eth多單策略
A. 以太坊設備壽命
以太坊2.0其實包含的內容非常多,例如分片、擴容等,合並只是其中一項內容,自去年2.0信標鏈啟動開始,我們已經處在PoW和PoS雙鏈運行底下,合並是要徹底結束PoW顯卡挖礦,全部爆塊都用PoS共識來打包,合並後並不代表以太坊2.0就完成,至少還有2-3年時間增加其他功能。
合並這項內容牽涉面廣,利益巨大,時間點非常非常非常關鍵,尤其對礦工而言,那是生死攸關,天天看著這個合並時間點來考慮是否加卡。坦白講,礦工根本不關心什麼分片、擴容,Layer2,Rollup等功能,他們只關心什麼時候正式合並,什麼時候結束挖礦。
已參與ETH2.0信標鏈質押的希望合並越快越好,因為他們需要在合並後的第一次硬分叉才能解除質押,而礦工們持有顯卡,希望合並越晚越好(最好別合並),把顯卡能耐發揮到極致。
兩個月前的消息是,合並提前了,並且在合並前,不再有新的EIP功能修訂升級,ETH團隊所有人員集中全力優先處理合並事宜,合並提案EIP-3675也在8月中由研究員Mikhail正式立案,這標志著合並真的真的真的要進入倒計時了,可惜仍然沒有具體日期,只有概率。啥玩意
總結:
隨著以太坊總市值以及生態膨脹到今天這個體量,船大難掉頭,任何一個小錯誤,都會引起巨大震盪:礦工手上有顯卡,機構手上有幣,DeFi生態里有TVL,有多少礦池靠ETH吃飯,有多少炒賣顯卡為生的代理商......
如果在這個過程中,平衡不好各方的利益,那麼整個網路可能會被凍結,甚至崩潰。我認為以太坊團隊在公布合並時間點這件事上太兒戲了,不把礦工的礦機當回事,幾個月前開發員Trend說保守估計年底前合並,現在看來又要跳票,官方還有什麼可信度?要防止跳票很難嗎:至少提前一年,對外公告「准確的合並日期」,以及合並步驟和詳情。如果沒在測試網通過就不要亂發布各種合並消息,尤其是開發人員。我現在啥都不想看,就等12月的炸彈 pushback 究竟要延到明年幾月。到時再來寫一篇《如何處理手上的礦機》吧,拭目以待。
B. 伺服器雙網卡:設置eth0入向的流量從eth0出,eth1入向的流量從eth1出,linux路由策略如何寫
路由,是確定訪問路徑的。
當eth0和eth1不在同一網段的時候
eth0訪問eth1就和你說的一樣。但是eth0訪問eth0是不經過eth1的
這個時候伺服器設置了路由,相當於路由器功能。。
需要做轉發設置。默認是不轉發的。(總結就是伺服器默認不能當路由器來用)
打這么多字這個累
C. 天融信防火牆如何配置路由
eth0 配置外網的IP地址和掩碼
eth1 配置內網網關地址和掩碼 例如常用的 192.168.1.1/255.255.255.0
配置路由,預設或者靜態都可以 目的地址為0.0.0.0/0.0.0.0 下一跳寫你外網的網關
配置源地址轉換規則 源地址是192.168.1.1/255.255.255.0 源埠是 eth1 目的地址可以寫any
出介面 eth0 使用出口地址
然後配置一條安全策略 使你的內網用戶能夠訪問互聯網 也就是 eth1可以訪問eth0
就這些。
D. 幣安雙向持倉是什麼模式
幣安雙向持倉的意思就是,雙向持倉就是持有兩個方向的同個期貨合約。同向持倉就是持有一個反向的。 有空單、有多單。這種做法就是降低風險、減少損失和利潤、也可以理解為加了一個0.5的杠桿。同向持倉的意思是,開了一比多單又加了幾筆多單,或者開了一筆空單又加了幾筆空單,朝一個方向(多或者空)開單,這種做法風險較大,一旦成功利潤也大,一旦失敗損失也大。
期貨交易是可以雙向操作的,就是可以買漲買跌,雙向持倉就是買單還賣單都下了,這樣就起到了一個鎖倉的效果,常見於形式不夠明朗,而手裡的單又不想平倉,所以就再反向的下單,這樣就不會出現虧損情況,等形勢明朗以後再把方向做反的單平掉。那同向持倉也就是說只做了一個方向了。
全倉模式的意思是賬戶里所有可用余額都可以充當擔保資產,以避免被強制平倉。這個模式的好處是:只要杠桿適中,爆倉可能性很低,所以經常被用於套期保值。 逐倉模式的意思是分配給某倉位的擔保資產被限制在一定數額。
