愛立信TRX1b33告警
⑴ 版本自動回退告警 如何處理
BTS312基站告警目錄 2114 LAPD告警 42116 TRX配置告警 62118
TRX處理器運行告警 72120 無線鏈路嚴重告警 82122 TRX降功率告警 92124
TRX關功放告警 102126 TRX內部收發通道告警 122134 無線鏈路提示告警
132136 測試鎖相環告警 162138 TRX單板ID錯誤告警 162140 鎖相環告警
172148 TRX硬體告警 182152 功放溫度告警 192156 TRX駐波告警
202166 TRX主時鍾告警 222168 TRX副時鍾告警 232170 DBUS告警
242176 TRX硬體邏輯不支持16K信令告警 252180 頻點與TRX類型不一致告警 262182
幀或時隙號告警 272188 主接收通道告警 292190 分集接收通道告警 302192
載頻類型不支持告警 312196 TRX時鍾嚴重告警 322198 鎖相環嚴重告警
342204 TRX單板通信告警 352206 TRX槽位單板配置錯告警 362208 時鍾參考源異常告警
372210 E1遠端自環測試告警 392214 E1本地告警 402216 E1遠端告警
412220 TMU郵箱故障告警 432222 TMU單板通信告警 442224 TMU軟體告警
452232 TMU時鍾故障告警 462234 主TMU時鍾故障告警 472236
擴展TMU時鍾故障告警 482244 版本回退告警 492248 防雷箱故障告警 502260
13M時鍾校準維護告警 512264 軟體未激活告警 522272 CDU駐波二級告警
532274 CDU駐波一級告警 552276 CDU主接收低噪放告警 562278
CDU分集接收低噪放告警 572280 CDU單板通信告警 582282 主接收塔放告警
592284 分集接收塔放告警 612286 CDU駐波嚴重告警 622292 EDU支路駐波告警
642294 EDU支路嚴重駐波告警 662296 EDU支路低雜訊放大器告警 672298
EDU支路塔放告警 682300 合分路器單板類型配置錯告警 702302 合分路器頻段與TRX頻點不匹配告警
712334 PMU單板通信告警 722354 風扇告警 732358 交流過壓告警
742360 交流欠壓告警 752384 EAC單板通信告警 762560 PBU過駐波告警
782562 PBU過溫度告警 792564 PBU欠功率告警 812574 PBU主時鍾告警
82
⑵ 諾西trx fault告警產生的原因有哪些
2993告警一般處理流程1.先根據告警附加信息判斷出故障BTSid,TRXid,TSLid。2.若該告警分散到不同BTS,且該告警很少重復發生在同一BTS上·若這些BTS的傳輸經過交叉機,則首先檢查交叉機至BSC間的傳輸.·若這些BTS的傳輸不經過交叉機,則查A介面和TCSM,及告警對應的BCSU.3.若該告警集中到同一BTS,但該告警並不固定發生在同一TRX上分析:改故障可能與傳輸有關,可從檢查傳輸的告警,傳輸質量統計報告著手。若這些BTS的傳輸經過交叉機如DN2等若該BTS是TALKFamily或Primesite類型,通過Q1即MML的QUS命令遠程登陸到TRU查看TRU里的傳輸的質量統計報告(Downlink);同時本地查看DN2中該傳輸的質量統計報告(Uplink),或通過MML的QUS命令到DN2里查看該傳輸的質量統計報告(Uplink,前提是該DN2有Q1集成到BSC)。