次使用同一通信媒体。
广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。
CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。
MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。
Ethernet 基本网络组成:
共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。
转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。
网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。
交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。
以太网协议:IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:
10 Mbps –10Base-TEthernet(802.3)
100 Mbps – Fast Ethernet(802.3u)
1000 Mbps – Gigabit Ethernet(802.3z))
10 Gigabit Ethernet – IEEE802.3ae
历史
以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年罗伯特·梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。1977年底,梅特卡夫和他的合作者获得了“具有冲突检测的多点数据通信系统”的专利。多点传输系统被称为CSMA/CD(带冲突检测的载波侦听多路访问),从此标志以太网的诞生。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多,英特尔,和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台,当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。
以太网插头:
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院 MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。
该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。
标准以太网:
开始以太网只有10Mbps的吞吐量,使用的是带有冲突检测的载波侦听多路访问(CSMA/CD,Carrier Sense Multiple Access/Collision Detection)的访问控制方法。这种早期的10Mbps以太网称之为标准以太网,以太网可以使用粗同轴电缆、细同轴电缆、非屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接。并且在IEEE802.3标准中,为不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“宽带”。
·10Base-5 使用直径为0.4英寸、阻抗为50Ω粗同轴电缆,也称粗缆以太网,最大网段长度为500m。基带传输方法,拓扑结构为总线型。10Base-5组网主要硬件设备有:粗同轴电缆、带有AUI插口的以太网卡、中继器、收发器、收发器电缆、终结器等。
·10Base-2 使用直径为0.2英寸、阻抗为50Ω细同轴电缆,也称细缆以太网,最大网段长度为185m,基带传输方法,拓扑结构为总线型;10Base-2组网主要硬件设备有:细同轴电缆、带有BNC插口的以太网卡、中继器、T型连接器、终结器等。
·10Base-T 使用双绞线电缆,最大网段长度为100m。拓扑结构为星型;10Base-T组网主要硬件设备有:3类或5类非屏蔽双绞线、带有RJ-45插口的以太网卡、集线器、交换机、RJ-45插头等。
· 1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;
·10Broad-36 使用同轴电缆(RG-59/U CATV),网络的最大跨度为3600m,网段长度最大为1800m,是一种宽带传输方式;
·10Base-F 使用光纤传输介质,传输速率为10Mbps
1.以太网和IEEE802.3的工作原理
在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。
在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。
在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而同时发出数据时,就发生冲突。这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。
2.以太网和IEEE802.3服务的差别
尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。
IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型。
