當前位置:首頁 » 幣種行情 » IAA和ETH都能誘導黃瓜雄花的分化

IAA和ETH都能誘導黃瓜雄花的分化

發布時間: 2023-03-18 22:29:18

A. (2012淮南二模)如圖表示GA(赤黴素)、ETH(乙烯)和IAA(吲哚乙酸)的關系,「+」表示促進,「-」表

A、由題圖可知GA和IAA均可促進生長,表現為協同作用.A正確.
B、分析題圖可知GA可以通過抑制IAA氧化酶的活性來阻止IAA濃度的降低.所以B錯誤.
C、由題圖知,IAA對ETH有促進作用,而ETH的作用是抑制生長,因此IAA兩重性可能與ETH有關.C正確.
D、分析題圖可以推測,束縛態IAA可能具有平衡植物體內IAA水平的作用.
故應選B.

B. 植物的休眠與生長的調節激素是什麼怎樣調節的

植物生長激素

植物激素 概念:植物體內合成的,並能從產生之處運送到別處,對植物生長發育產生顯著作用的有機化學物質。

植物激素種類:目前得到普遍公認的有生長素類、赤黴素類、細胞分裂素類、脫落酸和乙烯五大類。除此之外,還有芸薹素、月光素和多胺素等也具有生長物質活性。

植物激素特點:

1、內生的。它是植物生活動過程中的正常代謝產物。也稱為內源激素。

2、能移動的。即從產生部位或合成器官經運輸到靶器官起作用。

3、非營養物質。它在體內含量低,但對代謝過程起極大的調節作用。微克級

一、生長素

(一)發現

生長素是發現最早的植物激素。

1872年波蘭的西斯勒克發現水平根彎麴生長是受重力影響,感應部位在根尖,因而推測根尖向根基傳導刺激性物質。

1880年英國達爾文父子進行了胚芽鞘向光性試驗,證實單側光影響胚芽鞘尖產生刺激並傳遞。

1928年荷蘭人溫特證明胚芽鞘確有物質傳遞,並首先在鞘尖上分離了與生長有關的物質。

1934年荷蘭人郭葛分離純粹的激素,經鑒定為吲哚乙酸,簡稱IAA

(二)分布和運輸

生長素在植物體內分布廣,但主要分布在生長旺盛和幼嫩的部位。如:莖尖、根尖、受精子房等。

運輸存在極性運輸(只能從形態學上端向下端運輸而不能反向運輸)和非極性運輸現象。在莖部是通過韌皮部,胚芽鞘是薄壁細胞,葉片中則是在葉脈。

(三)生理作用

1、促進植物生長 生長素能促進營養器官的伸長,在適宜濃度下對芽、莖、根細胞的伸長有明顯的促進作用。不同器官適宜的激素濃度不一樣,濃度增大反而會起抑製作用。一般莖端最高,芽次之,根最低。

2、生長素還能促進細胞分裂、果實發育和單性結實、保持頂端優勢、愈傷組織的產生,子房膨大和無子果實,插枝生根、器官脫落等有關。

二、赤黴素

(一)發現

1926年日本黑澤英一在研究引起水稻植株徒長的惡苗病時發現的。惡苗病是一種由名為赤黴菌的分泌物引起的水稻苗徒長且葉片發黃,易倒伏,赤黴素因此而得名。

1938年日本藪田貞次提取之,為赤霉酸GA 3。

1959年鑒定出化學結構。

到目前為止,各種植物中均發現有赤黴素存在。根據報道,從低等到高等植物中已分離的赤黴素百餘種,做過化學結構鑒定的已有 50餘種。命名是根據發現前後常以GA1,GA2,GA 3..... 來命名的。

微克級

(二)合成部位和運輸

赤黴素普遍存在於高等植物體內,赤黴素活性最高的部位是植株生長最旺盛的部位。營養芽、幼葉、正在發育的種子和胚胎等含量高,合成也最活躍。成熟或衰老的部位則含量低。

赤黴素在植物體內沒有極性運輸,體內合成後可做雙向運輸,向下運輸通過韌皮部,向上運輸通過木質部隨蒸騰流上升。

(三)生理作用

1、促進細胞分裂和莖的伸長 這是赤黴素最顯著的生理效應,尤其對矮生突變品種的效果特別顯著。原因是矮生品種如玉米和豌豆系單基因突變使植物缺少赤黴素的產生能力。對以葉莖為收獲目的的植物象芹菜、萵苣、韭菜、薴麻茶葉等應用後可以提前收獲並增加產量。且無高濃度抑制問題。(與IAA明顯不同)

2、促進抽薹開花 日照長短和溫度高低是影響一些植物能否開花的制約因子(見12章成化生理)。如芹菜要求低溫和長日照兩個因子均滿足才能抽薹、開花,通過GA3處理,便可誘導開花,替代了植物需要的低溫和長日照。對於花芽已分化的植物,GA具有顯著的促進作用(針葉樹種)。

3、打破休眠 GA能有效的打破許多延存器官(種子、塊莖)的休眠,促進萌發。如當年收獲的馬鈴薯芽眼處於休眠狀態,0.1~1PPM的赤黴素浸泡10~15分鍾,即可打破休眠,一年兩季栽培。

4、促進雄花分化和提高結實率 對雌雄同株異花植物,使用GA後雄花比例增加,如黃瓜。還可提高梨蘋果的座果率,20~50PPM赤黴素噴施可防止棉花脫落。

5、促進單性結實 如用200~500PPM的赤黴素水溶液噴灑開花一周後的果穗,便可形成無子葡萄,無核率達60~90%。

三、細胞分裂素

(一)發現

細胞分裂素是一類具有促進細胞分裂等生理功能的植物生長物質的總稱。 1962~1964 Lethem首次從受精後11~16天的甜玉米灌漿初期的子粒中分離出天然的細胞分裂素,命名為玉米素並鑒定了化學結構。到目前為止已鑒定出幾十種。

(二)運輸和代謝

細胞分裂素普遍存在於旺盛生長的、正在進行分裂的組織或器官、未成熟種子、萌發種子和正在生長的果實。

合成部位為根系。生物合成了解甚少。

運輸無極性,可隨木質部蒸騰流向上輸送。

(三)生理作用

1、促進細胞分裂 細胞分裂過程包括細胞核分裂和細胞質分裂兩方面,通常認為生長素主要促進核的有絲分裂,細胞分裂素促進細胞質的分裂。故缺乏細胞分裂素時易形成多核細胞。

2、促進芽的分化 植物組織培養試驗發現CTK/IAA比例可對愈傷組織根芽分化起到調控作用。高比值有利於芽的分化,反之則有利於根的形成。比值適當愈傷組織保持生長而不分化。

3、促進細胞擴大 用CTK處理四季豆黃花葉的圓片或菜豆、蘿卜的子葉可見細胞明顯地擴大。

4、促進側芽發育,解除頂端優勢 CTK作用於腋芽可促進維管束分化有利於營養物質的運輸,從而促進腋芽的發育。

5、延緩葉片衰老 離體葉片上如塗抹CTK則塗抹部位可在較長時間內保持鮮綠,因而CTK具有延緩葉片衰老的作用。CTK移動性差,塗抹後可從周圍吸取營養,以保持其新鮮度,而使周圍組織迅速衰老。因此CTK若處理水果和鮮花則有保鮮保綠的作用。還有解除需光種子的休眠等作用。

四 脫落酸

一、脫落酸的發現

(一)脫落酸的發現
脫落酸(abscisic acid,ABA)是指能引起芽休眠、葉子脫落和抑制生長等生理作用的植物激素。它是人們在研究植物體內與休眠、脫落和種子萌發等生理過程有關的生長抑制物質時發現的。
1961年劉(W.C.liu)等在研究棉花幼鈴的脫落時,從成熟的干棉殼中分離純化出了促進脫落的物質,並命名這種物質為脫落素(後來阿迪柯特將其稱為脫落素Ⅰ)。1963年大熊和彥和阿迪柯特(K.Ohkuma and F.T.Addicott)等從225kg 4~7天齡的鮮棉鈴中分離純化出了9mg具有高度活性的促進脫落的物質,命名為脫落素Ⅱ(abscisinⅡ)。
在阿迪柯特領導的小組研究棉鈴脫落的同時,英國的韋爾林和康福思)領導的小組正在進行著木本植物休眠的研究。幾乎就在脫落素Ⅱ發現的同時,伊格爾斯(C.F.Eagles)和韋爾林從樺樹葉中提取出了一種能抑制生長並誘導旺盛生長的枝條進入休眠的物質,他們將其命名為休眠素(dormin)。1965年康福思等從28kg秋天的干槭樹葉中得到了260μg的休眠素純結晶,通過與脫落素Ⅱ的分子量、紅外光譜和熔點等的比較鑒定,確定休眠素和脫落素Ⅱ是同一物質。1967年在渥太華召開的第六屆國際生長物質會議上,這種生長調節物質正式被定名為脫落酸。