若該BTS為非TALKFamily或Primesite類型,可直接到NMS里的NODEServerManager查看BTS傳輸單元中質量統計報告(Downlink),若沒有NODEServerManager則要BTS工程師到BTS現場查看。對於Uplink,方法同上。若這些BTS的傳輸不經過交叉機,通過AHO/AHP,EOL/EOH命令查看該傳輸的告警,及YMO命令查看該傳輸的質量統計報告。若傳輸有問題,先著手解決傳輸問題。若長時間傳輸質量沒問題,到第四步繼續。4.該告警集中發生到同一BTS下的同一TRX或TRX下的TS上若沒有經過交叉機,先通過AHO/AHP,EOL/EOH命令查看該傳輸告警,及YMO命令查看該傳輸的質量統計報告。若傳輸沒有問題,嘗試LOCK/UNLOCKTRX或BTS/BCF,若RESTART2次後問題還是出現,參考下一步。要BTS工程師到BTS現場互換TRX。若問題隨TRX,則TRX需更換,否則需檢查BranchingTable及交叉機配置等。說到預防的話就從傳輸質量下手,還有防止一些人為的BTS側或BSC側數據配置失誤
⑶ 通信bsc是什麼
BSC指的是基站控制器(Base Station Controller)。
它是基站收發台(BTS)和移動交換中心(MSC)之間的連接點,也為基站收發台和移動交換中心之間交換信息提供介面。一個基站控制器通常控制幾個基站收發台。
BSC主要功能是進行無線信道管理、實施呼叫和通信鏈路的建立和拆除,並為本控制區內移 動台的過區切換進行控制等。
(3)愛立信TRX1b33告警擴展閱讀:
一般BSC由以下模塊組成:
1)AM/CM模塊:話路交換和信息交換的中心。
2)BM模塊:完成呼叫處理、信令處理、無線資源管理、無線鏈路的管理和電路維護功能。
3)TCSM模塊:完成復用解復用及碼變換功能。
BSC的功能列表如下:
1)尋呼管理,BSC負責分配從MSC來的尋呼消息,在這一方面,它其實是MSC和MS之間的特殊的透明通道。
2)傳輸網路的管理,BSC配置、分配並監視與RBS之間的64KBPS電路,它也直接控制RBS內的交換功能。此交換功能可以有效的使用64K的電路。
3)碼型變換功能,將四個全速率GSM信道復用成一個64K信道的話音編碼在BSC內完成,一個PCM時隙可以傳輸4個話音連接。這一功能是由TRAU來實現的。
4)話音編碼。
5)BSS的操作和維護,BSC負責整個BSS的操作與維護。諸如系統數據管理,軟體安裝,設備閉塞與解閉,告警處理,測試數據的採集,收發信機的測試。
6)無線基站的監視與管理,RBS資源由BSC控制,同時通過在話音信道上的內部軟體測試及環路測試,BSC還可監視RBS的性能。
⑷ 基站控制器的功能列表
基站控制器位於MSC和BTS之間,其任務是管理無線網路,即管理無線小區及其無線信道、無線設備的操作和維護、移動台的業務過程,並提供基站至MSC之間的介面。將有關無線控制的功能盡量集中到BSC上來,以簡化基站設備,它的功能如下:
1.無線基站的監視與管理,RBS資源由BSC控制,同時通過在話音信道上的內部軟體測試及環路測試,BSC還可監視RBS的性能。愛立信的基站採用內部軟體測試及環路測試在話音通道上對TRX進行監視。若檢測出故障,將重新配置RBS,激活備用的TRX,這樣原來的信道組保持不變。
2. 無線資源的管理,BSC為每個小區配置業務及控制信道,為了能夠准確的進行重新配置,BSC收集各種統計數據。比如損失呼叫的數量,成功與不成功的切換,每小區的業務量,無線環境等,特殊記錄功能可以跟蹤呼叫過程的所有事件,這些功能可檢測網路故障和故障設備。