以太网是在 20 世纪 70 年代研制开发的一种基带局域网技术,使用同轴电缆作为网络媒体,采用载波多路访问和冲突检测( CSMA/CD )机制,数据传输速率达到10MBPS 。但是如今以太网更多的被用来指各种采用 CSMA/CD 技术的局域网。以太网的帧格式与 IP 是一致的,特别适合于传输 IP 数据。以太网由于具有简单方便、价格低、速度高等。
以太网这个名字,起源于一个科学假设:声音是通过空气传播的,那么光呢?在外太空没有空气光也可以传播。于是,有人说光是通过一种叫以太的物质传播。后来,爱因斯坦证明以太根本就不存在。
以太网与互联网的差别:
主要差别:以太网是一种局域网,只能连接附近的设备,因特网是广域网,我们可以通过因特网连接到美国去得到消息。
两者都算是用来连接电脑的网络,但是两者的范围是不同的。以太网是局限在一定的距离之内的,我们可以有成千上百个以太网;但是因特网呢,是最大的广域网了,我们只有一个因特网,所以因特网又可以说是网络中的网络。
因特网是一个超大的国际化的系统,它能够把世界上的各个地方的网络连接起来,私人的,公共的,学术的还是商业的网络或者政府的网络,都可以互相连接,共享资源。形象的来说,因特网就是我们在打开网页,发送邮件,在线听音乐看电影所用的网络,它包括了非常广泛的信息,现在的我们已经习以为常了。
而以太网呢,基本上就是只允许本地的几台电脑互相连接。电脑之间相互传送消息是有一组技术支持的。一般来说,连接到以太网上的电脑都在同一栋楼里,或者在周围附近。但是随着以太网网线的发展,以太网的范围可以扩展到十公里了。但是因为都是用网线互联,要想连接到很远的地方是不现实的。
生活化一点,以太网就是把你家的电脑,笔记本连接到猫上,然后再通过猫连接到因特网上去,这样你才能和国外的朋友Skype。因此,你家的电脑,笔记本和猫就组成了一个以太网。可以想象,世界上有成千上万个以太网。商业上应用以太网,将他们所有的电脑连接到主服务器上。
以太网可以有一个或者几个管理员。因特网上可能有一些部分是由管理员的,但是没有一个可以操控整个因特网的管理员。
另外一个区别就是安全性。以太网是比较安全的,因为他是一个封闭的内部网络,外部人员是没有权限的。但是因特网是公开连接的,每个人都可以浏览。
下面主要介绍了四种不同格式的以太网帧格式。
在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图1所示。其中,前7个字节称为前同步码(Preamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的作用是使接收节点进行同步并做好接收数据帧的准备。
图5 Ethernet 802. 3 SNAP帧格式
Ethernet 802. 3 SNAP类型以太网帧格式和Ethernet 802. 3 SAP类型以太网帧格式的主要区别在于:
2个字节的DSAP和SSAP字段内容被固定下来,其值为16进制数0xAA。
1个字节的"控制"字段内容被固定下来,其值为16进制数0x03。
增加了SNAP字段,由下面两项组成:
新增了3个字节的组织唯一标识符(Organizationally Unique Identifier,OUI ID)字段,其值通常等于MAC地址的前3字节,即网络适配器厂商代码。
2个字节的“类型”字段用来标识以太网帧所携带的上层数据类型。
太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。
注意区分双绞线中的直通线和交叉线两种连线方法.
以下连接应使用直通电缆:
交换机到路由器以太网端口
计算机到交换机
计算机到集线器
交叉电缆用于直接连接 LAN 中的下列设备:
交换机到交换机
交换机到集线器
集线器到集线器
路由器到路由器的以太网端口连接
计算机到计算机
计算机到路由器的以太网端口
CSMA/CD共享介质以太网
带冲突检测的载波侦听多路访问 (CSMA/CD)[2]技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:
开始:如果线路空闲,则启动传输,否则转到第4步。
发送:如果检测到冲突,继续发送数据直到达到最小报文时间 (保证所有其他转发器和终端检测到冲突),再转到第4步。
成功传输:向更高层的网络协议报告发送成功,退出传输模式。
线路忙:等待,直到线路空闲线路进入空闲状态- 等待一个随机的时间,转到第1步,除非超过最大尝试次数。
超过最大尝试传输次数:向更高层的网络协议报告发送失败,退出传输模式。
就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated binary exponential backoff)来实现)。
最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一根简单网线对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。
因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(destination),某台电脑发送的消息都将被所有其他电脑接收。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。
以太网这个名字,起源于一个科学假设:声音是通过空气传播的,那么光呢?在外太空没有空气光也可以传播。于是,有人说光是通过一种叫以太的物质传播。后来,爱因斯坦证明以太根本就不存在。
大家知道,声音是通过空气传播的,那么光是通过什么传播的呢?