(二)ABA的結構特點
ABA是以異戊二烯為基本單位的倍半萜羧酸,化學名稱為5-(1′-羥基�2′,6′,6′-三甲基-4′-氧代-2′-環己烯-1′-基)-3-甲基-2-順-4-反-戊二烯酸〔5-(1′-hydroxy-2′,6′,6′-trimethyl-4′-oxo-2′-cyclohexen-1′-yl)-3-methyl-2-cis�-4-trans-pentadienoic acid〕,分子式為C15H20O4,分子量為264.3。ABA環1′位上為不對稱碳原子,故有兩種旋光異構體。植物體內的天然形式主要為右旋ABA即(+)-ABA,又寫作(S)-ABA。

(三) ABA的分布與運輸
脫落酸存在於全部維管植物中,包括被子植物、裸子植物和蕨類植物。苔類和藻類植物中含有一種化學性質與脫落酸相近的生長抑制劑,稱為半月苔酸(lunlaric acid),此外,在某些苔蘚和藻類中也發現存在有ABA。
高等植物各器官和組織中都有脫落酸,其中以將要脫落或進入休眠的器官和組織中較多,在逆境條件下ABA含量會迅速增多。水生植物的ABA含量很低,一般為3~5μg·kg-1;陸生植物含量高些,溫帶谷類作物通常含50~500μg·kg-1�,鱷梨的中果皮與團花種子含量高達10mg·kg-1與11.7mg·kg-1。
脫落酸運輸不具有極性。在菜豆葉柄切段中,14C-脫落酸向基運輸的速度是向頂運輸速度的2倍~3倍。脫落酸主要以游離型的形式運輸,也有部分以脫落酸糖苷的形式運輸。脫落酸在植物體的運輸速度很快,在莖或葉柄中的運輸速率大約是20mm·h-1。

二、脫落酸的生理效應 �

(一) 促進休眠
外用ABA時,可使旺盛生長的枝條停止生長而進入休眠,這是它最初也被稱為"休眠素"的原因。在秋天的短日條件下,葉中甲瓦龍酸合成GA的量減少,而合成的ABA量不斷增加,使芽進入休眠狀態以便越冬。種子休眠與種子中存在脫落酸有關,如桃、薔薇的休眠種子的外種皮中存在脫落酸,所以只有通過層積處理,脫落酸水平降低後,種子才能正常發芽。

(二) 促進氣孔關閉
ABA可引起氣孔關閉,降低蒸騰,這是ABA最重要的生理效應之一。科尼什(K.Cornish,1986)發現水分脅迫下葉片保衛細胞中的ABA含量是正常水分條件下含量的18倍。ABA促使氣孔關閉的原因是它使保衛細胞中的K+外滲,從而使保衛細胞的水勢高於周圍細胞的水勢而失水。ABA還能促進根系的吸水與溢泌速率,增加其向地上部的供水量,因此ABA是植物體內調節蒸騰的激素,也可作為抗蒸騰劑使用。

(三) 抑制生長
ABA能抑制整株植物或離體器官的生長,也能抑制種子的萌發。ABA的抑制效應比植物體內的另一類天然抑制劑--酚要高千倍。酚類物質是通過毒害發揮其抑制效應的,是不可逆的,而ABA的抑制效應則是可逆的,一旦去除ABA,枝條的生長或種子的萌發又會立即開始。

(四)促進脫落
ABA是在研究棉花幼鈴脫落時發現的。ABA促進器官脫落主要是促進了離層的形成。將ABA塗抹於去除葉片的棉花外植體葉柄切口上,幾天後葉柄就開始脫落,此效應十分明顯,已被用於脫落酸的生物檢定。

(五)增加抗逆性
一般來說,乾旱、寒冷、高溫、鹽漬和水澇等逆境都能使植物體內ABA迅速增加,同時抗逆性增強。如ABA可顯著降低高溫對葉綠體超微結構的破壞,增加葉綠體的熱穩定性;ABA可誘導某些酶的重新合成而增加植物的抗冷性、抗澇性和抗鹽性。因此,ABA被稱為應激激素或脅迫激素(stress hormone)。

五 乙烯

一、乙烯的發現

早在上個世紀中葉(1864)就有關於燃氣街燈漏氣會促進附近的樹落葉的報道,但到本世紀初(1901)俄國的植物學家奈劉波(Neljubow)才首先證實是照明氣中的乙烯在起作用,他還發現乙烯能引起黃化豌豆苗的三重反應。第一個發現植物材料能產生一種氣體並對鄰近植物材料的生長產生影響的人是卡曾斯,他發現橘子產生的氣體能催熟同船混裝的香蕉。
雖然1930年以前人們就已認識到乙烯對植物具有多方面的影響,但直到1934年甘恩(Gane)才獲得植物組織確實能產生乙烯的化學證據。
1959年,由於氣相色譜的應用,伯格(S.P.Burg)等測出了未成熟果實中有極少量的乙烯產生,隨著果實的成熟,產生的乙烯量不斷增加。此後幾年,在乙烯的生物化學和生理學研究方面取得了許多成果,並證明高等植物的各個部位都能產生乙烯,還發現乙烯對許多生理過程、包括從種子萌發到衰老的整個過程都起重要的調節作用。1965年在柏格的提議下,乙烯才被公認為是植物的天然激素。
乙烯(ethylene,ET,ETH)是一種不飽和烴,其化學結構為CH2=CH2,是各種植物激素中分子結構最簡單的一種。乙烯在常溫下是氣體,分子量為28,輕於空氣。乙烯在極低濃度(0.01~0.1μl·L-1)時就對植物產生生理效應。種子植物、蕨類、苔蘚、真菌和細菌都可產生乙烯。
二、乙烯在植物體內的分布及運輸

乙烯在植物體內易於移動,並遵循虎克擴散定律。此外,乙烯還可穿過被電擊死了的莖段。這些都證明乙烯的運輸是被動的擴散過程,但其生物合成過程一定要在具有完整膜結構的活細胞中才能進行。
一般情況下,乙烯就在合成部位起作用。乙烯的前體ACC可溶於水溶液,因而推測ACC可能是乙烯在植物體內遠距離運輸的形式。

三、乙烯的生理效應

1、改變生長習性
乙烯對植物生長的典型效應是:抑制莖的伸長生長、促進莖或根的橫向增粗及莖的橫向生長(即使莖失去負向重力性),這就是乙烯所特有的"三重反應"乙烯促使莖橫向生長是由於它引起偏上生長所造成的。所謂偏上生長,是指器官的上部生長速度快於下部的現象。乙烯對莖與葉柄都有偏上生長的作用,從而造成了莖橫生和葉下垂。

2、促進成熟
催熟是乙烯最主要和最顯著的效應,因此乙烯也稱為催熟激素。乙烯對果實成熟、棉鈴開裂、水稻的灌漿與成熟都有顯著的效果。在實際生活中我們知道,一旦箱里出現了一隻爛蘋果,如不立即除去,它會很快使整個一箱蘋果都爛掉。這是由於腐爛蘋果產生的乙烯比正常蘋果的多,觸發了附近的蘋果也大量產生乙烯,使箱內乙烯的濃度在較短時間內劇增,誘導呼吸躍變,加快蘋果完熟和貯藏物質消耗的緣故。又如柿子,即使在樹上已成熟,但仍很澀口,不能食用,只有經過後熟過程後才能食用。由於乙烯是氣體,易擴散,故散放的柿子後熟過程很慢,放置十天半月後仍難食用。若將容器密閉(如用塑料袋封裝),果實產生的乙烯就不會擴散掉,再加上自身催化作用,後熟過程加快,一般5天後就可食用了。

3、促進脫落
乙烯是控制葉片脫落的主要激素。這是因為乙烯能促進細胞壁降解酶--纖維素酶的合辦成並且控制纖維素酶由原生質體釋放到細胞壁中,從而促進細胞衰老和細胞壁的分解,引起離區近莖側的細胞膨脹,從而迫使葉片、花或果實機械地脫離。