3. 處理與移動台的連接,負責與移動台連接的建立和釋放,給每一路話音分配一個邏輯信道,呼叫期間,BSC對連接進行監視,移動台及收發信機測量信號強度及話音質量,測量結果傳回BSC。由BSC決定移動台及收發信機的發射功率,其宗旨是即保證好的連接質量,又將網路內的干擾降低到最小。
4. 定位和切換,切換是由BSC控制的,定位功能不斷的分析話音接續的質量,由此可作出是否應切換的決定,切換可以分為BSC內切換,MSC內BSC間的切換,MSC之間的切換。一種特殊切換稱為小區內切換,當BSC發現某連接的話音質量太低,而測量結果中又找不到更好的小區時,BSC就將連接切換到本小區內另外一個邏輯信道上,希望通話質量有所改善。切換同時可以用於平衡小區間的負載,如果一個小區內的話務量太高,而相鄰小區話務量較小,信號質量也可以接受,則會將部分通話強行切換到其它的小區上去。
5. 尋呼管理,BSC負責分配從MSC來的尋呼消息,在這一方面,它其實是MSC和MS之間的特殊的透明通道。
6. 傳輸網路的管理,BSC配置、分配並監視與RBS之間的64KBPS電路,它也直接控制RBS內的交換功能。此交換功能可以有效的使用64K的電路。
7. 碼型變換功能,將四個全速率GSM信道復用成一個64K信道的話音編碼在BSC內完成,一個PCM時隙可以傳輸4個話音連接。這一功能是由TRAU來實現的。
8. 話音編碼。
9. BSS的操作和維護,BSC負責整個BSS的操作與維護。諸如系統數據管理,軟體安裝,設備閉塞與解閉,告警處理,測試數據的採集,收發信機的測試。
⑸ 基站的載頻數和信道數是什麼關系硬體載頻和信道數、載頻數是什麼關系收發信機和信道數、載頻數是什麼
一個載頻共有8個信道,一個控制信道,7個業務信道,隨著GPRS的業務展開,根據業務量發展,目前聯通一般會將部分業務信道改為1個靜態信道,2個動態信道,靜態信道是固定的,這樣一來業務信道就只有6個了,並且在剩餘的業務信道中是有同動態信道共用的。
2/2/2基站,就是3個扇區,每扇區2個載頻,每扇區2個控制信道,14個業務信道(不含GPRS信道)
⑹ 請問通信網路中BSC與RNC得區別,謝謝啦!
BSC指的是基站控制器(Base Station Controller)。
它是基站收發台和移動交換中心之間的連接點,也為基站收發台(BTS)和移動交換中心(MSC)之間交換信息提供介面。一個基站控制器通常控制幾個基站收發台,其主要功能是進行無線信道管理、實施呼叫和通信鏈路的建立和拆除,並為本控制區內移 動台的過區切換進行控制等。
一般由以下模塊組成:
AM/CM模塊:話路交換和信息交換的中心。
BM模塊:完成呼叫處理、信令處理、無線資源管理、無線鏈路的管理和電路維護功能。
TCSM模塊:完成復用解復用及碼變換功能。
具體信息可參考移動通訊相關知識。
基站控制器(BSC):BSC控制一組基站,其任務是管理無線網路,即管理無線小區及其無線信道,無線設備的操作和維護,移動台的業務過程,並提供基站至MSC之間的介面。將有關無線控制的功能盡量的集中到BSC上來,以簡化基站的設備,這是GSM的一個特色。它的功能列表如下:
1. 無線基站的監視與管理,RBS資源由BSC控制,同時通過在話音信道上的內部軟體測試及環路測試,BSC還可監視RBS的性能。愛立信的基站採用內部軟體測試及環路測試在話音通道上對TRX進行監視。若檢測出故障,將重新配置RBS,激活備用的TRX,這樣原來的信道組保持不變。
2. 無線資源的管理,BSC為每個小區配置業務及控制信道,為了能夠准確的進行重新配置,BSC收集各種統計數據。比如損失呼叫的數量,成功與不成功的切換,每小區的業務量,無線環境等,特殊記錄功能可以跟蹤呼叫過程的所有事件,這些功能可檢測網路故障和故障設備。