如果倉位的擔保資產不足以支撐浮虧,此倉位將被強制平倉。所以,雙向持倉在波動率較高,杠桿較大的情況下,逐倉模式很容易被強制平倉,但最終的損失僅僅是倉位擔保資產,而不影響賬戶余額。
拓展資料
1. 全倉模式 這個模式的好處是方便操作,一個賬戶可開所有,不用來回劃賬。 以及任何其他倉位的未實現盈虧都可以直接作為另一個合約的保證金。比如說我的BTC倉位賺錢了,ETH倉位虧錢了,雖然btc還沒有平倉,但是未實現盈虧可以直接用於作為追加ETH的保證金,可以達到合約之間對沖的目的,可以減少總體的保證金要求,提高資金利用率。
2. 逐倉模式 逐倉保證金對於投機倉位很有用。這個賬戶里的資產是你可能的最大損失,從而在你的短期投機交易策略失效時幫助到你,將損失限定在一個范圍內。比如,在波動率較高,杠桿較大的情況下,雖然很容易被強平,但最終的損失僅僅是這個賬戶下的資產,而不影響其他賬戶余額。
3. 在賬戶資金使用上,全倉模式是賬戶資金全部作為保證金使用,由多個合約倉位共享。而逐倉模式是各個賬戶單獨核算保證金,盈虧互不影響。可以理解為全倉就是所有的雞蛋放在一個籃子里,逐倉就是把雞蛋分散到多個籃子里。
E. 路由器中的wlan0和eth0分別是什麼,兩者有什麼區別
1wlan0是外網口,就是進線口
2eth0口是內網口,也就是區域網口
3有wlan0口域eth0,路由器中已經做好了路由,只要把IP地址配置上,就可以直接聯網外部網路不用自己配置路由了
4.上網的策略等還是可以配置的。
F. 27歲以太幣創建者獲利11億美元,以太幣值得投資嗎
以太必正在經歷重大的變革。 ETH的基本資產評估方法是不透明的,且不斷變化。如果把 ETH看作貨幣、消費品或有利息的資產,投資者就可以在分配資產時考慮一系列可能的結果。若以太坊2.0得以成功實施,投資者可望將以太坊作為持續盈利的生息資產。前途可望!EtherGroup是構建區塊鏈項目並推出中心化應用程序的第一個平台。以太坊網路成立以來最初幾年ERC-20獨特的代幣交易數量。雖然區塊鏈創業公司的市場擴張在2018年第一次泡沫破裂之後有所放緩,但總市值仍然保持著增長。雖然以太坊擁有 Tron、 Polkadot、 Cardano、 Cosmos和 Tezos等強大的競爭對手,但 Vitalik Buterin的加密貨幣平台在這方面仍處於領先地位。
ETH雖是 BTC代幣之一,但有其獨特的投資價值。而且與 BTC一樣,國內頭部交易所如歐易OKEx已全面上線包括 ETH、 LTC等主流貨幣衍生品交易,歐易OKEx本身成立時間較長,操作簡便。
G. 同樣的顯卡etc和eth算力一樣嗎
不一樣。
ctc和eth採用了不同的演算法,所以算力不一樣。
顯卡並不能挖火爆的比特幣,在算力上沒有優勢,那是屬於礦機的。顯卡現在能挖的虛擬貨幣叫做eth,也就是以太坊。30系列優異的性能顯然是挖eth理想的工具。3090算力大約是106mh/s,到3060這里,大約是40+mh/s,考慮到英偉達的定價策略,如果能原價買到GPU的話,顯然3060是理想的挖礦工具:速度大約不到一半,但價格只有三分之一。
H. 500U以太坊需要怎麼合理設置跟單比例
合理設置跟單比例。資的價值在於穩定復利,即時准確的建議才是最大的幫助,不求百分之百但求穩定盈利馬小強一路同行BTC操作建議空單進場點60400附近開空,止損60600 止盈59800多單進場點:58800附近做多,止損58500 止盈59400。
早間行情圍繞30線附近震盪徘徊尋找突破契機,昨日說過當出現真正的高點的時候行情會回落進行修復,這個時候就是我們進場的最佳時機晚也經過驗證空單止盈抓幾百個點的小波段已經可以了,四小時級別圖中,布林帶收口。
行情從布林帶的上軌附近逐漸回落至其中上軌區域運行,現位於60189五日均線和十日均線均粘合運行,幣價在其附近波動,並不斷的嘗試著企穩在其上方運行附圖中,MACD快慢線在零軸上方運行,呈現死叉狀態而RSI和Stoch均保持著平緩的姿態運行著。
行情觀點:
ETH依然延續我們昨日說過的,走出高點後符合我們所說的進行回落修復,在震盪修復期間耐心等待,還是老規矩把握小波段,4小時級別上看,收線小陽,價格虛破防守線支撐,後市關注該位置的實破情況,布林通道微微開口.