4、促進開花和雌花分化 �
乙烯可促進菠蘿和其它一些植物開花,還可改變花的性別,促進黃瓜雌花分化,並使雌、雄異花同株的雌花著生節位下降。乙烯在這方面的效應與IAA相似,而與GA相反,現在知道IAA增加雌花分化就是由於IAA誘導產生乙烯的結果。

5、乙烯的其它效應
乙烯還可誘導插枝不定根的形成,促進根的生長和分化,打破種子和芽的休眠,誘導次生物質(如橡膠樹的乳膠)的分泌等。

C. 5大類植物激素之間,哪些方面表現出相

1.生長素與赤黴素
生長素(IAA)與赤黴素(GA)促進生長有相互增效作用。用適當濃度的GA配合IAA噴施多種植物,能促進做春鄭莖生長;若單獨噴森顫施IAA,效果低於GA。兩者混合配製,施用效果較好。
生長素與赤黴素在黃瓜性別分化上表現出相互拮抗的關系。GA與IAA相互拮抗主要表現在控制花的性別上,IAA促進黃瓜雌花分化,GA3促進其雄花分化。如IAA處理過的黃瓜秧,再用GA處理.則生長索的作用可被抵消,反之亦然。
2.生長素與細胞分裂素
生長素(IAA)與細胞分裂素(cTK)之間的增效作用表現在cTK與IAA同時存在時,cTK的作用持續時間能
延長。cTK能加強IAA的極性運輸,有利於增強IAA的作用。
生長素與細胞分裂素的拮抗作用表現在CTK促進雙子葉植物側芽發育,純頌而IAA則抑制側芽發育。在控制頂端優勢中.cTK/IAA的比值高時有利於側芽發育,CTK/IAA比值低時有利於頂端優勢的保持。但激動素、玉米素和苄基嘌呤等能抑制生長素的促進作用。
3.生長素與乙烯
生長索(IAA)對乙烯(Acc)的促進作用表現在促進Acc合成酶活性,從而促進Acc合成,故高濃度IAA抑制生長。乙烯對生長素的影響表現在抑制生長索極性運輸、抑制生長素生物合成、促進生長素氧化酶活性。
4. 赤黴素與脫落酸
赤黴素(GA)與脫落酸(ABA)的拮抗表現在可打破芽或種子休眠,而ABA則促進休眠。二者合成前體一樣,條件不同。

D. 植物生長激素極其詳細作用 有無濃度、細胞成熟情況、器官種類不同而有所差別 謝謝~

1.植物激素: 在植物體內合成,從產生部位運到作用部位,微量濃度就能對植物的生長
發育產生顯著生理作用的活性有機物。
2.乙烯對植物生長的典型效應是:抑制莖的伸長生長;促進橫向加粗;莖失去負向重
力性,上胚軸向水平方向生長。這就是乙烯所特有的「三重反應」(triple response)。
3.偏上生長,是指器官的上部生長速度快於下部的現象。乙烯對莖與葉柄都有偏上生
長的作用,從而造成了莖橫生和葉下垂。
4.除乙烯外,其他四種植物在植物組織內以兩種形式存在:游離型(作用形式)和束
縛型(儲運形式、解毒、調節游離型含量)。植物激素的降解途徑有:酶促降解和光氧化降
解。運輸途徑:生長素(韌皮部運輸、極性運輸);赤黴素(無極性,根尖→導管↑,嫩葉→
篩管↓);細胞分裂素(主:根尖→木質部↑→地上部,少數:葉片→韌皮部);脫落酸(無極
性,木質部、韌皮部)。註:乙烯的運輸是被動的擴散過程,但一般在合成部位起作用,不
被轉運,而其前體ACC 在植物體內可被運輸。
5.五大類植物激素的作用:
生長素:促進生長(雙重作用:對物質運輸的影響。不同器官對生長素的敏感性不同;對離體器官和整株植物效應有別);促進插條不定根的形成;對養分的調運作用;誘導維管束分化;維持頂端優勢;誘導雌花分化(但效果不如乙烯)單性結實;促進光合產物的運輸;葉片的擴大和氣孔的開放;抑制花朵脫落。
赤黴素:促進莖的伸長生長;誘導開花;打破休眠;促進雄花分化;GA 還可加強IAA對養分的動員效應,促進某些植物坐果和延緩葉片衰老
細胞分裂素:促進芽的分化{[CTK]/[IAA]的比值高時,愈傷組織形成芽;[CTK]/[IAA]的比值低時,愈傷組織形成根)後來居上,芽高根低};促進細胞分裂;調節地上部和根細胞分裂;抑制根生長(偏上性生長);促進細胞擴大;促進側芽發育,消除頂端優勢;打破種子休眠;延緩葉片衰老;促進某些植物坐果和延緩葉片衰老。
脫落酸:脫落酸與種子發育;促進休眠;胎萌現象;促進氣孔關閉;乾旱條件下提高根導水率,促進根生長,抑制地上部生長;提高植物抗逆性;促進葉片衰老。
乙烯:改變生長習性(「三重反應」,偏上生長);促進果實成熟;促進根毛生長,打破某些植物種子和芽休眠;促進鳳梨科開花;促進水生植物地下部伸長生長;加速葉片衰老;促進脫落。
植物激素相互作用:
IAA 與GA:有增效作用。促進伸長生長,GA/IAA 比值高時,促進韌皮部分化,GA/IAA比值低時,促進木質部分化。
IAA 與CTK:增效作用: CTK 加強IAA 的極性運輸,加強IAA 效應。
對抗作用: CTK促進側芽生長,破壞頂端優勢;IAA 抑制側芽生長,保持頂端優勢。
IAA 與ETH:IAA 促進ETH 的生物合成,ETH 降低IAA 的含量水平(抑制IAA 的生物合成;提高IAA 氧化酶的活性,加速IAA 的破壞;阻礙IAA 的極性運輸)。
GA 與ABA :都是由異戊二烯單位構成的,相同的前體物質(甲瓦龍酸),對抗:GA打破休眠,促進萌發;ABA 促進休眠,抑制萌發。ABA 使GA 自由型→束縛型。