3. 處理與移動台的連接,負責與移動台連接的建立和釋放,給每一路話音分配一個邏輯信道,呼叫期間,BSC對連接進行監視,移動台及收發信機測量信號強度及話音質量,測量結果傳回BSC。由BSC決定移動台及收發信機的發射功率,其宗旨是即保證好的連接質量,又將網路內的干擾降低到最小。
4. 定位和切換,切換是由BSC控制的,定位功能不斷的分析話音接續的質量,由此可作出是否應切換的決定,切換可以分為BSC內切換,MSC內BSC間的切換,MSC之間的切換。一種特殊切換稱為小區內切換,當BSC發現某連接的話音質量太低,而測量結果中又找不到更好的小區時,BSC就將連接切換到本小區內另外一個邏輯信道上,希望通話質量有所改善。切換同時可以用於平衡小區間的負載,如果一個小區內的話務量太高,而相鄰小區話務量較小,信號質量也可以接受,則會將部分通話強行切換到其它的小區上去。
5. 尋呼管理,BSC負責分配從MSC來的尋呼消息,在這一方面,它其實是MSC和MS之間的特殊的透明通道。
6. 傳輸網路的管理,BSC配置、分配並監視與RBS之間的64KBPS電路,它也直接控制RBS內的交換功能。此交換功能可以有效的使用64K的電路。
7. 碼型變換功能,將四個全速率GSM信道復用成一個64K信道的話音編碼在BSC內完成,一個PCM時隙可以傳輸4個話音連接。這一功能是由TRAU來實現的。
8. 話音編碼。
9. BSS的操作和維護,BSC負責整個BSS的操作與維護。諸如系統數據管理,軟體安裝,設備閉塞與解閉,告警處理,測試數據的採集,收發信機的測試。
RnC 無線網路控制器定義 無線網路控制器(RNC,Radio Network Controller)是新興3G網路的一個關鍵網元。它是接入網的組成部分,用於提供移動性管理、呼叫處理、鏈接管理和切換機制。為了實現這些功能,RNC必須利用出色的可靠性和可預測的性能,以線速執行一整套復雜且要求苛刻的協議處理任務。 作為3G網路的重要組成部分,無線網路控制器(RNC)是流量匯集、轉換、軟硬呼叫轉移(soft and hard call handoffs)、及智能小區和分組處理的重點。無線網路控制器(RNC)的高級任務包括1) 管理用於傳輸用戶數據的無線接入載波;2) 管理和優化無線網路資源;3) 移動性控制;和4) 無線鏈路維護。 無線網路控制器(RNC)具有組幀分配(framing distribution)與選擇、加密、解密、錯誤檢查、監視、以及狀態查詢等功能。無線網路控制器(RNC)還可提供橋接功能,用於連接IP分組交換網路。無線網路控制器(RNC)不僅支持傳統的ATM AAL2(語音)和AAL5(數據)功能,而且還支持IP over ATM(IPoATM)和SONET上的數據包(POS)功能。無線用戶的高增長率對IP技術提出了更高的要求,這意味著未來平台必須要能夠同時支持IPv4和IPv6。 RNC在典型UMTS R99網路中的位置如圖二所示。注意,實際網路傳輸將取決於運營商(carrier)的情況。在R99中,RNC與節點B之間通常有一個SONET環,其功能相當於城域網(MAN)。通過分插復用器(ADM),可從SONET環提取或向SONET環加入數據流。這一拓撲結構允許多個RNC接入多個節點B,以形成具有出色靈活性的網路。
