宇宙化學元
① 宇宙. 化學
60多年前,阿爾伯特·愛因斯坦提出了「蟲洞」理論。那麼,「蟲洞」是什麼呢?簡單地說,「蟲洞」是連接宇宙遙遠區域間的時空細管。它可以把平行宇宙和嬰兒宇宙連接起來,並提供時間旅行的可能性。
早在20世紀50年代,已有科學家對「蟲洞」作過研究,由於當時歷史條件所限,一些物理學家認為,理論上也許可以使用「蟲洞」,但「蟲洞」的引力過大,會毀滅所有進入的東西,因此不可能用在宇宙航行上。
隨著科學技術的發展,新的研究發現,「蟲洞」的超強力場可以通過「負質量」來中和,達到穩定「蟲洞」能量場的作用。科學家認為,相對於產生能量的「正物質」,「反物質」也擁有「負質量」,可以吸去周圍所有能量。像「蟲洞」一樣,「負質量」也曾被認為只存在於理論之中。不過,目前世界上的許多實驗室已經成功地證明了「負質量」能存在於現實世界,並且通過航天器在太空中捕捉到了微量的「負質量」。
據美國華盛頓大學物理系研究人員的計算,「負質量」可以用來控制「蟲洞」。他們指出,「負質量」能擴大原本細小的「蟲洞」,使它們足以讓太空飛船穿過。他們的研究結果引起了各國航天部門的極大興趣,許多國家已考慮撥款資助「蟲洞」研究,希望「蟲洞」能實際用在太空航行上。
宇航學家認為,「蟲洞」的研究雖然剛剛起步,但是它潛在的回報,不容忽視。科學家認為,如果研究成功,人類可能需要重新估計自己在宇宙中的角色和位置。現在,人類被「困」在地球上,要航行到最近的一個星系,動輒需要數百年時間,是目前人類不可能辦到的。但是,未來的太空航行如使用「蟲洞」,那麼一瞬間就能到達宇宙中遙遠的地方。
據科學家觀測,宇宙中充斥著數以百萬計的「蟲洞」,但很少有直徑超過10萬公里的,而這個寬度正是太空飛船安全航行的最低要求。「負質量」的發現為利用「蟲洞」創造了新的契機,可以使用它去擴大和穩定細小的「蟲洞」。
科學家指出,如果把「負質量」傳送到「蟲洞」中,把「蟲洞」打開,並強化它的結構,使其穩定,就可以使太空飛船通過。
蟲洞的概念最初產生於對史瓦西解的研究中。物理學家在分析白洞解的時候,通過一個阿爾伯特·愛因斯坦的思想實驗,發現宇宙時空自身可以不是平坦的。如果恆星形成了黑洞,那麼時空在史瓦西半徑,也就是視界的地方與原來的時空垂直。在不平坦的宇宙時空中,這種結構就意味著黑洞視界內的部分會與宇宙的另一個部分相結合,然後在那裡產生一個洞。這個洞可以是黑洞,也可以是白洞。而這個彎曲的視界,就叫做史瓦西喉,它就是一種特定的蟲洞。
自從在史瓦西解中發現了蟲洞,物理學家們就開始對蟲洞的性質發生了興趣。
蟲洞連接黑洞和白洞,在黑洞與白洞之間傳送物質。在這里,蟲洞成為一個阿爾伯特·愛因斯坦—羅森橋,物質在黑洞的奇點處被完全瓦解為基本粒子,然後通過這個蟲洞(即阿爾伯特·愛因斯坦—羅森橋)被傳送到白洞並且被輻射出去。
蟲洞還可以在宇宙的正常時空中顯現,成為一個突然出現的超時空管道。
蟲洞沒有視界,它只有一個和外界的分界面,蟲洞通過這個分界面進行超時空連接。蟲洞與黑洞、白洞的介面是一個時空管道和兩個時空閉合區的連接,在這里時空曲率並不是無限大,因而我們可以安全地通過蟲洞,而不被巨大的引力摧毀。理論推出的蟲洞還有許多特性,限於篇幅,這里不再贅述。