E. 何種激素能燈籠椒果實快速膨大

植物生長激素 植物激素 概念:植物體內合成的,並能從產生之處運送到別處,對植物生長發育產生顯著作用的有機化學物質。 植物激素種類:目前得到普遍公認的有生長素類、赤黴素類、細胞分裂素類、脫落酸和乙烯五大類。除此之外,還有芸薹素、月光素和多胺素等也具有生長物質活性。 植物激素特點: 1、內生的。它是植物生活動過程中的正常代謝產物。也稱為內源激素。 2、能移動的。即從產生部位或合成器官經運輸到靶器官起作用。 3、非營養物質。它在體內含量低,但對代謝過程起極大的調節作用。微克級 一、生長素 (一)發現 生長素是發現最早的植物激素。 1872年波蘭的西斯勒克發現水平根彎麴生長是受重力影響,感應部位在根尖,因而推測根尖向根基傳導刺激性物質。 1880年英國達爾文父子進行了胚芽鞘向光性試驗,證實單側光影響胚芽鞘尖產生刺激並傳遞。 1928年荷蘭人溫特證明胚芽鞘確有物質傳遞,並首先在鞘尖上分離了與生長有關的物質。 1934年荷蘭人郭葛分離純粹的激素,經鑒定為吲哚乙酸,簡稱IAA (二)分布和運輸 生長素在植物體內分布廣,但主要分布在生長旺盛和幼嫩的部位。如:莖尖、根尖、受精子房等。 運輸存在極性運輸(只能從形態學上端向下端運輸而不能反向運輸)和非極性運輸現象。在莖部是通過韌皮部,胚芽鞘是薄壁細胞,葉片中則是在葉脈。 (三)生理作用 1、促進植物生長 生長素能促進營養器官的伸長,在適宜濃度下對芽、莖、根細胞的伸長有明顯的促進作用。不同器官適宜的激素濃度不一樣,濃度增大反而會起抑製作用。一般莖端最高,芽次之,根最低。 2、生長素還能促進細胞分裂、果實發育和單性結實、保持頂端優勢、愈傷組織的產生,子房膨大和無子果實,插枝生根、器官脫落等有關。 二、赤黴素 (一)發現 1926年日本黑澤英一在研究引起水稻植株徒長的惡苗病時發現的。惡苗病是一種由名為赤黴菌的分泌物引起的水稻苗徒長且葉片發黃,易倒伏,赤黴素因此而得名。 1938年日本藪田貞次提取之,為赤霉酸GA 3。 1959年鑒定出化學結構。 到目前為止,各種植物中均發現有赤黴素存在。根據報道,從低等到高等植物中已分離的赤黴素百餘種,做過化學結構鑒定的已有 50餘種。命名是根據發現前後常以GA1,GA2,GA 3..... 來命名的。 微克級 (二)合成部位和運輸 赤黴素普遍存在於高等植物體內,赤黴素活性最高的部位是植株生長最旺盛的部位。營養芽、幼葉、正在發育的種子和胚胎等含量高,合成也最活躍。成熟或衰老的部位則含量低。 赤黴素在植物體內沒有極性運輸,體內合成後可做雙向運輸,向下運輸通過韌皮部,向上運輸通過木質部隨蒸騰流上升。 (三)生理作用 1、促進細胞分裂和莖的伸長 這是赤黴素最顯著的生理效應,尤其對矮生突變品種的效果特別顯著。原因是矮生品種如玉米和豌豆系單基因突變使植物缺少赤黴素的產生能力。對以葉莖為收獲目的的植物象芹菜、萵苣、韭菜、薴麻茶葉等應用後可以提前收獲並增加產量。且無高濃度抑制問題。(與IAA明顯不同) 2、促進抽薹開花 日照長短和溫度高低是影響一些植物能否開花的制約因子(見12章成化生理)。如芹菜要求低溫和長日照兩個因子均滿足才能抽薹、開花,通過GA3處理,便可誘導開花,替代了植物需要的低溫和長日照。對於花芽已分化的植物,GA具有顯著的促進作用(針葉樹種)。 3、打破休眠 GA能有效的打破許多延存器官(種子、塊莖)的休眠,促進萌發。如當年收獲的馬鈴薯芽眼處於休眠狀態,0.1~1PPM的赤黴素浸泡10~15分鍾,即可打破休眠,一年兩季栽培。 4、促進雄花分化和提高結實率 對雌雄同株異花植物,使用GA後雄花比例增加,如黃瓜。還可提高梨蘋果的座果率,20~50PPM赤黴素噴施可防止棉花脫落。 5、促進單性結實 如用200~500PPM的赤黴素水溶液噴灑開花一周後的果穗,便可形成無子葡萄,無核率達60~90%。 三、細胞分裂素 (一)發現 細胞分裂素是一類具有促進細胞分裂等生理功能的植物生長物質的總稱。 1962~1964 Lethem首次從受精後11~16天的甜玉米灌漿初期的子粒中分離出天然的細胞分裂素,命名為玉米素並鑒定了化學結構。到目前為止已鑒定出幾十種。 (二)運輸和代謝 細胞分裂素普遍存在於旺盛生長的、正在進行分裂的組織或器官、未成熟種子、萌發種子和正在生長的果實。 合成部位為根系。生物合成了解甚少。 運輸無極性,可隨木質部蒸騰流向上輸送。 (三)生理作用 1、促進細胞分裂 細胞分裂過程包括細胞核分裂和細胞質分裂兩方面,通常認為生長素主要促進核的有絲分裂,細胞分裂素促進細胞質的分裂。故缺乏細胞分裂素時易形成多核細胞。 2、促進芽的分化 植物組織培養試驗發現CTK/IAA比例可對愈傷組織根芽分化起到調控作用。高比值有利於芽的分化,反之則有利於根的形成。比值適當愈傷組織保持生長而不分化。 3、促進細胞擴大 用CTK處理四季豆黃花葉的圓片或菜豆、蘿卜的子葉可見細胞明顯地擴大。 4、促進側芽發育,解除頂端優勢 CTK作用於腋芽可促進維管束分化有利於營養物質的運輸,從而促進腋芽的發育。 5、延緩葉片衰老 離體葉片上如塗抹CTK則塗抹部位可在較長時間內保持鮮綠,因而CTK具有延緩葉片衰老的作用。CTK移動性差,塗抹後可從周圍吸取營養,以保持其新鮮度,而使周圍組織迅速衰老。因此CTK若處理水果和鮮花則有保鮮保綠的作用。還有解除需光種子的休眠等作用。 四 脫落酸 一、脫落酸的發現 (一)脫落酸的發現 脫落酸(abscisic acid,ABA)是指能引起芽休眠、葉子脫落和抑制生長等生理作用的植物激素。它是人們在研究植物體內與休眠、脫落和種子萌發等生理過程有關的生長抑制物質時發現的。 1961年劉(W.C.liu)等在研究棉花幼鈴的脫落時,從成熟的干棉殼中分離純化出了促進脫落的物質,並命名這種物質為脫落素(後來阿迪柯特將其稱為脫落素Ⅰ)。1963年大熊和彥和阿迪柯特(K.Ohkuma and F.T.Addicott)等從225kg 4~7天齡的鮮棉鈴中分離純化出了9mg具有高度活性的促進脫落的物質,命名為脫落素Ⅱ(abscisinⅡ)。 在阿迪柯特領導的小組研究棉鈴脫落的同時,英國的韋爾林和康福思)領導的小組正在進行著木本植物休眠的研究。幾乎就在脫落素Ⅱ發現的同時,伊格爾斯(C.F.Eagles)和韋爾林從樺樹葉中提取出了一種能抑制生長並誘導旺盛生長的枝條進入休眠的物質,他們將其命名為休眠素(dormin)。1965年康福思等從28kg秋天的干槭樹葉中得到了260μg的休眠素純結晶,通過與脫落素Ⅱ的分子量、紅外光譜和熔點等的比較鑒定,確定休眠素和脫落素Ⅱ是同一物質。1967年在渥太華召開的第六屆國際生長物質會議上,這種生長調節物質正式被定名為脫落酸。 (二)ABA的結構特點 ABA是以異戊二烯為基本單位的倍半萜羧酸,化學名稱為5-(1′-羥基 2′,6′,6′-三甲基-4′-氧代-2′-環己烯-1′-基)-3-甲基-2-順-4-反-戊二烯酸〔5-(1′-hydroxy-2′,6′,6′-trimethyl-4′-oxo-2′-cyclohexen-1′-yl)-3-methyl-2-cis -4-trans-pentadienoic acid〕,分子式為C15H20O4,分子量為264.3。ABA環1′位上為不對稱碳原子,故有兩種旋光異構體。植物體內的天然形式主要為右旋ABA即(+)-ABA,又寫作(S)-ABA。 (三) ABA的分布與運輸 脫落酸存在於全部維管植物中,包括被子植物、裸子植物和蕨類植物。苔類和藻類植物中含有一種化學性質與脫落酸相近的生長抑制劑,稱為半月苔酸(lunlaric acid),此外,在某些苔蘚和藻類中也發現存在有ABA。 高等植物各器官和組織中都有脫落酸,其中以將要脫落或進入休眠的器官和組織中較多,在逆境條件下ABA含量會迅速增多。水生植物的ABA含量很低,一般為3~5μg·kg-1;陸生植物含量高些,溫帶谷類作物通常含50~500μg·kg-1 ,鱷梨的中果皮與團花種子含量高達10mg·kg-1與11.7mg·kg-1。 脫落酸運輸不具有極性。在菜豆葉柄切段中,14C-脫落酸向基運輸的速度是向頂運輸速度的2倍~3倍。脫落酸主要以游離型的形式運輸,也有部分以脫落酸糖苷的形式運輸。脫落酸在植物體的運輸速度很快,在莖或葉柄中的運輸速率大約是20mm·h-1。 二、脫落酸的生理效應 (一) 促進休眠 外用ABA時,可使旺盛生長的枝條停止生長而進入休眠,這是它最初也被稱為"休眠素"的原因。在秋天的短日條件下,葉中甲瓦龍酸合成GA的量減少,而合成的ABA量不斷增加,使芽進入休眠狀態以便越冬。種子休眠與種子中存在脫落酸有關,如桃、薔薇的休眠種子的外種皮中存在脫落酸,所以只有通過層積處理,脫落酸水平降低後,種子才能正常發芽。 (二) 促進氣孔關閉 ABA可引起氣孔關閉,降低蒸騰,這是ABA最重要的生理效應之一。科尼什(K.Cornish,1986)發現水分脅迫下葉片保衛細胞中的ABA含量是正常水分條件下含量的18倍。ABA促使氣孔關閉的原因是它使保衛細胞中的K+外滲,從而使保衛細胞的水勢高於周圍細胞的水勢而失水。ABA還能促進根系的吸水與溢泌速率,增加其向地上部的供水量,因此ABA是植物體內調節蒸騰的激素,也可作為抗蒸騰劑使用。 (三) 抑制生長 ABA能抑制整株植物或離體器官的生長,也能抑制種子的萌發。ABA的抑制效應比植物體內的另一類天然抑制劑--酚要高千倍。酚類物質是通過毒害發揮其抑制效應的,是不可逆的,而ABA的抑制效應則是可逆的,一旦去除ABA,枝條的生長或種子的萌發又會立即開始。 (四)促進脫落 ABA是在研究棉花幼鈴脫落時發現的。ABA促進器官脫落主要是促進了離層的形成。將ABA塗抹於去除葉片的棉花外植體葉柄切口上,幾天後葉柄就開始脫落,此效應十分明顯,已被用於脫落酸的生物檢定。 (五)增加抗逆性 一般來說,乾旱、寒冷、高溫、鹽漬和水澇等逆境都能使植物體內ABA迅速增加,同時抗逆性增強。如ABA可顯著降低高溫對葉綠體超微結構的破壞,增加葉綠體的熱穩定性;ABA可誘導某些酶的重新合成而增加植物的抗冷性、抗澇性和抗鹽性。因此,ABA被稱為應激激素或脅迫激素(stress hormone)。 五 乙烯 一、乙烯的發現 早在上個世紀中葉(1864)就有關於燃氣街燈漏氣會促進附近的樹落葉的報道,但到本世紀初(1901)俄國的植物學家奈劉波(Neljubow)才首先證實是照明氣中的乙烯在起作用,他還發現乙烯能引起黃化豌豆苗的三重反應。第一個發現植物材料能產生一種氣體並對鄰近植物材料的生長產生影響的人是卡曾斯,他發現橘子產生的氣體能催熟同船混裝的香蕉。 雖然1930年以前人們就已認識到乙烯對植物具有多方面的影響,但直到1934年甘恩(Gane)才獲得植物組織確實能產生乙烯的化學證據。 1959年,由於氣相色譜的應用,伯格(S.P.Burg)等測出了未成熟果實中有極少量的乙烯產生,隨著果實的成熟,產生的乙烯量不斷增加。此後幾年,在乙烯的生物化學和生理學研究方面取得了許多成果,並證明高等植物的各個部位都能產生乙烯,還發現乙烯對許多生理過程、包括從種子萌發到衰老的整個過程都起重要的調節作用。1965年在柏格的提議下,乙烯才被公認為是植物的天然激素。 乙烯(ethylene,ET,ETH)是一種不飽和烴,其化學結構為CH2=CH2,是各種植物激素中分子結構最簡單的一種。乙烯在常溫下是氣體,分子量為28,輕於空氣。乙烯在極低濃度(0.01~0.1μl·L-1)時就對植物產生生理效應。種子植物、蕨類、苔蘚、真菌和細菌都可產生乙烯。 二、乙烯在植物體內的分布及運輸 乙烯在植物體內易於移動,並遵循虎克擴散定律。此外,乙烯還可穿過被電擊死了的莖段。這些都證明乙烯的運輸是被動的擴散過程,但其生物合成過程一定要在具有完整膜結構的活細胞中才能進行。 一般情況下,乙烯就在合成部位起作用。乙烯的前體ACC可溶於水溶液,因而推測ACC可能是乙烯在植物體內遠距離運輸的形式。 三、乙烯的生理效應 1、改變生長習性 乙烯對植物生長的典型效應是:抑制莖的伸長生長、促進莖或根的橫向增粗及莖的橫向生長(即使莖失去負向重力性),這就是乙烯所特有的"三重反應"乙烯促使莖橫向生長是由於它引起偏上生長所造成的。所謂偏上生長,是指器官的上部生長速度快於下部的現象。乙烯對莖與葉柄都有偏上生長的作用,從而造成了莖橫生和葉下垂。 2、促進成熟 催熟是乙烯最主要和最顯著的效應,因此乙烯也稱為催熟激素。乙烯對果實成熟、棉鈴開裂、水稻的灌漿與成熟都有顯著的效果。在實際生活中我們知道,一旦箱里出現了一隻爛蘋果,如不立即除去,它會很快使整個一箱蘋果都爛掉。這是由於腐爛蘋果產生的乙烯比正常蘋果的多,觸發了附近的蘋果也大量產生乙烯,使箱內乙烯的濃度在較短時間內劇增,誘導呼吸躍變,加快蘋果完熟和貯藏物質消耗的緣故。又如柿子,即使在樹上已成熟,但仍很澀口,不能食用,只有經過後熟過程後才能食用。由於乙烯是氣體,易擴散,故散放的柿子後熟過程很慢,放置十天半月後仍難食用。若將容器密閉(如用塑料袋封裝),果實產生的乙烯就不會擴散掉,再加上自身催化作用,後熟過程加快,一般5天後就可食用了。 3、促進脫落 乙烯是控制葉片脫落的主要激素。這是因為乙烯能促進細胞壁降解酶--纖維素酶的合辦成並且控制纖維素酶由原生質體釋放到細胞壁中,從而促進細胞衰老和細胞壁的分解,引起離區近莖側的細胞膨脹,從而迫使葉片、花或果實機械地脫離。 4、促進開花和雌花分化 乙烯可促進菠蘿和其它一些植物開花,還可改變花的性別,促進黃瓜雌花分化,並使雌、雄異花同株的雌花著生節位下降。乙烯在這方面的效應與IAA相似,而與GA相反,現在知道IAA增加雌花分化就是由於IAA誘導產生乙烯的結果。 5、乙烯的其它效應 乙烯還可誘導插枝不定根的形成,促進根的生長和分化,打破種子和芽的休眠,誘導次生物質(如橡膠樹的乳膠)的分泌等。