RNC網路介面參考點 無線網路控制器(RNC)可使用表1中描述的定義明確的標准介面參考點連接到接入網和核心網中的系統。 由於RNC支持各種介面和協議,因此可被視作一種異構網路設備。它必須能夠同時處理語音和數據流量,還要將這些流量路由至核心網中不同的網元。無線網路控制器(RNC)還必須能夠支持IP與ATM實現互操作,向僅支持IP的網路生成POS流量。因此,RNC必須要能夠支持廣泛的網路I/O選件,同時提供規范、轉換和路由不同網路流量所需的計算和協議處理,而且所有這些處理不能造成呼叫中斷,並要提供合適的服務質量。 介面 說明
Lub 連接節點B收發信機和無線網路控制器(RNC)。這通常可通過T-1/E-1鏈路實現,該鏈路通常集中在T-1/E-1聚合器中,通過OC-3鏈路向RNC提供流量。
Lur 用於呼叫切換的RNC到RNC連接,通常通過OC-3鏈路實現。
lu-cs RNC與電路交換語音網路之間的核心網介面。通常作為OC-12速率鏈路實施。
lu-ps RNC與分組交換數據網路之間的核心網介面。通常作為OC-12速率鏈路實施。
表1. 介面參考點 無線網路控制器(RNC)的要求 兩種有助於開發商滿足嚴格的無線網路控制器(RNC)要求的技術是ATCA和英特爾®IXP2XXX網路處理器。後者基於英特爾互聯網交換架構(英特爾IXA)和英特爾XScale®技術,專為提供高性能和低功耗而設計。 ATCAATCA是由PCI工業計算機製造商協會(PICMG)開發的一項行業計劃。該設計用於滿足網路設備製造商對平台再利用、更低成本、更快上市速度和多元靈活性的要求,以及運營商和服務提供商對降低資本和運營支出的要求。ATCA通過制定標准機箱外形、機箱內部互連、以及適合高性能、高帶寬計算和通信解決方案的平台管理介面,滿足了以上要求。如欲了解有關ATCA的更多信息,請訪問:http://www.picmg.org/newinitiative.stm。 英特爾IXP2XXX網路處理器 IXP2XXX網路處理器提供了在任何埠上處理任何協議的靈活性;從ATM到IP網路的平穩移植能力;面向定製操作的線速處理能力;特性升級;以及新興標准支持等。此外,商業化ATCA子系統與IXP2XXX網路處理器的結合,為設計者帶來了使用標准模塊化組件構建無線網路控制器(RNC)的機會。此類設計方法的潛在優勢包括提高系統可擴展性和靈活性,在降低成本的同時進一步縮短了上市時間。 創建功能強大的無線網路控制器(RNC)數據面板系統
上圖體現了一種利用ATCA和英特爾的網路處理晶元創建功能強大的無線網路控制器(RNC)系統的方法。高級無線網路控制器(RNC)功能可以如上所述進行分區,但其它方法同樣可行。本圖表僅作為邏輯或概念範例,並非實際硬體配置的圖例。 在數據面板層,該設計使用三種基本類型的卡。無線接入網(RAN)線路卡、核心網(CN)線路卡和無線網路層(RNL)卡。無線網路層(RNL)卡支持無線網路堆棧,並執行解碼/編碼。同時還包括一個控制和應用卡。 無線接入網(RAN)線路卡和核心網(CN)線路卡主要根據載波需要,處理不同的網路介面類型。典型介麵包括T-1/E-1和OC-3。這些卡採用英特爾IXP2XXX網路處理器設計而成,支持高性能線速傳輸、切換和轉換功能,如ATM分段與重組(SAR)、點對點(PPP)協議處理、POS傳輸等。註:線路卡功能可以協同定位。一個物理卡可以作為Iub、Iur、lu-PS、以及lu-CS邏輯介面。 無線網路層(RNL)卡還可使用高性能IXP2XXX網路處理器,與3G網路聯合一起處理密集型協議處理任務。這些卡沒有通向外部的網路介面,但可作為復雜協議處理引擎,對通過無線接入網(RAN)和核心網(CN)線路卡引入的流量進行處理。無線網路層(RNL)卡還必須按照3GPP Kasumi加密演算法來進行加密處理。 無線網路層(RNL)卡是無線網路控制器(RNC)數據面板中MIP最密集的組件,其性能是決定整體系統容量和性能的關鍵。 