在牛顿运动定律中,物体的运动是相对的。比如,地铁车厢里面的人看见您在车厢里原地踏步走,而位于车厢外面的人却看见你以120公里每小时的速度前进。
但光的运动并不是这样,您无论以什么物体作为参照物,它的运动速度始终都是299 792 458 米 / 秒。这个问题困惑了很多科学家,难道牛顿定律失灵了?一个来自瑞士专利局的职员,名叫爱因斯坦的人在1905年发表了篇论文,文中提到,无论观察者以何种速度运动,相对于他们而言,光的速度是恒久不变的,相对论便由此诞生了。
这简单的理念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,用爱因斯坦的方程来表达就是E=mc^2(E是能量,m是质量,c是光速),以及没有任何东西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先增加了0.5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,这就需要无限大的能量才能做到。
由此我们可以看出,世界上根本就不存在以太这种物质,因为光速是永远恒定不变的,为其找个运动参照物是个笑话。有鉴于此,以太网的命名也就是一个笑话。但以太网并不会消失,它正随着人们追求高速度而不断的进行蜕变。以前,只要数据链路层遵从CSMA/CD协议通信,那么它就可以被称为以太网,但随着接入共享网络设备的增加,冲突会使网络的传输效率越来越低。后来,交换机的出现使全双工以太网得到了更好的实现。未来,以太网会披上光的外衣,飞的更快。
网络体系结构
ethernet采用无源的介质,按广播方式传播信息。它规定了物理层和数据链路层协议,规定了物理层和数据链路层的接口以及数据链路层与更高层的接口。
⑴物理层
物理层规定了Ethernet的基本物理属性,如数据编码、时标、电频等。
⑵数据链路层
数据链路层的主要功能是完成帧发送和帧接收,包括负责对用户数据进行帧的组装与分解,随时监测物理层的信息监测标志,了解信道的忙闲情况,实现数据链路的收发管理。
『肆』 以太网帧的长度范围是多少
以太网帧字节的范围应该是72~1526。
以太网帧格式如下图:
(4)46位以太坊钱包地址扩展阅读:
在以太网链路上的数据包称作以太帧。以太帧起始部分由前导码和帧开始符组成。后面紧跟着一个以太网报头,以MAC地址说明目的地址和源地址。帧的中部是该帧负载的包含其他协议报头的数据包(例如IP协议)。以太帧由一个32位冗余校验码结尾。它用于检验数据传输是否出现损坏。
一个帧以7个字节的前导码和1个字节的帧开始符作为帧的开始。快速以太网之前,在线路上帧的这部分的位模式是10101010 10101010 10101010 10101010 10101010 10101010 10101010 10101011。
由于在传输一个字节时最低位最先传输(LSB),因此其相应的16进制表示为0x55 0x55 0x55 0x55 0x55 0x55 0x55 0xD5。
10/100M 网卡(MIIPHY)一次传输4位(一个半字)。因此前导符会成为7组0x5+0x5,而帧开始符成为0x5+0xD。1000M网卡(GMII)一次传输8位,而10Gbit/s(XGMII) PHY芯片一次传输32位。
注意当以octet描述时,先传输7个01010101然后传输11010101。由于8位数据的低4位先发送,所以先发送帧开始符的0101,之后发送1101。
所有四种以太帧类型都可包含一个IEEE 802.1Q选项来确定它属于哪个VLAN以及他的IEEE 802.1p优先级(QoS)。这个封装由IEEE 802.3ac定义并将帧大小从64字节扩充到1522字节(注:不包含7个前导字节和1个字节的帧开始符以及12个帧间距字节)。
IEEE 802.1Q标签,如果出现,需要放在源地址字段和以太类型或长度字段的中间。这个标签的前两个字节是标签协议标识符(TPID)值0x8100。这与没有标签帧的以太类型/长度字段的位置相同,所以以太类型0x8100就表示包含标签的帧,而实际的以太类型/长度字段则放在Q-标签的后面。
TPID后面是两个字节的标签控制信息(TCI)。(IEEE 802.1p 优先级(QoS)和VLANID)。Q标签后面就是通常的帧内容。