攻擊線偏向下行,附圖指標向上放量,價格有上行的意行情波幅過快,帖子因為發送的時間與行情具有偏差,操作的時候大家一定要注意,當點位差距過大,謹慎進場。
I. Linux Bonding 怎麼玩
一、什麼是bondingLinux bonding 驅動提供了一個把多個網路介面設備捆綁為單個的網路介面設置來使用,用於網路負載均衡及網路冗餘二、bonding應用方向1、網路負載均衡對於bonding的網路負載均衡是我們在文件伺服器中常用到的,比如把三塊網卡,當做一塊來用,解決一個IP地址,流量過大,伺服器網路壓力過大的問題。對於文件伺服器來說,比如NFS或SAMBA文件伺服器,沒有任何一個管理員會把內部網的文件伺服器的IP地址弄很多個來解決網路負載的問題。如果在內網中,文件伺服器為了管理和應用上的方便,大多是用同一個IP地址。對於一個百M的本地網路來說,文件伺服器在多 個用戶同時使用的情況下,網路壓力是極大的,特別是SAMABA和NFS伺服器。為了解決同一個IP地址,突破流量的限制,畢竟網線和網卡對數據的吞吐量是有限制的。如果在有限的資源的情況下,實現網路負載均衡,最好的辦法就是 bonding 2、網路冗餘對於伺服器來說,網路設備的穩定也是比較重要的,特別是網卡。在生產型的系統中,網卡的可靠性就更為重要了。在生產型的系統中,大多通過硬體設備的冗餘來提供伺服器的可靠性和安全性,比如電源。bonding 也能為網卡提供冗餘的支持。把多塊網卡綁定到一個IP地址,當一塊網卡發生物理性損壞的情況下,另一塊網卡自動啟用,並提供正常的服務,即:默認情況下只有一塊網卡工作,其它網卡做備份三、bonding實驗環境及配置1、實驗環境系統為:CentOS,使用4塊網卡(eth0、eth1 ==> bond0;eth2、eth3 ==> bond1)來實現bonding技術2、bonding配置第一步:先查看一下內核是否已經支持bonding1)如果內核已經把bonding編譯進內核,那麼要做的就是載入該模塊到當前內核;其次查看ifenslave該工具是否也已經編譯modprobe -l bond*或者 modinfo bondingmodprobe bondinglsmod | grep 'bonding'echo 'modprobe bonding &> /dev/null' >> /etc/rc.local(開機自動載入bonding模塊到內核)which ifenslave注意:默認內核安裝完後就已經支持bonding模塊了,無需要自己手動編譯2)如果bonding還沒有編譯進內核,那麼要做的就是編譯該模塊到內核(1)編譯bondingtar -jxvf kernel-XXX.tar.gzcd kernel-XXXmake menuconfig選擇 " Network device support " -> " Bonding driver support "make bzImagemake moles && make moles_installmake install(2)編譯ifenslave工具gcc -Wall -O -I kernel-XXX/include ifenslave.c -o ifenslave第二步:主要有兩種可選擇(第1種:實現網路負載均衡,第2種:實現網路冗餘)例1:實現網路冗餘(即:mod=1方式,使用eth0與eth1)(1)編輯虛擬網路介面配置文件(bond0),並指定網卡IPvi /etc/sysconfig/network-scripts/ifcfg-bond0DEVICE=bond0ONBOOT=yesBOOTPROTO=staticIPADDR=192.168.0.254BROADCAST=192.168.0.255NETMASK=255.255.255.0NETWORK=192.168.0.0GATEWAY=192.168.0.1USERCTL=noTYPE=Ethernet注意:建議不要指定MAC地址vi /etc/sysconfig/network-scripts/ifcfg-eth0DEVICE=eth0BOOTPROTO=noneONBOOT=yesUSERCTL=noMASTER=bond0SLAVE=yes注意:建議不要指定MAC地址vi /etc/sysconfig/network-scripts/ifcfg-eth1DEVICE=eth1BOOTPROTO=noneONBOOT=yesUSERCTL=noMASTER=bond0SLAVE=yes注意:建議不要指定MAC地址(2)編輯模塊載入配置文件(/etc/modprobe.conf),開機自動載入bonding模塊到內核
vi /etc/modprobe.conf
alias bond0 bonding options bond0 miimon=100 mode=1
alias net-pf-10 off #關閉ipv6支持說明:miimon是用來進行鏈路監測的。 比如:miimon=100,那麼系統每100ms監測一次鏈路連接狀態,如果有一條線路不通就轉入另一條線路;mode的值表示工作模式,他共有0,1,2,3,4,5,6六種模式,常用為0,6,1三種,具體後面會介紹 mode=0,表示load balancing (round-robin)為負載均衡方式,兩塊網卡都工作,但是與網卡相連的交換必須做特殊配置( 這兩個埠應該採取聚合方式),因為做bonding的這兩塊網卡是使用同一個MAC地址mode=6,表示load balancing (round-robin)為負載均衡方式,兩塊網卡都工作,但是該模式下無需配置交換機,因為做bonding的這兩塊網卡是使用不同的MAC地址mode=1,表示fault-tolerance (active-backup)提供冗餘功能,工作方式是主備的工作方式,也就是說默認情況下只有一塊網卡工作,另一塊做備份 注意:bonding只能提供鏈路監測,即從主機到交換機的鏈路是否接通。如果只是交換機對外的鏈路down掉了,而交換機本身並沒有故障,那麼bonding會認為鏈路沒有問題而繼續使用(4)重啟並測試第一:由於bonding使用的模式為mod=1(網路冗餘),所以eth0、eth1與虛擬的bond0同一個MAC地址注意:對比上面這兩個圖,可知mode=1模式下,eth0與eth1這兩塊網卡,只有一塊網卡在工作(即:eth0),因為eth1網卡的RX與TX都沒有在發生變化第二:測試,用ping指令ping虛擬網卡設備bond0的IP地址(192.168.0.254),然後禁用eth0設備看一下能夠繼續ping的通說明:如上圖可得到,斷開eth0(上圖的右下角),還是可以ping的通的例2:實現網路負載均衡和網路冗餘(即:mod=0方式,使用eth0與eth1)注意:VM中只能做mode=1的實驗,其它的工作模式得用真機來實踐跟例1的步驟一樣,只需要修改模塊載入配置文件(/etc/modprobe.conf),如下:
alias bond0 bonding options bond0 miimon=100 mode=0
(1)測試如下##目前兩塊網卡都處於連接狀態root@Web:~# ifconfig | grep 'eth' | awk '{print $1}'eth0eth1##禁用了網卡eth0,用ping指令測試反之,也是一樣的!例3:實現網路負載均衡和網路冗餘(即:mod=6方式,使用eth0與eth1,其中eth0設置為primay)跟例1的步驟一樣,只需要修改模塊載入配置文件(/etc/modprobe.conf),如下:alias bond0 bonding options bond0 miimon=100 mode=6上圖可知:mode=6時,eth0與eth1所使用的MAC是不一樣的(1)測試如下##目前兩塊網卡都處於連接狀態root@Web:~# ifconfig | grep 'eth' | awk '{print $1}'eth0eth1##禁用了網卡eth0,用ping指令測試四、bonding運用的注意事項1、bonding的模式:0-6,即:7種模式第一種模式:mod=0 ,即:(balance-rr) Round-robin policy(平衡掄循環策略)特點:傳輸數據包順序是依次傳輸(即:第1個包走eth0,下一個包就走eth1....