黑洞、白洞、蟲洞仍然是目前宇宙學中「時空與引力篇章」的懸而未解之謎。黑洞是否真實存在,科學家們也只是得到了一些間接的旁證。當前的觀測及理論也給天文學和物理學提出了許多新問題,例如,一顆能形成黑洞的冷恆星,當它坍縮時,其密度已然會超過原子核、核子、中子……,如果再繼續坍縮下去,中子也可能被壓碎。那麼,黑洞中的物質基元究竟是什麼呢?有什麼斥力與引力對抗才使黑洞停留在某一階段而不再繼續坍縮呢?如果沒有斥力,那麼黑洞將無限地坍縮下去,直到體積無窮小,密度無窮大,內部壓力也無窮大,而這卻是物理學理論所不允許的。
總之,目前我們對黑洞、白洞和蟲洞的本質了解還很少,它們還是神秘的東西,很多問題仍需要進一步探討。目前天文學家已經間接地找到了黑洞,但白洞、蟲洞並未真正發現,還只是一個經常出現在科幻作品中的理論名詞。
蟲洞也是霍金構想的宇宙期存在的一種極細微的洞穴。美國科學家對此做了深入的研究。目前的宇宙中,「宇宙項」幾乎為零。所謂的宇宙項也稱為「真空的能量」,在沒有物質的空間中,能量也同樣存在其內部,這是由愛因斯坦所導入的。宇宙初期的膨脹宇宙,宇宙項是必須的,而且,在基本粒子論里,也認為真空中的能量是自然呈現的。那麼,為何目前宇宙的宇宙項變為零呢?柯爾曼說明:在爆炸以前的初期宇宙中,蟲洞連接著很多的宇宙,很巧妙地將宇宙項的大小調整為零。結果,由一個宇宙可能產生另一個宇宙,而且,宇宙中也有可能有無數個這種微細的洞穴,它們可通往一個宇宙的過去及未來,或其他的宇宙。
旋轉的或帶有電荷的黑洞內部連接一個相應的白洞,你可以跳進黑洞而從白洞中跳出來。這樣的黑洞和白洞的組合叫做蟲洞。
最後,即使蟲洞存在並且是穩定的,穿過它們也是十分不愉快的。貫穿蟲洞的輻射(來自附近的恆星,宇宙的微波背景等等)將藍移到非常高的頻率。當你試著穿越蟲洞時,你將被這些X射線和伽瑪射線烤焦。蟲洞的出現,幾乎何以說是和黑洞同時的。
物理學家一直認為,蟲洞的引力過大,會毀滅所有進入它的東西,因此不可能用在宇宙旅行之上 。但是,假設宇宙中有蟲洞這種物質存在,那麼就可以有一種說法:如果你於12:00站在蟲洞的一端(入口),那你就會於12:00從蟲洞的另一端(出口)出來。
黑洞和黑洞之間也可以通過蟲洞連接,當然,這種連接無論是如何的將強,它還是僅僅是一個連通的「宇宙監獄」。
蟲洞(Wormhole),又稱愛因斯坦-羅森橋,是宇宙中可能存在的連接兩個不同時空的狹窄隧道。
蟲洞有幾種說法
一是空間的隧道,就像一個球,你要沿球面走就遠了但如果你走的是球里的一條直徑就近了,蟲洞就是直徑
二是黑洞與白洞的聯系
三是你說的時間隧道,根據愛因斯坦所說的你可以進行時間旅行,但你只能看,就像看電影,卻無法改變發生的事情,因為時間是線行的,事件就是一個個珠子已經穿好,你無法改變珠子也無法調動順序
到現在為止,我們討論的都是普通「完美」黑洞。細節上,我們討論的黑洞都不旋轉也沒有電荷。如果我們考慮黑洞旋轉同時/或者帶有電荷,事情會變的更復雜。特別的是,你有可能跳進這樣的黑洞而不撞到奇點。結果是,旋轉的或帶有電荷的黑洞內部連接一個相應的白洞,你可以跳進黑洞而從白洞中跳出來。這樣的黑洞和白洞的組合叫做蟲洞。