『伍』 中天盛祥是不是国家同意的
不是。
“中天盛祥”和“盖网”、“壹健哥”都是同一个主体的不同名称,都是传销。没有国家监管、备案,具有欺骗性,其通过发展下线的方式,获取高额回报。宣传套路大同小异,经营模式也多有雷同。历经O2O、互联网+、共享经济、区块链技术这些热门词汇。
中天盛祥的法定代表人是寇南南。2019年年初,这家成立不足一年的公司承诺,依托于互联网革命,在短期内可以实现财富巨额增值。不是合法的公司,是专门搞传销的。
(5)46位以太坊钱包地址扩展阅读:
中天盛祥的BCHC,只是打着区块链幌子的诈骗传销道具。中天盛祥,前身盖网壹键哥,至今已经6个地区案发,盖网相关的判决书也已经多达几十个。
推广的“盖网”基金、原始股等亦无国家相关部门监管或备案,无证据证实所谓的基金或原始股是受相关法律、法规认可、保护的,本身具有欺骗性。
中天盛祥法人寇南南涉盖网传销案,见刑事判决书(2017)鲁13刑终560号,此判决书也对盖网时期的股票基金定性,是非法证券、诈骗道具。
盖网壹键哥多地案发后改名中天盛祥,又被南方周末等大媒体曝光,再次改头换面,用一种叫BCHC的虚拟货币诈骗传销。
『陆』 加密货币出现崩盘式行情,具体情况如何
4月18日,比特币等加密货币出现崩盘式行情,24小时涨跌幅计算,比特币暴跌17%,以太坊暴跌20%,币安币暴跌17%,瑞波币暴跌26%,狗狗币暴跌19%,莱特币暴跌28%,波场暴跌25%,柚子币暴跌29%。
虚拟货币价格大幅波动之下,全网合约市场迎来高额爆仓。根据比特币家园数据,截至4月18日20时30分,最近24小时共有47.8万人遭遇爆仓,共计61.62亿美元资金灰飞烟灭,约合人民币401.80亿元。
(6)46位以太坊钱包地址扩展阅读
加密货币出现崩盘式行情的原因:
有消息称,Coinbase内部人士累计套现超过46亿美元,其中CEO Brian Armstrong以三笔价格不同的交易出售了749999股,总计约2.92亿美元,CFO Alesia Haas以388.73美元的价格出售了全部的255500股,总计约9932万美元。
Coinbase成立于2012年,是美国最大的加密货币交易所,覆盖比特币、以太币等44个币种,前几天刚刚在纳斯达克上市,成为“加密货币第一股”,结果高管们立刻就套现离场。
另有市场消息称,美国财政部将指控数家金融机构使用加密货币洗钱。比特币等数字货币背后的隐患相当多,包括技术障碍、价格不稳定、资源浪费与环境污染、税收政策、不受监管影响金融主导权,而非法使用比特币的现象也比比皆是,包括洗钱、逃税,不少国家政府都采取了打击行动。
『柒』 以太网怎么设置有效的IP
1.打开STEP7-Micro/WIN,新建项目
2.工具--->以太网向导--->下一步
3.读取CP243-1模块位置,也可手动输入--->下一步
4.分配模块地址--->下一步
5.CP243-1模块本身需要占用1字节的输出地址,故要按照模块安装位置分配该地址。
6.若CP243-1需要与其他IP地址进行数据交换,则在上一步中更改对等连接数目。否则第6-步可以省略。输入连接指定服务器的IP地址--->数据传输--->新传输,建立从远程服务器取或写入远程服务器的数据块。
7.生成CRC保护--->下一步
8. 分配存储区--->下一步,可使用建议地址
9.完成
10.设置PG/PC接口为PC Adapter(PPI),下载配置到PLC。
11.PLC--->上电复位
12.查看IP地址:左侧查看栏,选择通信--->设置PG/PC接口
--->使用编程电缆,选择PC Adapter(PPI) --->使用以太网线,选择TCP/IP>Intel(R)82567LF…
『捌』 以太网使用什么通讯模式来把数据发送到网络中部分节点
以太网是一种基带局域网技术,以太网通信是一种使用同轴电缆作为网络媒体,采用载波多路访问和冲突检测机制的通信方式,数据传输速率达到1Gbit/s,可满足非持续性网络数据传输的需要。
以太网通信原理
编辑
以太网中所有的站点共享一个通信信道,在发送数据的时候,站点将自己要发送的数据帧在这个信道上进行广播,以太网上的所有其他站点都能够接收到这个帧,他们通过比较自己的MAC地址和数据帧中包含的目的地MAC地址来判断该帧是否是发往自己的,一旦确认是发给自己的,则复制该帧做进一步处理。
