pig生態產業鏈數字貨幣
1. 什麼是 Hadoop 生態系統
Map Rece -MapRece 是使用集群的並行,分布式演算法處理大數據集的可編程模型。Apache MapRece 是從 Google MapRece 派生而來的:在大型集群中簡化數據處理。當前的 Apache MapRece 版本基於 Apache YARN 框架構建。YARN = 「Yet-Another-Resource-Negotiator」。YARN 可以運行非 MapRece 模型的應用。YARN 是 Apache Hadoop 想要超越 MapRece 數據處理能力的一種嘗試。
HDFS - The Hadoop Distributed File System (HDFS) 提供跨多個機器存儲大型文件的一種解決方案。Hadoop 和 HDFS 都是從 Google File System (GFS) 中派生的。Hadoop 2.0.0 之前,NameNode 是 HDFS 集群的一個單點故障 (SPOF) 。利用 Zookeeper,HDFS 高可用性特性解決了這個問題,提供選項來運行兩個重復的 NameNodes,在同一個集群中,同一個 Active/Passive 配置。
HBase - 靈感來源於 Google BigTable。HBase 是 Google Bigtable 的開源實現,類似 Google Bigtable 利用 GFS 作為其文件存儲系統,HBase 利用 Hadoop HDFS 作為其文件存儲系統;Google 運行 MapRece 來處理 Bigtable 中的海量數據,HBase 同樣利用 Hadoop MapRece 來處理 HBase 中的海量數據;Google Bigtable 利用 Chubby 作為協同服務,HBase 利用 Zookeeper 作為對應。
Hive - Facebook 開發的數據倉庫基礎設施。數據匯總,查詢和分析。Hive 提供類似 SQL 的語言 (不兼容 SQL92):HiveQL。
Pig - Pig 提供一個引擎在 Hadoop 並行執行數據流。Pig 包含一個語言:Pig Latin,用來表達這些數據流。Pig Latin 包括大量的傳統數據操作 (join, sort, filter, etc.), 也可以讓用戶開發他們自己的函數,用來查看,處理和編寫數據。Pig 在 hadoop 上運行,在 Hadoop 分布式文件系統,HDFS 和 Hadoop 處理系統,MapRece 中都有使用。Pig 使用 MapRece 來執行所有的數據處理,編譯 Pig Latin 腳本,用戶可以編寫到一個系列,一個或者多個的 MapRece 作業,然後執行。Pig Latin 看起來跟大多數編程語言都不一樣,沒有 if 狀態和 for 循環。
Zookeeper - ZooKeeper 是 Hadoop 的正式子項目,它是一個針對大型分布式系統的可靠協調系統,提供的功能包括:配置維護、名字服務、分布式同步、組服務等。ZooKeeper 的目標就是封裝好復雜易出錯的關鍵服務,將簡單易用的介面和性能高效、功能穩定的系統提供給用戶。Zookeeper 是 Google 的 Chubby 一個開源的實現.是高有效和可靠的協同工作系統。Zookeeper 能夠用來 leader 選舉,配置信息維護等.在一個分布式的環境中,我們需要一個 Master 實例或存儲一些配置信息,確保文件寫入的一致性等。
Mahout - 基於 MapRece 的機器學習庫和數學庫。
2. 大數據時代發展歷程是什麼
大數據技術發展史:大數據的前世今生
今天我們常說的大數據技術,其實起源於Google在2004年前後發表的三篇論文,也就是我們經常聽到的「三駕馬車」,分別是分布式文件系統GFS、大數據分布式計算框架MapRece和NoSQL資料庫系統BigTable。
你知道,搜索引擎主要就做兩件事情,一個是網頁抓取,一個是索引構建,而在這個過程中,有大量的數據需要存儲和計算。這「三駕馬車」其實就是用來解決這個問題的,你從介紹中也能看出來,一個文件系統、一個計算框架、一個資料庫系統。