F. 哪些外界因素影響植物性別分化

影響植物的性別分化的外界因素有:
( 1 )光周期的影響 長日照促進長日植物多開雌花,短日植物多開雄花,而短 日照則促進短日植物多開雌花,長日植物多開雄花。
( 2 )溫周期 低溫與晝夜溫差對許多植物的雌花發育有利,例如番木瓜,低溫 雌花占優勢,中溫雌雄同花比例增加,高溫雄花佔主導。夜間低溫對菠菜、大麻、 葫蘆等植物的雌花發育有利,而對黃瓜槐猜唯則相反,夜溫低雌花減少,夜溫高雌花增 加。
( 3 )營養狀況 通常水分充足,鉛培氮肥較多促進雌花分化;土壤較干、氮肥較少 促進雄花分化。
( 4 )生長物質的調控 IAA 促進黃瓜雌花的分化; GA 促進黃瓜雄花的分兆凱化, 以及促進大麻雄株的分化; CTK 與 ETH 都能促進黃瓜多開雌花。此外,三碘苯 甲酸和馬來醯肼抑制雌花的產生;矮壯素則能抑制雄花的產生。
( 5 )其它措施 熏煙可增加雌花的數量;機械損傷誘導雌花與雌株的分化。

G. 促進多開雄花是誰的作用

對植物性別的認識 中國古代對於高等植物的性別就有認識。如春秋到西漢初寫成的《爾雅》(約2200年前)中就記載著「桑瓣謹孫有葚,梔」,意思是說,桑樹有半數能結桑椹,名為梔。在1400多年前,北魏時期的《齊民要術》《種麻子》篇中就正確地認識到雄麻散放花粉和雌麻結籽的關系,「既放勃,拔出雄,若未放勃去雄者,則不成子實」(放勃即指雄花放出花粉)。中國對於植物性別的認識比歐洲人早1000多年。在歐洲,關於植物有性的差別的概念是在18世紀由J.G.克爾羅伊特和C.von林奈奠定的。

大多數被子植物的雌、雄器官,即雌蘇和雄蕊,著生在同一朵花里。這類植物稱為雌雄同花植物,以符號表示;在某些植物中,雌、雄芯分別著生在不同的花里,成為單性的雌花和雄花,但雌花和雄花同時出現在同一植株上。這類植物為雌雄同株異花植物,以♂♀符號表示,如玉米和瓜類等。在另一些植物中,雌雄花分別著生在不同植株上,為雌雄異株植物,以♂/♀符號表示,如千年桐、大麻、銀杏等。此外還有許多中間類型,有的在同一植株上既有雌雄蕊同在一朵花中的兩性花,又有僅具雌蕊或雄蕊的單性花,以♂♀符號表示。