因为多个站点可以同时向网络上发送数据,在以太网中使用了CSMA/CD协议来减少和避免冲突。需要发送数据的工作站要先侦听网络上是否有数据在发送,如果有的只有检测到网络空闲时,工作站才能发送数据。当两个工作站发现网络空闲而同时发出数据时,就会发生冲突。这时,两个站点的传送操作都遭到破坏,工作站进行1-坚持退避操作。退避时间的长短遵照二进制指数随机时间退避算法来确定。
以太网中的帧格式定义了站点如何解释从物理层传来的二进制串,即如何在收到的数据帧中分离出各个不同含义的字段。因为历史发展的原因,现在存在着多个以太网帧格式,包括了DIX(DEC,Intel,Xerox三家公司)和IEEE 802.3分别定义的不同的几种帧格式,但是现在TCP/IP互联网体系结构中广泛使用的是DIX于1982年定义的Ethernet V2标准中所定义的帧格式,它是现在以太网的事实标准。
Ethernet V2帧结构包括6字节的源站MAC地址、6字节的目标站点MAC地址、2字节的协议类型字段、数据字段以及帧校验字段,MAC地址是一个六个字节长的二进制序列,全球唯一的标识了一个网卡。
以太网帧中各个字段含义如下:
(1)前同步信号字段。包括七个字节的同步符和一个的起始符。同步字符是由7个0和1交替的字节组成,而起始符是三对交替的0和1加上一对连续的l组成的一个字节。这个字段其实是物理层的内容,其长度并不计算在以太网长度里面。前同步信号用于在网络中通知其他站点的网卡建立位同步,同时告知网络中将有一个数据帧要发送。
(2)目的站点地址。目的站点的MAC地址,用于通知网络中的接收站点。目的占地MAC地址的左数第一位如果是0,表明目标对象是一个单一的站点,如果是1表明接收对象是一组站点,左数第二位为0表示该MAC地址是由IEEE组织统一分配的,为1表明该地址是自行分配的。
(3)源站地址。帧中包含的发送帧的站点的MAC地址,这是一个6字节的全球唯一的二进制序列,并且最左的一位永远是0。
(4)协议类型字段。以太网帧中的16位的协议类型的字段用于标识数据字段中包含的高级网络协议的类型,如TCP、IP、ARP、IPX等。
(5)数据字段。数据字段包含了来自上层协议的数据,是以太帧的有效载荷部分。为了达到最小帧长,数据字段的长度至少应该为46字节,等于最小帧长减去源地址和目的地址帧校验序列以及协议类型字段等的长度。同时以太网规定了数据字段的最大长度为1500字节。
(6)帧校验字段。帧校验字段是一个32位的循环冗余校验码,校验的范围不包括前同步字段。
希望我的回答能够帮助到您,北京科兰通讯,记得采纳哟,谢谢
『玖』 EOS魔方到底啥意思
EOS,可以理解为Enterprise Operation System,即为商用分布式应用设计的一款区块链操作系统。EOS是引入的一种新的区块链架构,旨在实现分布式应用的性能扩展。注意,它并不是像比特币和以太坊那样的货币,而是基于EOS软件项目之上发布的代币,被称为区块链3.0。 EOS的主要特点如下:
1.EOS有点类似于微软的windows平台,通过创建一个对开发者友好的区块链底层平台,支持多个应用同时运行,为开发dAPP提供底层的模板。
2.EOS通过并行链和DPOS的方式解决了延迟和数据吞吐量的难题,EOS是每秒可以上千级别的处理量,而比特币每秒7笔左右,以太坊是每秒30-40笔;
3.EOS是没有手续费的,普通受众群体更广泛。EOS上开发dApp,需要用到的网络和计算资源是按照开发者拥有的EOS的比例分配的。当你拥有了EOS的话,就相当于拥有了计算机资源,随着DAPP的开发,你可以将手里的EOS租赁给别人使用,单从这一点来说EOS也具有广泛的价值。简单来说,就是你拥有了EOS,就相当于拥有了一套房租给别人收房租,或者说拥有了一块地租给别人建房。
『拾』 我用WIRESHARK抓出的包以太网帧头长度14,IP数据长度40字节。不是以太头至少18字节,IP46字节码
以太网帧8字节前导、6字节源MAC、6字节目的MAC、2字节类型,共22字节,尾部还有4字节校验位,和你说的对不上。IP包头是20字节。