現在你聽到分布式、大數據之類的詞,肯定一點兒也不陌生。但你要知道,在2004年那會兒,整個互聯網還處於懵懂時代,Google發布的論文實在是讓業界為之一振,大家恍然大悟,原來還可以這么玩。
因為那個時間段,大多數公司的關注點其實還是聚焦在單機上,在思考如何提升單機的性能,尋找更貴更好的伺服器。而Google的思路是部署一個大規模的伺服器集群,通過分布式的方式將海量數據存儲在這個集群上,然後利用集群上的所有機器進行數據計算。 這樣,Google其實不需要買很多很貴的伺服器,它只要把這些普通的機器組織到一起,就非常厲害了。
當時的天才程序員,也是Lucene開源項目的創始人Doug Cutting正在開發開源搜索引擎Nutch,閱讀了Google的論文後,他非常興奮,緊接著就根據論文原理初步實現了類似GFS和MapRece的功能。
兩年後的2006年,Doug Cutting將這些大數據相關的功能從Nutch中分離了出來,然後啟動了一個獨立的項目專門開發維護大數據技術,這就是後來赫赫有名的Hadoop,主要包括Hadoop分布式文件系統HDFS和大數據計算引擎MapRece。
當我們回顧軟體開發的歷史,包括我們自己開發的軟體,你會發現,有的軟體在開發出來以後無人問津或者寥寥數人使用,這樣的軟體其實在所有開發出來的軟體中佔大多數。而有的軟體則可能會開創一個行業,每年創造數百億美元的價值,創造百萬計的就業崗位,這些軟體曾經是Windows、Linux、Java,而現在這個名單要加上Hadoop的名字。
如果有時間,你可以簡單瀏覽下Hadoop的代碼,這個純用Java編寫的軟體其實並沒有什麼高深的技術難點,使用的也都是一些最基礎的編程技巧,也沒有什麼出奇之處,但是它卻給社會帶來巨大的影響,甚至帶動一場深刻的科技革命,推動了人工智慧的發展與進步。
我覺得,我們在做軟體開發的時候,也可以多思考一下,我們所開發軟體的價值點在哪裡?真正需要使用軟體實現價值的地方在哪裡?你應該關注業務、理解業務,有價值導向,用自己的技術為公司創造真正的價值,進而實現自己的人生價值。而不是整天埋頭在需求說明文檔里,做一個沒有思考的代碼機器人。
Hadoop發布之後,Yahoo很快就用了起來。大概又過了一年到了2007年,網路和阿里巴巴也開始使用Hadoop進行大數據存儲與計算。
2008年,Hadoop正式成為Apache的頂級項目,後來Doug Cutting本人也成為了Apache基金會的主席。自此,Hadoop作為軟體開發領域的一顆明星冉冉升起。
同年,專門運營Hadoop的商業公司Cloudera成立,Hadoop得到進一步的商業支持。
這個時候,Yahoo的一些人覺得用MapRece進行大數據編程太麻煩了,於是便開發了Pig。Pig是一種腳本語言,使用類SQL的語法,開發者可以用Pig腳本描述要對大數據集上進行的操作,Pig經過編譯後會生成MapRece程序,然後在Hadoop上運行。
編寫Pig腳本雖然比直接MapRece編程容易,但是依然需要學習新的腳本語法。於是Facebook又發布了Hive。Hive支持使用SQL語法來進行大數據計算,比如說你可以寫個Select語句進行數據查詢,然後Hive會把SQL語句轉化成MapRece的計算程序。
這樣,熟悉資料庫的數據分析師和工程師便可以無門檻地使用大數據進行數據分析和處理了。Hive出現後極大程度地降低了Hadoop的使用難度,迅速得到開發者和企業的追捧。據說,2011年的時候,Facebook大數據平台上運行的作業90%都來源於Hive。
隨後,眾多Hadoop周邊產品開始出現,大數據生態體系逐漸形成,其中包括:專門將關系資料庫中的數據導入導出到Hadoop平台的Sqoop;針對大規模日誌進行分布式收集、聚合和傳輸的Flume;MapRece工作流調度引擎Oozie等。
在Hadoop早期,MapRece既是一個執行引擎,又是一個資源調度框架,伺服器集群的資源調度管理由MapRece自己完成。但是這樣不利於資源復用,也使得MapRece非常臃腫。於是一個新項目啟動了,將MapRece執行引擎和資源調度分離開來,這就是Yarn。2012年,Yarn成為一個獨立的項目開始運營,隨後被各類大數據產品支持,成為大數據平台上最主流的資源調度系統。