一直循環下去,直到最後一個傳輸完畢), 此模式提供負載平衡和容錯能力;但是我們知道如果一個連接或者會話的數據包從不同的介面發出的話,中途再經過不同的鏈路,在客戶端很有可能會出現數據包無序到達的問題,而無序到達的數據包需要重新要求被發送,這樣網路的吞吐量就會下降第二種模式:mod=1,即: (active-backup) Active-backup policy(主-備份策略)特點:只有一個設備處於活動狀態,當 一個宕掉另一個馬上由備份轉換為主設備。mac地址是外部可見得,從外面看來,bond的MAC地址是唯一的,以避免switch(交換機)發生混亂。此模式只提供了容錯能力;由此可見此演算法的優點是可以提供高網路連接的可用性,但是它的資源利用率較低,只有一個介面處於工作狀態,在有 N 個網路介面的情況下,資源利用率為1/N第三種模式:mod=2,即:(balance-xor) XOR policy(平衡策略)特點:基於指定的傳輸HASH策略傳輸數據包。預設的策略是:(源MAC地址 XOR 目標MAC地址) % slave數量。其他的傳輸策略可以通過xmit_hash_policy選項指定,此模式提供負載平衡和容錯能力第四種模式:mod=3,即:broadcast(廣播策略)特點:在每個slave介面上傳輸每個數據包,此模式提供了容錯能力第五種模式:mod=4,即:(802.3ad) IEEE 802.3ad Dynamic link aggregation(IEEE 802.3ad 動態鏈接聚合)特點:創建一個聚合組,它們共享同樣的速率和雙工設定。根據802.3ad規范將多個slave工作在同一個激活的聚合體下。外出流量的slave選舉是基於傳輸hash策略,該策略可以通過xmit_hash_policy選項從預設的XOR策略改變到其他策略。需要注意的是,並不是所有的傳輸策略都是802.3ad適應的,尤其考慮到在802.3ad標准43.2.4章節提及的包亂序問題。不同的實現可能會有不同的適應性。必要條件:條件1:ethtool支持獲取每個slave的速率和雙工設定條件2:switch(交換機)支持IEEE 802.3ad Dynamic link aggregation條件3:大多數switch(交換機)需要經過特定配置才能支持802.3ad模式第六種模式:mod=5,即:(balance-tlb) Adaptive transmit load balancing(適配器傳輸負載均衡)特點:不需要任何特別的switch(交換機)支持的通道bonding。在每個slave上根據當前的負載(根據速度計算)分配外出流量。如果正在接受數據的slave出故障了,另一個slave接管失敗的slave的MAC地址。該模式的必要條件:ethtool支持獲取每個slave的速率第七種模式:mod=6,即:(balance-alb) Adaptive load balancing(適配器適應性負載均衡)特點:該模式包含了balance-tlb模式,同時加上針對IPV4流量的接收負載均衡(receive load balance, rlb),而且不需要任何switch(交換機)的支持。接收負載均衡是通過ARP協商實現的。bonding驅動截獲本機發送的ARP應答,並把源硬體地址改寫為bond中某個slave的唯一硬體地址,從而使得不同的對端使用不同的硬體地址進行通信。來自伺服器端的接收流量也會被均衡。當本機發送ARP請求時,bonding驅動把對端的IP信息從ARP包中復制並保存下來。當ARP應答從對端到達時,bonding驅動把它的硬體地址提取出來,並發起一個ARP應答給bond中的某個slave。使用ARP協商進行負載均衡的一個問題是:每次廣播 ARP請求時都會使用bond的硬體地址,因此對端學習到這個硬體地址後,接收流量將會全部劉翔當前的slave。