白洞有可能離黑洞十分遠;實際上它甚至有可能在一個「不同的宇宙」--那就是,一個時空區域,除了蟲洞本身,完全和我們在的區域沒有連接。一個位置方便的蟲洞會給我們一個方便和快捷的方法去旅行很長一段距離,甚至旅行到另一個宇宙。或許蟲洞的出口停在過去,這樣你可以通過它而逆著時間旅行。總的來說,它們聽起來很酷。
但在你認定那個理論正確而打算去尋找它們之前,你因該知道兩件事。首先,蟲洞幾乎可以肯定不存在。正如我們上面我們說到白洞時,只因為它們是方程組有效的數學解並不表明它們在自然中存在。特別的,當黑洞由普通物質坍塌形成(包括我們認為存在的所有黑洞)並不會形成蟲洞。如果你掉進其中的一個,你並不會從什麼地方跳出來。你會撞到奇點,那是你唯一可去的地方。
還有,即使形成了一個蟲洞,它也被認為是不穩定的。即使是很小的擾動(包括你嘗試穿過它的擾動)都會導致它坍塌。
後,即使蟲洞存在並且是穩定的,穿過它們也是十分不愉快的。貫穿蟲洞的輻射(來自附近的恆星,宇宙的微波背景等等)將藍移到非常高的頻率。當你試著穿越蟲洞時,你將被這些X射線和伽瑪射線烤焦。蟲洞的出現,幾乎何以說是和黑洞同時的。
在史瓦西發現了史瓦西黑洞以後,理論物理學家們對愛因斯坦常方程的史瓦西解進行了幾乎半個世紀的探索。包括上面說過的克爾解、雷斯勒——諾斯特朗姆解以及後來的紐曼解,都是圍繞史瓦西的解研究出來的成果。我在這里將介紹給大家的蟲洞,也是史瓦西的後代。
蟲洞在史瓦西解中第一次出現,是當物理學家們想到了白洞的時候。他們通過一個愛因斯坦的思想實驗,發現時空可以不是平坦的,而是彎曲的。在這種情況下,我們會十分的發現,如果恆星形成了黑洞,那麼時空在史瓦西半徑,也就是視界的地方是與原來的時空完全垂直的。在不是平坦的宇宙時空中,這種結構就以為著黑洞的視界內的部分會與宇宙的另一個部分相結合,然後在那裡產生一個洞。這個洞可以是黑洞,也可以是白洞。而這個彎曲的視界,叫史瓦西喉,也就是一種特定的蟲洞。
自從在史瓦西解中發現了蟲洞,物理學家們就開始對蟲洞的性質感到好奇。
我們先來看一個蟲洞的經典作用:連接黑洞和白洞,成為一個愛因斯坦——羅森橋,將物質在黑洞的奇點處被完全瓦解為基本粒子,然後通過這個蟲洞(即愛因斯坦——羅森橋)被傳送到這個白洞的所在,並且被輻射出去。
當然,前面說的僅僅是蟲洞作為一個黑洞和白洞之間傳送物質的道路,但是蟲洞的作用遠不只如此。
黑洞和黑洞之間也可以通過蟲洞連接,當然,這種連接無論是如何的將強,它還是僅僅是一個連通的「宇宙監獄」。
蟲洞不僅可以作為一個連接洞的工具,它還開宇宙的正常時空中出現,成為一個突然出現在宇宙中的超空間管道。
蟲洞沒有視界,踏有的僅僅是一個和外界的分解面。蟲洞通過這個分解面和超空間連接,但是在這里時空曲率不是無限大。就好比在一個在平面中一條曲線和另一條曲線相切,在蟲洞的問題中,它就好比是一個四維管道和一個三維的空間相切,在這里時空曲率不是無限大。因而我們現在可以安全地通過蟲洞,而不被巨大的引力所摧毀。
那麼蟲洞都有些什麼性質呢?