系統性能 為了測試帶有IXP2XXX網路處理器和無線網路層(RNL)卡的ATCA外形線路卡的性能,英特爾創建了無線網路控制器(RNC)數據面板參考平台。通過採用源於UMTS 6號報告的流量模型,從而對內部性能指標進行評測(UMTS 6號報告參見http://www.umts-forum.org/servlet/dycon/ztumts/umts/Live/en/umts/Resources_Reports_06_index)。此模型設計了一個流量負載,旨在代表2005年典型的UMTS網路。它將語音和數據流混合在一起,後者要求每用戶具有384 Kpbs的帶寬。利用這種流量模型,一個採用IXP2800網路處理器的無線網路層(RNL)卡可以處理72,000個用戶,產生3,540厄蘭的電路交換和分組交換流量的混合負載。採用只含有電路交換語音呼叫的低要求流量模型,該卡可處理180,000個用戶。 基於這種設計的無線網路層(RNL)卡可與線路卡及其它ATCA組件相結合,以創建功能極為強大的緊湊型無線網路控制器(RNC)數據面板系統。圖5中的系統展示了一種帶有14卡插槽的標准19英寸ATCA支架。一個支架可以處理500,000個用戶的流量,並支持555 Mbps的分組交換數據吞吐率。眾多機架可以在一個電信機架中互連,從而支持更高的密度。 圖5中的系統共包含12個卡,包括備用卡,可提供電信級可靠性和穩定性。所有線路卡和無線網路層(RNL)卡均使用英特爾IXP2XXX網路處理器,以提供高性能、線速傳輸、切換和協議處理。線路卡具備支持全部廣域網介面的能力,包括從T-1/E-1到同步光纖網路(SONET)和千兆位乙太網速率。 在該範例系統中,線路卡部署於一個2+1配置中:兩個活動線路卡和一個備用線路卡。無線接入網(RAN)端有8個活動OC-3介面,還有8個額外OC-3介面用於故障切換。另外還有2個活動OC-12核心網介面和2個備用介面。線路卡符合同步光纖網路(SONET)自動保護轉換(APS)標准,以便進行故障切換。 這些卡可使用符合ATCA 3.1標準的乙太網交換結構進行互連。其中包含兩個乙太網交換卡,以支持各卡之間的各種連接選件。一種可行的替代設計方案,是使用乙太網交換機作為兩個無線網路層(RNL)卡的夾層卡。這種設計具有明顯的優勢,它可以釋放兩個節點插槽,用於創收型卡。 與替代方案相比,將ATCA和IXP2XXX網路處理器相結合,可以提供重要性能和成本節省。當前的無線網路控制器(RNC)設計通常要求多個機架的設備來支持100,000至200,000的用戶密度。範例設計可通過電信機架中的一個機架支持500,000個用戶,此舉可以顯著節省功耗成本和中央辦公室佔地面積。 設計高密度、小佔地面積無線網路控制器(RNC)數據面板 下一代無線網路控制器(RNC)是新興公共無線網的一個關鍵網元。隨著業界使用標准、模塊化網元的趨勢日益顯著,無線網路控制器(RNC)系統設計的傳統專有方案已經開始被取代。通過使用ATCA和IXP2XXX網路處理器,系統設計師可以將工業標准硬體與功能強大的、可編程網路處理晶元完美結合起來。基於這些技術的無線網路控制器(RNC)數據面板設計僅佔用很小的系統空間,便可達到非常高的密
整體來說,BSC是針對目前GSM網路的叫法,而RNC是針對3G網路的稱呼,都是指代基站控制器。
⑺ 愛立信BSC中TG—CF—IS—TF—CON—DP—TRX—TX—RX—TS 的關系及中文意思
l
⑻ BSC是什麼意思
平衡計分卡(The Balanced ScoreCard,簡稱BSC),就是根據企業組織的戰略要求而精心設計的指標體系。