性染色體 許多雌雄異株植物都有性染色體,例如酸模的雄株含有12個常染色體和XY染色體(2n=14),而雌雄株則有12個常染色體和XXX染色體(2n=15)。銀杏的雄株具有22+XY染色體,而雌株則有22+XX染色體。不過,有些嚴格雌雄異株的植物,由於體細胞中,染色體形狀較小和數目較多,很難區分出性染色體。

性別的控制 與動物相比,植物的性別是相對不穩定的。它雖然受遺傳因子決定,但在外界環境條件和葯劑處理的影響下比較容易發生改變。

控制植物的性別分化有重要意義。在雌雄同株異花和雌雄異株植物中,不同性別的器官和植株具有不同的經濟價值。如果以種子和果實為收獲對象則需要大量的雌花或雌株,而有時為了其他目的,就更歡迎雄株,例如以纖維為收獲物的大麻,以雄株為優,因其纖維拉力較強,為了得到銀杏種子,宜多種雌株,而如用銀杏作行道樹,則又以雄株為佳。在雌雄同花植物中,有時為了育種的方便,也需要化學去雄。

自然界性別表現的規律性 在雌雄同株植物中,一般總是雄花先開,然後是兩性花和雄花混合出現,最後才是單純雌花。在蓖麻中這慎晌棚種情況很明顯,在黃瓜中,側枝較主莖形成較多的雌花,隨著分枝級數提高,雄花與雌花的比值下降。這一現象說明雌花是在植株開花進入晚期階段才出現的。

環境條件的影響 營養,溫度、日照長度、光質、光照強度、水分供應、空氣成分等都對植物性別分化有一定的影響。一般說來,充足的氮素營養,較高的空氣和土壤溫度,較低的氣溫(特別是夜間低溫),藍光,種子播前冷處理等,有利於雌性分化;高溫、紅光等因子則促進雄性分化。日照長度的影響因植物光周期類型而異;一般短日照促進短日植物(SDP)多開雌花,使長日植物(LDP)多開雄花;長日照的作用則相反。

性別的化學控制 在溫室栽培中,很早就有使用熏煙法提高黃瓜結實率的經驗。後來查明「煙」中有效成分為一氧化碳。寬則用0.3%一氧化碳處理黃瓜幼苗可使雄花數大大下降,雌花數顯著提高。一氧化碳處理不僅可改變雌雄花的比例,而且可改變雌雄花出現的順序,降低了雌花著生的節位,可使黃瓜提前長成上市。

植物激素,如生長素(IAA)、赤黴素(GA)、細胞分裂素(CTK)和乙烯(Eth)對植物的性別分化都有明顯的調節控製作用。一般而言,GA促進雄性分化,而IAA、Eth和CTK則促進雌性分化。ABA的作用缺少規律性。Eth能使瓜類,包括黃瓜和瓠瓜提早開雌花,增加雌花數,提高產量,已在生產上應用。

一些生長調節劑,包括類生長素、抗生長素以及激素合成抑制劑,對植物性別分化都有明顯的影響。

矮壯素(CCC)是GA合成的抑制劑。以10-1MCCC溶液噴灑或澆灌黃瓜幼苗,可使植株完全雌性化。

一些無機離子,如Ag+(常用AgNO3)和Co2+(常用CoCl2)能在一些植物的雌株中誘導出雄花,AgNO3和CoCl2都強烈地抑制乙烯在植物體內的生物合成,它們對性別的影響可能是通過對內生乙烯的調節作用。其他乙烯合成抑制劑,如氨基乙氧基乙烯甘氨酸(AVG)也能在雌雄蕊麻等植物中誘導出雄花。應用乙烯劑(一種能釋放乙烯的液體化合物),已誘導出雄性不育孕小麥和水稻。

植物的性別分化是植物成花生理的一個特殊問題,也是更廣泛的分化生理的一個問題。一般認為雌、雄同株植物形成雌、雄器官的基因均已在全能的分化細胞中預先編碼,環境因子或化學葯劑只起著一個阻抑或脫阻抑的作用。對於雌、雄異株植物,性別的逆轉與性染色體間的關系,尚待研究。

H. 關於植物激素的很傻的問題

普遍有效
生長素(AuXIns)是發現最早、研究最多、在植物體內存在最普遍的一種植物激素。早在1880年達爾文(CHArles DArWIn)父子進行向光性實驗時,首次發現植物幼苗尖端的胚芽鞘在單方向的光照下向光彎麴生長,但如果把尖端切除或用黑罩遮住光線,即使單向照光,幼苗也不會向光彎曲(圖6-1)。他們當時因此而推測:當胚芽鞘受到單側光照射時,在頂端可能產生一種物質傳遞到下部,引起苗的向光性彎曲。後來,在達爾文試驗的啟示下,很多學者都相繼進行了這方面的研究,並證實了這種物質的存在。其中最成功的是荷蘭人溫特(F�W�WenT),他在1928年首次成功地將生長素收集在瓊脂小塊中,證明這種物質同植物的向光性彎麴生長相關(圖6-2)。他建立的生長素生物鑒定法——燕麥試驗法,至今仍被應用。直到1946年,才從高等植物中首次分離,提取出與生長有關的活性物質,經過鑒定它是一種結構較簡單的有機化合物——吲哚乙酸(Indole ACeTIC ACId,簡稱IAA),其分子式為C10H9O2N,分子量為175.19。

二、生長素在植物體內的分布與運輸
植物體內生長素的含量雖然微少,但分布甚廣,植物的根、莖、葉、花、果實、種子及胚芽鞘中均有。但主要集中在胚芽鞘、幼嫩的莖尖、根尖、葉片和未成熟的種子及禾穀類的居間分生組織等生長旺盛的部位,生長緩慢或趨於衰老的組織中圖6-3黃化的燕麥幼苗中生長素的分布較少。生長素在胚芽鞘的尖端和根尖中含量最多,一般距頂端越遠,含量越少,而根尖中的含量普遍低於胚芽鞘尖端(圖6-3)。
生長素主要是在植物莖尖的營養芽和幼嫩的葉片中合成,然後運輸到作用部位。生長素在植物體內的傳導具有典型的極性運輸(PolAr TrAnsPorT)特性,即生長素只能從植物體形態學的上端向下端運輸,而不能倒轉過來運輸。以莖尖和胚芽鞘的極性運輸最為明顯,這可通過實驗證明。把含有生長素的瓊脂塊放在一段胚芽鞘的形態學上端,把另一塊不含生長素的瓊脂塊放在胚芽鞘的形態學下端,經過一段時間,下端的瓊脂塊中就含有生長素。但若把這一段芽鞘倒過來,其形態學的上端朝下,而下端朝上,作同樣的試驗,生長素則不能向上運輸(圖6-4)。

