石墨烯結構區塊鏈
① 如何用chemdraw畫出類似石墨烯球狀的結構
在顯微鏡下就可以看到其結構了啊..石墨烯主要起著導電\導熱以及增強增韌的作用..解決其分散性是主要課問題...我們廠主要是做石墨烯在工程塑料中的改性使用...做導電\導熱\增強\增韌等改性造粒的...目前我們使用石墨烯改性的工程塑料粒料,用於生產的製品,表面導電值可以做到10的3次方...
② 怎麼畫石墨烯的結構示意圖
你好,用專業的軟體,3DSMAX可以畫的立體一些。
③ 請簡述石墨烯的結構特性和應用前景
1-石墨烯的結構
石墨烯是一種由碳原子以SP2雜化連接形成的單原子層二維晶體,碳原子規整的排列於蜂窩狀點陣結構單元之中。每個碳原子除了以σ 鍵與其他三個碳原子相連之外,剩餘的π電子與其他碳原子的π電子形成離域大π鍵,電子可在此區域內自由移動,從而使石墨烯具有優異的導電性能。同時,這種緊密堆積的蜂窩狀結構也是構造其他碳材料的基本單元,單原子層的石墨烯可以包裹形成零維的富勒烯,單層或者多層的石墨烯可以捲曲形成單壁或者多壁的碳納米管。
由於二維晶體在熱力學上的不穩定性,所以不管是以自由狀態存在或是沉積在基底上的石墨烯都不是完全平整,而是在表面存在本徵的微觀尺度的褶皺。這種微觀褶皺在橫向上的尺度在8-10nm范圍內,縱向尺度大概為0.7-1.0nm。這種三維的變化可引起靜電的產生,所以使石墨烯單層容易聚集。同時,褶皺大小不同,石墨烯所表現出來的電學及光學性質也不同。
除了表面褶皺之外,在實際中石墨烯也不是完美存在的,而是會有各種形式的缺陷,包括形貌上的缺陷(如五元環,七元環等)、空洞、邊緣、裂紋、雜原子等。這些缺陷會影響石墨烯的本徵性能,如電學性能、力學性能等。但是通過一些人為的方法,如高能射線照射,化學處理等引入缺陷,卻能有意的改變石墨烯的本徵性能,從而制備出不同性能要求的石墨烯器件。
2-石墨烯的性質
石墨烯獨特的單原子層結構,決定了其擁有許多優異的物理性質。如前所述,石墨烯中的每個碳原子都有一個未成鍵的π電子,這些電子可形成與平面垂直的π軌道,π電子可在這種長程π軌道中自由移動,從而賦予了石墨烯出色的導電性能。研究表明室溫下載流子在石墨烯中的遷移率可達到15000cm2/(V.s),相當於光速的1/300,在特定條件下,如液氦的溫度下,更是可以達到25000cm2/(V.s),遠遠超過其他半導體材料,並且電子在晶格中的移動是無障礙的,不會發生散射,使其具有優良的電子傳輸性質。同時,石墨烯獨特的電子結構還使其表現出許多奇特的電學性質,比如室溫量子霍爾效應等。
由於石墨烯中的每個碳原子均與相鄰的三個碳原子結合成很強的σ鍵,因此石墨烯同樣表現出優異的力學性能。據哥倫比亞大學科學家利用原子力顯微鏡直接測試單層石墨烯的力學性能,發現石墨烯的楊氏模量約為1100GPa,斷裂強度更是達到了130GPa,比最好的鋼鐵還要高100倍。
石墨烯同樣是一種優良的熱導體。因為在未摻雜石墨中載流子密度較低,因此石墨烯的傳熱主要是靠聲子的傳遞,而電子運動對石墨烯的導熱可以忽略不計。其導熱系數高達5000W/(m.K),優於碳納米管,更是比一些常見金屬,如金銀銅等高10倍以上。
除了優異的傳導性能及力學性能外,石墨烯還具有一些其他新奇的性質。由於石墨烯邊緣及缺陷處有孤對電子,石墨烯具有鐵磁性等磁性能。石墨烯單原子層的特殊結構,使石墨烯的理論比表面積高達2630m2/g。石墨烯也具備獨特的光學性能,單層石墨烯在可見光區的透過率達97%以上。這些特性使得石墨烯成為最具潛力最引人暢想的材料,可以在納米器件、感測器、儲氫材料、復合材料、場發射材料等重要領域有著廣泛的應用前景。