同樣是在2012年,UC伯克利AMP實驗室(Algorithms、Machine和People的縮寫)開發的Spark開始嶄露頭角。當時AMP實驗室的馬鐵博士發現使用MapRece進行機器學習計算的時候性能非常差,因為機器學習演算法通常需要進行很多次的迭代計算,而MapRece每執行一次Map和Rece計算都需要重新啟動一次作業,帶來大量的無謂消耗。還有一點就是MapRece主要使用磁碟作為存儲介質,而2012年的時候,內存已經突破容量和成本限制,成為數據運行過程中主要的存儲介質。Spark一經推出,立即受到業界的追捧,並逐步替代MapRece在企業應用中的地位。
一般說來,像MapRece、Spark這類計算框架處理的業務場景都被稱作批處理計算,因為它們通常針對以「天」為單位產生的數據進行一次計算,然後得到需要的結果,這中間計算需要花費的時間大概是幾十分鍾甚至更長的時間。因為計算的數據是非在線得到的實時數據,而是歷史數據,所以這類計算也被稱為大數據離線計算。
而在大數據領域,還有另外一類應用場景,它們需要對實時產生的大量數據進行即時計算,比如對於遍布城市的監控攝像頭進行人臉識別和嫌犯追蹤。這類計算稱為大數據流計算,相應地,有Storm、Flink、Spark Streaming等流計算框架來滿足此類大數據應用的場景。 流式計算要處理的數據是實時在線產生的數據,所以這類計算也被稱為大數據實時計算。
在典型的大數據的業務場景下,數據業務最通用的做法是,採用批處理的技術處理歷史全量數據,採用流式計算處理實時新增數據。而像Flink這樣的計算引擎,可以同時支持流式計算和批處理計算。
除了大數據批處理和流處理,NoSQL系統處理的主要也是大規模海量數據的存儲與訪問,所以也被歸為大數據技術。 NoSQL曾經在2011年左右非常火爆,涌現出HBase、Cassandra等許多優秀的產品,其中HBase是從Hadoop中分離出來的、基於HDFS的NoSQL系統。
我們回顧軟體發展的歷史會發現,差不多類似功能的軟體,它們出現的時間都非常接近,比如Linux和Windows都是在90年代初出現,Java開發中的各類MVC框架也基本都是同期出現,Android和iOS也是前腳後腳問世。2011年前後,各種NoSQL資料庫也是層出不群,我也是在那個時候參與開發了阿里巴巴自己的NoSQL系統。
事物發展有自己的潮流和規律,當你身處潮流之中的時候,要緊緊抓住潮流的機會,想辦法脫穎而出,即使沒有成功,也會更加洞悉時代的脈搏,收獲珍貴的知識和經驗。而如果潮流已經退去,這個時候再去往這個方向上努力,只會收獲迷茫與壓抑,對時代、對自己都沒有什麼幫助。
但是時代的浪潮猶如海灘上的浪花,總是一浪接著一浪,只要你站在海邊,身處這個行業之中,下一個浪潮很快又會到來。你需要敏感而又深刻地去觀察,略去那些浮躁的泡沫,抓住真正潮流的機會,奮力一搏,不管成敗,都不會遺憾。
正所謂在歷史前進的邏輯中前進,在時代發展的潮流中發展。通俗的說,就是要在風口中飛翔。
上面我講的這些基本上都可以歸類為大數據引擎或者大數據框架。而大數據處理的主要應用場景包括數據分析、數據挖掘與機器學習。數據分析主要使用Hive、Spark SQL等SQL引擎完成;數據挖掘與機器學習則有專門的機器學習框架TensorFlow、Mahout以及MLlib等,內置了主要的機器學習和數據挖掘演算法。
此外,大數據要存入分布式文件系統(HDFS),要有序調度MapRece和Spark作業執行,並能把執行結果寫入到各個應用系統的資料庫中,還需要有一個大數據平台整合所有這些大數據組件和企業應用系統。
圖中的所有這些框架、平台以及相關的演算法共同構成了大數據的技術體系,我將會在專欄後面逐個分析,幫你能夠對大數據技術原理和應用演算法構建起完整的知識體系,進可以專職從事大數據開發,退可以在自己的應用開發中更好地和大數據集成,掌控自己的項目。
希望對您有所幫助!~
3. pig是什麼
PIG是基於區塊鏈技術的京豬游娛生態系統的權益憑證,在IPC上發行,總發行量為2.1億個,永不增發。京豬游娛是第一個以研究游戲學為首驅使導向,並從中演變而來的區塊鏈平台。擁有完整的產業鏈,充分的流動性,足以證明其是成熟,安全,穩定的商用金融系統。京豬游娛生態將游戲和量化交易板塊一半的收入用來回購燃燒PIG,預計用三年將2.1億PIG燃燒到2100萬的流通總量。