這個問題通過給所有的對端發送更新(ARP應答)來解決,應答中包含他們獨一無二的硬體地址,從而導致流量重新分布。當新的slave加入到bond中時,或者某個未激活的slave重新激活時,接收流量也要重新分布。接收的負載被順序地分布(round robin)在bond中最高速的slave上當某個鏈路被重新接上,或者一個新的slave加入到bond中,接收流量在所有當前激活的slave中全部重新分配,通過使用指定的MAC地址給每個 client發起ARP應答。下面介紹的updelay參數必須被設置為某個大於等於switch(交換機)轉發延時的值,從而保證發往對端的ARP應答不會被switch(交換機)阻截。必要條件:條件1:ethtool支持獲取每個slave的速率;條件2:底層驅動支持設置某個設備的硬體地址,從而使得總是有個slave(curr_active_slave)使用bond的硬體地址,同時保證每個bond 中的slave都有一個唯一的硬體地址。如果curr_active_slave出故障,它的硬體地址將會被新選出來的 curr_active_slave接管其實mod=6與mod=0的區別:mod=6,先把eth0流量占滿,再佔eth1,....ethX;而mod=0的話,會發現2個口的流量都很穩定,基本一樣的帶寬。而mod=6,會發現第一個口流量很高,第2個口只佔了小部分流量2、bonding驅動選項Bonding驅動的選項是通過在載入時指定參數來設定的。可以通過insmod或modprobe命令的命令行參數來指定,但通常在/etc/modprobe.conf配置文件中指定,或其他的配置文件中下面列出可用的bonding驅動參數。如果參數沒有指定,驅動會使用預設參數。剛開始配置bond的時候,建議在一個終端窗口中運行"tail -f /var/log/messages"來觀察bonding驅動的錯誤信息【譯註:/var/log/messages一般會列印內核中的調試信息】有些參數必須要正確的設定,比如miimon、arp_interval和arp_ip_target,否則在鏈接故障時會導致嚴重的網路性能退化。很少的設備不支持miimon,因此沒有任何理由不使用它們。有些選項不僅支持文本值的設定,出於兼容性的考慮,也支持數值的設定,比如,"mode=802.3ad"和"mode=4"效果是一樣的具體的參數列表:1)primay指定哪個slave成為主設備(primary device),取值為字元串,如eth0,eth1等。只要指定的設備可用,它將一直是激活的slave。只有在主設備(primary device)斷線時才會切換設備。這在希望某個slave設備優先使用的情形下很有用,比如,某個slave設備有更高的吞吐率注意: primary選項只對active-backup模式有效2)updelay指定當發現一個鏈路恢復時,在激活該鏈路之前的等待時間,以毫秒計算。該選項只對miimon鏈路偵聽有效。updelay應該是miimon值的整數倍,如果不是,它將會被向下取整到最近的整數。預設值為03)arp_interval指定ARP鏈路監控頻率,單位是毫秒(ms)。如果APR監控工作於以太兼容模式(模式0和模式2)下,需要把switch(交換機)配置為在所有鏈路上均勻的分發網路包。如果switch(交換機)被配置為以XOR方式分發網路包,所有來自ARP目標的應答將會被同一個鏈路上的其他設備收到,這將會導致其他設備的失敗。ARP監控不應該和miimon同時使用。設定為0將禁止ARP監控。預設值為04)arp_ip_target指定一組IP地址用於ARP監控的目標,它只在arp_interval > 0時有效。這些IP地址是ARP請求發送的目標,用於判定到目標地址的鏈路是否工作正常。該設定值為ddd.ddd.ddd.ddd格式。多個IP地址通過逗號分隔。至少指定一個IP地址。最多可以指定16個IP地址。