利用相對論在不考慮一些量子效應和除引力以外的任何能量的時候,我們得到了一些十分簡單、基本的關於蟲洞的描述。這些描述十分重要,但是由於我們研究的重要是黑洞,而不是宇宙中的洞,因此我在這里只簡單介紹一下蟲洞的性質,而對於一些相關的理論以及這些理論的描述,這里先不涉及。
蟲洞有些什麼性質呢?最主要的一個,是相對論中描述的,用來作為宇宙中的告訴火車。但是,蟲洞的第二個重要的性質,也就是量子理論告訴我們的東西又明確的告訴我們:蟲洞不可能成為一個宇宙的告訴火車。蟲洞的存在,依賴於一種奇異的性質和物質,而這種奇異的性質,就是負能量。只有負能量才可以維持蟲洞的存在,保持蟲洞與外界時空的分解面持續打開。當然,狄拉克在芬克爾斯坦參照系的基礎上,發現了參照系的選擇可以幫助我們更容易或者難地來分析物理問題。同樣的,負能量在狄拉克的另一個參照系中,是非常容易實現的,因為能量的表現形式和觀測物體的速度有關。這個結論在膜規范理論中同樣起到了十分重要的作用。根據參照系的不同,負能量是十分容易實現的。在物體以近光速接近蟲洞的時候,在蟲洞的周圍的能量自然就成為了負的。因而以接近光速的速度可以進入蟲洞,而速度離光速太大,那麼物體是無論如何也不可能進入蟲洞的。這個也就是蟲洞的特殊性質之一。
但是蟲洞並沒有這么太平。前面說的是在安靜的相對論中的蟲洞,在暴躁的量子理論中,蟲洞的性質又有了十分重要的變化。
我們先來看在黑洞中的蟲洞,也就是史瓦西喉和奇點周圍形成的子宇宙。
黑洞周圍的量子真空漲落在黑洞巨大引力的作用下,會被黑洞的引力能「喂」大,成為十分的能量輻射。這種能量會毫不留情地將一切形式的蟲洞摧毀。
在沒有黑洞包圍的蟲洞中,由於同樣的沒有黑洞巨大引力的「喂養」,蟲洞本身也不可能開啟太久。蟲洞有很大幾率被隨機打開,但是有更大的幾率突然消失。蟲洞打開的時間十分短,僅僅是幾個普朗克時間。在如此短的「壽命」中,即使是光也不可能走完蟲洞的一半旅途,而在半路由於蟲洞的消失而在整個時空中消失,成為真正的四維時空組旅行者。
而且,在沒有物體通過蟲洞的時候,蟲洞還比較「長壽」,而一旦有物體進入了蟲洞,如果這個物體是負能量的,那麼還好,蟲洞會被撐開;但是如果物體是正能量的,那麼蟲洞會在自己「自然死亡」以前就「滅亡」掉。而在宇宙中,幾乎無時無刻不存在能量輻射通過宇宙的每一個角落,而這些輻射都是正能量的,因此幾乎可以肯定,在自然情況下是不存在蟲洞的。
旋轉的或帶有電荷的黑洞內部連接一個相應的白洞,你可以跳進黑洞而從白洞中跳出來。這樣的黑洞和白洞的組合叫做蟲洞。
白洞有可能離黑洞十分遠;實際上它甚至有可能在一個「不同的宇宙」--那就是,一個時空區域,除了蟲洞本身,完全和我們在的區域沒有連接。一個位置方便的蟲洞會給我們一個方便和快捷的方法去旅行很長一段距離,甚至旅行到另一個宇宙。或許蟲洞的出口停在過去,這樣你可以通過它而逆著時間旅行。總的來說,它們聽起來很酷。
但在你認定那個理論正確而打算去尋找它們之前,你因該知道兩件事。首先,蟲洞幾乎可以肯定不存在。正如我們上面我們說到白洞時,只因為它們是方程組有效的數學解並不表明它們在自然中存在。特別的,當黑洞由普通物質坍塌形成(包括我們認為存在的所有黑洞)並不會形成蟲洞。如果你掉進其中的一個,你並不會從什麼地方跳出來。你會撞到奇點,那是你唯一可去的地方。
還有,即使形成了一個蟲洞,它也被認為是不穩定的。即使是很小的擾動(包括你嘗試穿過它的擾動)都會導致它坍塌。