三、生長素的生物合成、分解及其在植物體內的存在狀態
(一)生長素的生物合成
色氨酸是植物體內生長素生物合成重要的前體物質,其結構與IAA相似,在高等植物中普遍存在。通過色氨酸合成生長素有兩條途徑:(1)色氨酸首先氧化脫氨形成吲哚丙酮,再脫羧形成吲哚乙醛;(2)色氨酸先脫羧形成色胺,然後再由色胺氧化脫氨形成吲哚乙酸。吲哚乙醛在相應酶的催化下最終氧化為吲哚乙酸。可見,吲哚乙醛是兩種途徑的共同中間產物(圖6-5)。至於生長素的生物合成究竟走哪條途徑,因植物的種類及器官不同而異,大多數研究者認為,第一條途徑是高等植物體內生長素生物合成的主要途徑。此外在十字花科植物中存在較多的吲哚乙腈,在酶的作用下也可轉變成為吲哚乙酸。這些合成生長素的途徑的存在,可以保證不同的植物類型以及植物在不同的生育期、不同的環境下維持體內生長素的正常水平。
(二)生長素的分解
生長素和其他物質一樣,在植物體內不斷合成也不斷分解,植株體內天然生長素的含量,實際上是合成反應與降解反應兩者動態平衡的結果。生長素的分解有兩條途徑,即酶氧化與光氧化。廣泛存在於植物體內的吲哚乙酸氧化酶和某些過氧化物酶能夠將吲哚乙酸氧化分解,酶氧化是IAA的主要降解過程。
IAA氧化酶是含鐵的血紅蛋白,它需要兩個輔助因子,即Mn2+和酚。IAA氧化酶的活性為一些一元酚(如2,4-二氯苯酚、阿魏酸等)加速,受一些二元酚(如:綠原酸、兒茶酚等)的抑制。酚類物質很可能是IAA降解的調節劑。IAA氧化酶的活性與植物器官的生長速率有負相關關系。衰老器官中IAA氧化酶活性比幼嫩器官中高得多,距根尖或莖尖越遠,IAA氧化酶活性越高。矮生植物體內IAA氧化酶活性比正常植物高,因此,矮生植物體內的生長素含量減少,從而限制了莖和根的伸長生長,表現出矮生特性。在實踐中,常常可通過對胚芽鞘或某些器官中IAA氧化酶、過氧化物酶活性的分析測定,早期預測植物的高度。
(三)生長素在植物體內的存在狀態
植物組織中的生長素有兩種不同的存在狀態:一種是自由型(游離態)生長素,易於提取,具有生理活性;另一種是束縛型(結合態)生長素,即一部分的吲哚乙酸與其他物質結合形成復合物而暫時失去生理活性(又稱之為鈍化)。如吲哚乙酸與葡萄糖結合為吲哚乙酸葡萄糖甙(葡萄糖甙),與蛋白質結合為吲哚乙酸——蛋白質復合物等,這類生長素常可占植物體中吲哚乙酸總量的50%~90%,它們可能是植物解除過量吲哚乙酸毒性或避免吲哚乙酸(IAA)氧化酶破壞的一種運輸及貯藏形式。結合態生長素在種子等貯藏器官中較多,在適當的條件下,它們又能被分解、轉化為具有活性的游離生長素而調節生長。如種子胚乳中存在的結合生長素是幼苗生長所需IAA的主要來源,當干種子吸水萌動時,其結合態生長素轉化為活性很強的游離態生長素而促進幼苗生長。

四、生長素的生理效應
(一)對植物生長的影響
生長素能促進細胞的縱向伸長,從而對植物或營養器官的伸長生長表現出明顯的促進作用,這是其基本的生理效應。
生長素對植物生長的影響隨濃度、物種和器官種類及細胞年齡而異,並具有顯著的正、負雙重效應。在一定條件下它既能促進生長,又能抑制生長;既能促進發芽,又能抑制發芽;既能保花,保果,也能疏花疏果。一般較低濃度促進生長,高濃度則抑制生長,濃度再高甚至會殺死植物。
不同器官對外加生長素不同濃度的反應有很大差異。以根、莖、芽三種不同器官為例,三者的最適濃度為莖>芽>根。根對生長素最敏感,極低濃度即可促進生長(10-10Mol/L左右),在較高濃度下生長受抑制;莖對生長素的敏感程度較差,其促進生長的最適濃度約為10-5Mol/L,達10-3Mol/L以上莖生長才受抑制;芽的反應則介於莖與根之間。因此,促進莖生長的濃度足以抑制根的生長(圖6-6)。
(二)促進細胞分裂與分化
生長素除對伸長生長具有明顯的促進效應外,對細胞分裂與分化及形態建成也有一定的作用。如用一定濃度的生長素處理一些植物枝條切段基部,則可刺激該部位的細胞分裂,誘導根原基的發生,促進生根,這是其他激素所不能代替的。因此,常常又將生長素稱之為「成根激素」。此外,生長素還能引起頂端優勢,促進某些植物開花,控制性別分化,促進單性結實產生無籽果實,誘導植物的向性生長等,這些將在本書有關章節中詳述。

五、生長素的作用機理
(一)植物激素的受體
當任何一種植物激素作用於植物時,必須首先和細胞內的某些物質結合成復合物,才能產生有效的調節作用。細胞內這種能與植物激素進行特異結合的物質稱為激素受體。激素受體分子同相應的植物激素結合並直接相互作用,識別激素的信號,由此觸發了植物體內的一系列生理生化反應,最終導致形態上的變化,從而表現出不同的生物學效應。因此,植物激素與其受體的結合是參與生理生化代謝反應的第一步。
激素+受體→激素—受體→生理生化反應→形態變化
(二)生長素的作用方式
細胞的縱向伸長即意味著細胞體積的擴大,而細胞體積的擴大依賴於原生質和其他細胞內含物的增加。但由於植物細胞的最外部被一層半硬性的細胞壁所包圍,細胞體積若要增大,細胞壁也必須相應擴大。細胞壁的擴大是通過增加其可塑性(PlAsTIsITy)來實現的。所謂可塑性,是指細胞壁的不可逆的伸展能力,它與彈性不同,彈性是指可逆的伸展能力。試驗證明,用生長素處理可以使細胞壁的結構鬆弛、軟化,因而增加了它的可塑性。而且在不同濃度的生長素影響下,其可塑性變化和生長的增加幅度接近,這說明生長素所誘導的生長是通過細胞壁可塑性的增加而實現的(圖6-7)。生長素促進細胞壁可塑性增加,並非單純的物理變化,而是代謝活動的結果,因為,生長素對死細胞的可塑性變化無效;缺氧或呼吸抑制劑存在的條件下,可以抑制生長素誘導細胞壁可塑性的變化。
對於生長素影響細胞壁的可塑性並導致細胞伸長生長的作用方式,目前主要存在以下兩種假說:
1.酸—生長學說(ACIdgroWTH THeory) 由於細胞膜上存在質子泵(可能是ATP酶),在生長素的作用下,生長素與質子泵結合而使之活化,質子泵便將質子(H+)從細胞質中不斷地泵到細胞壁,使細胞壁環境酸化。一方面減弱了胞壁的主要結構成分纖維素分子間氫鍵的結合力,另一方面也促進了一些適宜於酸性環境的水解酶活性增強(如纖維素酶等),導致細胞壁纖維素結構間交織點破裂,連接鬆弛,細胞壁可塑性增大,壓力勢降低,細胞水勢下降,原生質的粘度降低,透性增高,促進了更多的水分和營養物質進入細胞內,從而使細胞體積擴大,達到伸長生長的目的(圖6-8)。由於生長素和其他酸性溶液都可同樣促進細胞的伸長(圖6-9),而且生長素促進H+分泌的速度和細胞伸長速率是一致的,所以,把生長素能誘導細胞壁酸化並使其可塑性增大而導致細胞伸長的理論稱為酸—生長學說。
2.基因活化學說(gene ACTIVATIon THeory) 生長素誘導細胞的持續生長不僅要依賴於細胞壁可塑性的增大,而且在細胞擴大時還要增加新的細胞壁成分如纖維素等(因為細胞伸長時胞壁並不變薄)。同時,細胞壁組成成分之間還需要重新相互連接,蛋白質等細胞內含物也需要不斷地合成,這都需要形成有關的酶(蛋白質)。
20世紀60年代以來的許多試驗表明,生長素促進生長是與其增強核酸和蛋白質的生物合成密切相關的。因為當蛋白質合成的專一抑制劑環己亞胺(CyCloHeXIMIde)和核酸合成的專一抑制劑放線菌素D(ACTInoMyCIn D)存在時,也能抑制生長素對生長的誘導作用,而且核酸和蛋白質合成被抑制量,恰好相當於這兩種抑制劑降低生長素對生長誘導的量,這兩者間呈平行關系(圖6-10),說明生長素促進生長也依賴於核酸和蛋白質的合成。這些發現,把對生長素作用機理的認識提高到了分子水平。