④ 石墨烯的結構是什麼
石墨烯(Graphene)是一種由碳原子以sp2雜化方式形成的蜂窩狀平面薄膜,是一種只有一個原子層厚度的准二維材料,所以又叫做單原子層石墨。它的厚度大約為0.335nm,根據制備方式的不同而存在不同的起伏,通常在垂直方向的高度大約1nm左右,水平方向寬度大約10nm到25nm,是除金剛石以外所有碳晶體(零維富勒烯,一維碳納米管,三維體向石墨)的基本結構單元。
⑤ 石墨烯的結構和能
石墨烯石墨烯 2004年,英國曼徹斯特大學的安德烈·K·海姆(Andre K. Geim)等制備出了石墨烯。海姆和他的同事偶然中發現了一種簡單易行的新途徑。他們強行將石墨分離成較小的碎片,從碎片中剝離出較薄的石墨薄片,然後用一種特殊的塑料膠帶粘住薄片的兩側,撕開膠帶,薄片也隨之一分為二。不斷重復這一過程,就可以得到越來越薄的石墨薄片,而其中部分樣品僅由一層碳原子構成——他們製得了石墨烯。
石墨烯的問世引起了全世界的研究熱潮。它不僅是已知材料中最薄的一種,還非常牢固堅硬;作為單質,它在室溫下傳遞電子的速度比已知導體都快。石墨烯在原子尺度上結構非常特殊,必須用相對論量子物理學(relativistic quantum physics)才能描繪。
石墨烯結構非常穩定,迄今為止,研究者仍未發現石墨烯中有碳原子缺失的情況。石墨烯中各碳原子之間的連接非常柔韌,當施加外部機械力時,碳原子面就彎曲變形,從而使碳原子不必重新排列來適應外力,也就保持了結構穩定。
這種穩定的晶格結構使碳原子具有優秀的導電性。石墨烯中的電子在軌道中移動時,不會因晶格缺陷或引入外來原子而發生散射。由於原子間作用力十分強,在常溫下,即使周圍碳原子發生擠撞,石墨烯中電子受到的干擾也非常小。
石墨烯最大的特性是其中電子的運動速度達到了光速的1/300,遠遠超過了電子在一般導體中的運動速度。這使得石墨烯中的電子,或更准確地,應稱為「載荷子」(electric charge carrier),的性質和相對論性的中微子非常相似。
為了進一步說明石墨烯中的載荷子的特殊性質,我們先對相對論量子力學或稱量子電動力學做一些了解。
經典物理學中,一個能量較低的電子遇到勢壘的時候,如果能量不足以讓它爬升到勢壘的頂端,那它就只能待在這一側;在量子力學中,電子在某種程度上是可以看作是分布在空間各處的波。當它遇到勢壘的時候,有可能以某種方式穿透過去,這種可能性是零到一之間的一個數;而當石墨烯中電子波以極快的速度運動到勢壘前時,就需要用量子電動力學來解釋。量子電動力學作出了一個更加令人吃驚的預言:電子波能百分百地出現在勢壘的另一側。
以下實驗證實了量子電動力學的預言:事先在一片石墨烯晶體上人為施加一個電壓(相當於一個勢壘),然後測定石墨烯的電導率。一般認為,增加了額外的勢壘,電阻也會隨之增加,但事實並非如此,因為所有的粒子都發生了量子隧道效應,通過率達100%。這也解釋了石墨烯的超強導電性:相對論性的載荷子可以在其中完全自由地穿行。
另外,研究也發現,盡管只有單層原子厚度,但石墨烯有相當的不透明度:可以吸收大約2.3%的可見光。而這也是石墨烯中載荷子相對論性的體現。美國哥倫比亞大學兩名華裔科學家最近發現,鉛筆石墨中一種叫做石墨烯的二維碳原子晶體,竟然比鑽石還堅硬,強度比世界上最好的鋼鐵還要高上100倍。這種物質為「太空電梯」超韌纜線的製造打開了一扇「阿里巴巴」之門,讓科學家夢寐以求的2.3萬英里長(約合37000千米)太空電梯可能成為現實。
中國科學家發現最硬物質
誰也不會想到,鉛筆中竟然包含著地球上強度最高的物質!