預設值是沒有IP地址5)downdelay指定一個時間,用於在發現鏈路故障後,等待一段時間然後禁止一個slave,單位是毫秒(ms)。該選項只對miimon監控有效。downdelay值應該是miimon值的整數倍,否則它將會被取整到最接近的整數倍。預設值為06)lacp_rate指定在802.3ad模式下,我們希望的鏈接對端傳輸LACPDU包的速率。可能的選項:(1)slow 或者 0請求對端每30s傳輸LACPDU(2)fast 或者 1請求對端每1s傳輸LACPDU(3)預設值是slow7)max_bonds為bonding驅動指定創建bonding設備的數量。比如:如果max_bonds為3,而且bonding驅動還沒有載入,那麼bond0,bond1,bond2將會被創建。預設值為16)miimon指定MII鏈路監控頻率,單位是毫秒(ms)。這將決定驅動檢查每個slave鏈路狀態頻率0表示禁止MII鏈路監控。100可以作為一個很好的初始參考值。下面的use_carrier選項將會影響如果檢測鏈路狀態。更多的信息可以參考「高可靠性」章節。預設值為08)mode指定bonding的策略。預設是balance-rr (round robin,循環賽)。可選的mode包括:0,1,2,3,4,5,63、bonding鏈路監測方法官方文檔里說有兩種針對鏈路的監測方法(注意:這兩種監測不能同時使用)第一種:miimon(這種方法是最常見的,此方法使用系統的mii-tool命令進行監測)模塊載入設置(/etc/modprobe.conf):# Start of bonding configurealias bond0 bondingoptions bond0 miimon=100 mode=1注意:使用cat /proc/net/bonding/bond0,可查看Bonding Mode: load balancing (round-robin)狀態options bond0 miimon=100 mode=0注意:使用cat /proc/net/bonding/bond0,可查看Bonding Mode: load balancing ((active-backup))狀態 root@Web:~# mii-tooleth0: negotiated 100baseTx-HD, link oketh1: negotiated 100baseTx-HD, link ok缺點:這種方法,只能監測交換機與該網卡之間的鏈路;如果它們之外的鏈路的地方斷了,而交換機本身沒有問題,也就是說你的網卡和交換機之間還是UP狀態,它是不會認為網路中斷,除非你的網卡是DOWN狀態,它才會把鏈路轉到另一塊網卡上,就像是拔掉網線一樣,或者把交換機埠shutdown一樣第二種:arp(這種方法比較實用,你可以把它看作是arp的ping(二層ping),但是可能會給網關造成一定的壓力)模塊載入:alias bond0 bondingoptions bond0 arp_interval=100 arp_ip_target=192.168.1.1 mode=active-backup primary=eth0解析如下:arp_interval=100,表示arp的檢測時間,等同於miimon=100的作用arp_ip_target=192.168.1.1,表示arp檢測的目標IP,必須是同網段的,最好就是網關注意:如果使用arp來ping網關不通,那麼在/proc/net/bonding/bond0里會一會down,一會up的優點:使用arp這種方法,如果交換機的上出現問題,網路不通,它就會把鏈轉到另一塊網卡上,但是不管是哪種方法,在第一塊網卡出現問題,鏈路轉到第二塊後,如果第一塊恢復正常,鏈路自己不會恢復的
J. 一台伺服器有兩塊網卡ETH0和ETH1,用同一台電腦PING ETH0正常,PING ETH1卻不通,怎麼解決ETH1不通的問題
你可以檢查一下,A和C的IP肯定是192.168.0.* ,因為A/C和ETH1不處於同一網段,所以不能PING通,要想A/C實現文件共享,可以手動設置IP為192.168.2.*