六、人工合成的生長素類及其應用
(一)人工合成的生長素類
科技工作者在對吲哚乙酸化學結構和生理活性相互關系進行深入研究的基礎上,又人工合成了一批與生長素的化學結構及生理效應相類似的有機化合物,將它們統稱為人工合成生長素。常用的人工合成的生長素類葯劑,按其化學結構,大致可分為三大類:
1.吲哚衍生物類 如吲哚丙酸(IPA)、吲哚丁酸(IBA)。
2.萘酸類 如α-萘乙酸(NAA)、萘乙酸鈉、萘乙酸醯胺(DAN)等,其中萘乙酸生產容易,價格低廉,活性強,是使用最廣泛的植物生長調節劑。
3.苯氧酸類 主要有2,4-二氯苯氧乙酸(2,4-D)、2,4,5-三氯苯氧乙酸(2,4,5-T)、4-碘苯氧乙酸(4-CPA、增產靈)等,其中以2,4-D和2,4,5-T的活性較強。
(二)人工合成生長素的應用
1.促進插枝生根生長實踐早已證明,如果在插枝上適當保留一些芽或幼葉,就能促進插枝生根,這是因為芽和葉中產生的生長素,通過極性運輸並積累在插枝基部,使之得到足夠的生長從而恢復細胞分裂機能並誘導生根。因此,在插條基部外施生長素,能使一些不易生根的植物插條迅速生根,提高成活率。例如,葡萄插枝在300Mg/L的NAA溶液中快速浸沾1Min;桃樹綠枝基部在750~1500Mg/L的NAA溶液中浸沾5~10s;獼猴桃插枝用5000Mg/L的IBA溶液浸沾5~10s;小葉黃楊插枝用5000Mg/L的IBA粉劑處理;均能顯著地促進插條生根。目前常用的促進生根葯劑主要是IBA和NAA�IBA的效應強,維持時間長,誘發的不定根多而長,但價格較貴;NAA價廉,促進生根較少但粗壯�因此,二者混用效果最佳。
2.防止器官脫落生長素含量多的器官或組織能夠吸引更多的營養物質向此轉移,抑制離層的形成,防止因營養失調或其他原因引起的器官脫落。生產上用10~50Mg/L NAA或1Mg/L的2,4-D噴灑植株或樹冠,可以防止花、果和蕾鈴的脫落,對番茄、棉花、蘋果和柑桔等都有效。
3.引起單性結實、形成無籽果實用生長素處理未授粉的雌蕊柱頭,子房就能發育成無籽果實,這種不經授粉而子房直接發育成果實的現象稱為單性結實。用10~15Mg/L的2,4-D溶液蘸花或噴花簇,既可促進產果,還可引起單性結實,形成無籽瓜果,提高果實品質。對茄子、草莓、番茄、西瓜、葡萄等處理都有同樣效果。
4.疏花疏果應用5~20Mg/L的萘乙酸、25~50Mg/L的萘乙醯胺噴施蘋果樹冠;40Mg/L的萘乙酸鈉噴雪花梨,能有效地疏除部分花、果,省工、經濟,並能克服果樹大小年現象。
參考資料:"植物生長物質"
例如低濃度的生長素有促進器官伸長的作用。從而可減少蒸騰失水。可是超過最適濃度時由於會導致乙烯產生,生長的促進作用下降,甚至反會轉為抑制。即乙烯的存在對生長素的作用起結抗作用。
在植物生長發育過程中,任何一種生理反應都不是單一激素作用的結果,而是各種激素相互作用的結果,各種激素間的相互作用是很復雜的,有時表現為增效作用,有時表現為拮抗作用。你的試劑中赤黴素受體拮抗劑,可以使赤黴素/生長素比例降低,生長 素水平相對升高,則促進生根;可以使細胞分裂素/赤黴素比例升高,細胞分裂素相對升高.
在植物的生長發育過程中,除了需要水分和營養物質的供應,還要受到一些生理活性物質的調節和控制。這些調節和控制植物生長發育的物質,稱為植物生長物質。植物生長物質包括兩大類:一是植物體自身代謝過程中產生的,稱為植物激素。二是人工合成的,具有植物激素活性的有機物,稱為植物生長調節劑。
一、植物激素
植物激素有四個重要特性:內源性,它是植物生命活動中細胞內部的產物,並廣泛存在於植物界。調控性,可通過自身生命活動調節和控制植物生長發育。移動性,可從植物的合成位點運輸到作用位點。顯效性,在植物體內含量甚微,多以微克計算,但可起到明顯增效的作用。國際公認的植物激素有五大類:生長素、赤黴素、細胞分裂素、脫落酸和乙烯。
1.生長素
生長素的特性:生長素即吲哚乙酸,簡稱IAA(圖12-1)。因生長素在植物體內易被破壞,生產上一般不用吲哚乙酸來處理植物,而多採用與其類似的生長調節劑如吲哚丁酸、萘乙酸等處理植物。
生長素的作用:促進植物的伸長生長、促進插枝生根、誘導單性結實 控制雌雄性別。生長素最基本的生理作用是促進生長,但是與生長素的濃度、植物的種類與器官、細胞的年齡等因素有關。生長素濃度較低時可促進生長,較高濃度時則抑制生長。雙子葉植物一般比單子葉植物敏感。根比芽敏感,芽比莖敏感,幼嫩細胞比成熟細胞敏感。
2.赤黴素
赤黴素的特性:赤黴素簡稱GA(圖12-2)。配成溶液易失效,適於在低溫乾燥條件下以粉末形式保存。
赤黴素的生理作用:促進莖和葉的生長、誘導抽苔開花、促進性別分化、打破休眠、防止脫落、誘導單性結實,促進無籽果實的形成。
3.細胞分裂素
細胞分裂素的特性:細胞分裂素簡稱CTK(圖12-3)。主要包括激動素、玉米素等。性質較穩定。
細胞分裂素的生理作用:促進細胞擴大生長、誘導芽的分化、防止衰老、促進腋芽生長。
4.脫落酸
脫落酸的特性:脫落酸簡稱ABA(圖12-4)。是植物體內存在的一種強有力的天然抑制劑,含量極微,活性很高,作用巨大。
脫落酸的生理作用:抑制植物生長、促進脫落、促進休眠、調節氣孔關閉。
5.乙 烯
乙烯的特性:乙烯簡稱ETH(圖12-5)。是一種促進組織器官成熟的氣態激素。由於乙烯是氣體,使用比較困難,所以一般都用它的類似物乙烯利代替。
乙烯的生理作用:加速果實成熟、促進脫落衰老、調節植物生長、促進開花。
在植物生長發育過程中,任何一種生理反應都不是單一激素作用的結果,而是各種激素相互作用的結果,各種激素間的相互作用是很復雜的,有時表現為增效作用,有時表現為拮抗作用。了解各種激素對植物的生理作用、激素間的相互作用,以及和環境間的關系,在農業生產上具有非常重要的意義。

I. 哪種植物激素促進黃瓜雄花分化

赤黴素,在黃瓜等葫蘆科植物花芽分化初期施用赤黴素能促進雄花發育

J. iaa,ga,ctk生理效應有什麼異同

(1)IAA、GA和CTK ①共同點:都能促進細胞分裂;在一定程度上都能延緩器官衰老;調節基因表達IAA、GA還能引起單性結實。 ②不同點:IAA能促進細胞核分裂、對促進細胞分化和伸長具有雙重作用即在低濃度下促進生長在高濃度下抑制生長尤其是對離體器官效應更明顯還能維持頂端優勢促進雌花分化促進不定根的形成。而GA促進分裂的作用主要是縮短了細胞周期中的G。期和S期對整體植株促進細胞伸長生長效應明顯無雙重效應還可促進雄花分化抑制不定根的形成。細胞分裂素則主要促進細胞質的分裂和細胞擴大促進芽的分化打破頂端優勢促進側芽生長還能延緩衰老。GA、CTK都能打破一些種子休眠而IAA能延長種子、塊莖的休眠。 (2)ABA和ETH ①共同點:都能促進器官的衰老、脫落增強抗逆性調節基因表達一般情況下都抑制營養器官生長。 ②不同點:ABA能促進休眠、引起氣孔關閉;乙烯則能打破一些種子和芽的休眠促進果實成熟促進雌花分化具有三重反應效應引起不對稱生長誘導不定根的形成。

熱點內容
以太坊顯卡驅動 發布:2025-07-12 02:55:24 瀏覽:698
區塊鏈token怎麼應用 發布:2025-07-12 02:46:34 瀏覽:106
幣信可樂礦池官網 發布:2025-07-12 02:42:08 瀏覽:225
怎樣創建一個比特幣帳號 發布:2025-07-12 02:16:13 瀏覽:205
2019年9月25幣圈 發布:2025-07-12 02:09:17 瀏覽:58
區塊鏈技術屬於互聯網嗎 發布:2025-07-12 02:01:24 瀏覽:603
去蘭州美年大體檢中心怎麼走 發布:2025-07-12 01:51:52 瀏覽:4
doge一條狗 發布:2025-07-12 01:27:23 瀏覽:665
普京以太坊普京以太坊 發布:2025-07-12 01:27:14 瀏覽:352
fabric區塊鏈共識演算法 發布:2025-07-12 01:26:31 瀏覽:590