法國皇帝拿破崙曾經說過:「筆比劍更有威力」,然而他在200年前說這話的時候絕對不會想到,人類使用的普通鉛筆中竟然包含著地球上強度最高的物質!美國哥倫比亞大學兩名華裔科學家最近研究發現,鉛筆石墨中一種叫做石墨烯的二維碳原子晶體,比鑽石還堅硬,強度比世界上最好的鋼鐵還要高上100倍。
發現者是兩華裔科學家
人們熟悉的鉛筆是由石墨製成的,而石墨則是由無數只有碳原子厚度的「石墨烯」薄片壓疊形成,石墨烯是一種從石墨材料中剝離出的單層碳原子面材料,是碳的二維結構。自從2004年石墨烯被發現以來,有關的科學研究就從未間斷過。然而直到最近,美國科學家才首次證實了人們長久以來的懷疑,石墨烯竟是目前世界上已知的強度最高的材料!
據悉,這一驚人的科學發現是由美國哥倫比亞大學的兩名華裔科學家李成古和魏小丁(音譯)一起研究得出的,而李成古研究「石墨烯」強度的主要工具之一,竟是普通的透明膠帶!李成古向記者解釋他們的「低科技」研究方法說:「為了了解石墨烯的強度,我們首先必須從石墨上剝離出一些石墨烯薄片,於是我們想到了透明膠帶。」科學家先將膠帶粘在一塊石墨上,然後再撕下來,接著科學家又將膠帶粘到了一塊面積只有1平方英寸的矽片上,然後再將膠帶從矽片上撕下來,這時數千小片石墨都粘到了矽片上。
比鑽石還要堅硬
矽片上有數千個肉眼看不見的小孔。科學家開始採取高科技手段,將矽片放置在電子顯微鏡下進行觀察,科學家花費數天時間,希望能在矽片小孔上發現合適的單原子厚的石墨烯薄片。
一旦科學家發現了一些只有100分之一頭發絲寬度的石墨烯薄片後,他們就開始使用原子尺寸的金屬和鑽石探針對它們進行穿刺,從而測試它們的強度。讓科學家震驚的是,石墨烯比鑽石還強硬,它的強度比世界上最好的鋼鐵還高100倍!
美國機械工程師傑弗雷·基薩教授用一種形象的方法解釋了石墨烯的強度:如果將一張和食品保鮮膜一樣薄的石墨烯薄片覆蓋在一隻杯子上,然後試圖用一支鉛筆戳穿它,那麼需要一頭大象站在鉛筆上,才能戳穿只有保鮮膜厚度的石墨烯薄層。
可做「太空電梯」纜線
據科學家稱,地球上很容易找到石墨原料,而石墨烯堪稱是人類已知的強度最高的物質,它將擁有眾多令人神往的發展前景。它不僅可以開發製造出紙片般薄的超輕型飛機材料、可以製造出超堅韌的防彈衣,甚至還為「太空電梯」纜線的製造打開了一扇「阿里巴巴」之門。美國研究人員稱,「太空電梯」的最大障礙之一,就是如何製造出一根從地面連向太空衛星、長達23000英里並且足夠強韌的纜線,美國科學家證實,地球上強度最高的物質「石墨烯」完全適合用來製造太空電梯纜線!
人類通過「太空電梯」進入太空,所花的成本將比通過火箭升入太空便宜很多。為了激勵科學家發明出製造太空電梯纜線的堅韌材料,美國NASA此前還發出了400萬美元的懸賞。
代替硅生產超級計算機
不過據科學家稱,盡管石墨在大自然中非常普遍,並且石墨烯是人類已知強度最高的物質,但科學家可能仍然需要花費數年甚至幾十年時間,才能找到一種將石墨轉變成大片高質量石墨烯「薄膜」的方法,從而可以用它們來為人類製造各種有用的物質。
據科學家稱,石墨烯除了異常牢固外,還具有一系列獨一無二的特性,石墨烯還是目前已知導電性能最出色的材料,這使它在微電子領域也具有巨大的應用潛力。研究人員甚至將石墨烯看作是硅的替代品,能用來生產未來的超級計算機。
這種物質不僅可以用來開發製造出紙片般薄的超輕型飛機材料、製造出超堅韌的防彈衣,甚至能讓科學家夢寐以求的2.3萬英里長太空電梯成為現實。
⑥ 石墨烯 結構示意圖是什麼
石墨烯結構示意圖如下所示:
石墨烯具有優異的光學、電學、力學特性,在材料學、微納加工、能源、生物醫學和葯物傳遞等方面具有重要的應用前景,被認為是一種未來革命性的材料。
英國曼徹斯特大學物理學家安德烈·蓋姆和康斯坦丁·諾沃肖洛夫,用微機械剝離法成功從石墨中分離出石墨烯,因此共同獲得2010年諾貝爾物理學獎。石墨烯常見的粉體生產的方法為機械剝離法、氧化還原法、SiC外延生長法,薄膜生產方法為化學氣相沉積法(CVD)。
(6)石墨烯結構區塊鏈擴展閱讀:
化學性質:
石墨烯的化學性質與石墨類似,石墨烯可以吸附並脫附各種原子和分子。當這些原子或分子作為給體或受體時可以改變石墨烯載流子的濃度,而石墨烯本身卻可以保持很好的導電性。
但當吸附其他物質時,如H+和OH-時,會產生一些衍生物,使石墨烯的導電性變差,但並沒有產生新的化合物。因此,可以利用石墨來推測石墨烯的性質。
例如石墨烷的生成就是在二維石墨烯的基礎上,每個碳原子多加上一個氫原子,從而使石墨烯中sp2碳原子變成sp3雜化。可以在實驗室中通過化學改性的石墨制備的石墨烯的可溶性片段。
⑦ 什麼叫石墨烯的大π共軛結構
石墨是片層結構的,石墨烯可以看成其中的一層,在這層上,每個碳原子最外層的三個電子和周圍三個碳原子形成3根σ鍵,每個碳原子還有一個最外層電子就形成大π共軛結構。
⑧ 石墨烯的結構與性質問題
石墨烯是六邊形的,它的π電子是共軛的,但不像石墨一樣共軛的。
它不僅是已知材料中最薄的一種,還非常牢固堅硬;作為單質,它在室溫下傳遞電子的速度比已知導體都快。石墨烯在原子尺度上結構非常特殊,必須用相對論量子物理學(relativistic quantum physics)才能描繪。
石墨烯結構非常穩定,迄今為止,研究者仍未發現石墨烯中有碳原子缺失的情況。石墨烯中各碳原子之間的連接非常柔韌,當施加外部機械力時,碳原子面就彎曲變形,從而使碳原子不必重新排列來適應外力,也就保持了結構穩定。
這種穩定的晶格結構使碳原子具有優秀的導電性。石墨烯中的電子在軌道中移動時,不會因晶格缺陷或引入外來原子而發生散射。由於原子間作用力十分強,在常溫下,即使周圍碳原子發生擠撞,石墨烯中電子受到的干擾也非常小。