最後,即使蟲洞存在並且是穩定的,穿過它們也是十分不愉快的。貫穿蟲洞的輻射(來自附近的恆星,宇宙的微波背景等等)將藍移到非常高的頻率。當你試著穿越蟲洞時,你將被這些X射線和伽瑪射線烤焦。蟲洞的出現,幾乎何以說是和黑洞同時的。
物 理 學 家 一 直 認 為 , 蟲 洞 的 引 力 過 大 , 會 毀 滅 所 有 進 入 它 的 東 西 , 因 此 不 可 能 用 在 宇 宙 旅 行 之 上 。
黑洞和黑洞之間也可以通過蟲洞連接,當然,這種連接無論是如何的將強,它還是僅僅是一個連通的「宇宙監獄」。
蟲洞不僅可以作為一個連接洞的工具,它還開宇宙的正常時空中出現,成為一個突然出現在宇宙中的超空間管道。
蟲洞沒有視界,踏有的僅僅是一個和外界的分解面。蟲洞通過這個分解面和超空間連接,但是在這里時空曲率不是無限大。就好比在一個在平面中一條曲線和另一條曲線相切,在蟲洞的問題中,它就好比是一個四維管道和一個三維的空間相切,在這里時空曲率不是無限大。因而我們現在可以安全地通過蟲洞,而不被巨大的引力所摧毀。
蟲洞的存在,依賴於一種奇異的性質和物質,而這種奇異的性質,就是負能量。只有負能量才可以維持蟲洞的存在,保持蟲洞與外界時空的分解面持續打開。
根據參照系的不同,負能量是十分容易實現的。在物體以近光速接近蟲洞的時候,在蟲洞的周圍的能量自然就成為了負的。因而以接近光速的速度可以進入蟲洞,而速度離光速太大,那麼物體是無論如何也不可能進入蟲洞的。這個也就是蟲洞的特殊性質之一。
我們先來看在黑洞中的蟲洞,也就是史瓦西喉和奇點周圍形成的子宇宙。
黑洞周圍的量子真空漲落在黑洞巨大引力的作用下,會被黑洞的引力能「喂」大,成為十分的能量輻射。這種能量會毫不留情地將一切形式的蟲洞摧毀。
在沒有黑洞包圍的蟲洞中,由於同樣的沒有黑洞巨大引力的「喂養」,蟲洞本身也不可能開啟太久。蟲洞有很大幾率被隨機打開,但是有更大的幾率突然消失。蟲洞打開的時間十分短,僅僅是幾個普朗克時間。在如此短的「壽命」中,即使是光也不可能走完蟲洞的一半旅途,而在半路由於蟲洞的消失而在整個時空中消失,成為真正的四維時空組旅行者。
而且,在沒有物體通過蟲洞的時候,蟲洞還比較「長壽」,而一旦有物體進入了蟲洞,如果這個物體是負能量的,那麼還好,蟲洞會被撐開;但是如果物體是正能量的,那麼蟲洞會在自己「自然死亡」以前就「滅亡」掉。而在宇宙中,幾乎無時無刻不存在能量輻射通過宇宙的每一個角落,而這些輻射都是正能量的,因此幾乎可以肯定,在自然情況下是不存在蟲洞的。
蟲洞的自然產生機制有兩種:
其一,是黑洞的強大引力能;
其二,是克爾黑洞的快速旋轉,其倫斯——梯林效應將黑洞周圍的能層中的時空撕開一些小口子。這些小口子在引力能和旋轉能的作用下被擊穿,成為一些十分小的蟲洞。這些蟲洞在黑洞引力能的作用下,可以確定它們的出口在那裡,但是現在還不可能完全完成,因為量子理論和相對論還沒有完全結合。
個人假設
I、蟲洞像河流,通過的物體像船,船順河而下;
蟲洞體像一個圓柱形磁鐵,強力的類磁力線在入口處將通過的物體分解,以波的形式在柱心管道運行,在出口處還原。通過的物體類似一個障礙,造成波的某一部分形變,然後這個形變推移到出口。
可能還涉及到橫波、縱波,波的反射、折射、衍射,物質的不均勻、空間的不規則,如同水中氣泡般的宇宙空洞。
② 宇宙化學的區別
宇宙化學是物質化學和生命化學的基礎。
西方宇宙化學的公式是教條的、斷層的,沒有從整體上去論證。地球在太古代時期,是由五大基素爆燃的產物,地球岩漿殘留的火山爆炸是地球氣團時期的五基地球太極時期。研究宇宙化學,首先要研究地球化學,因為地球化學和宇宙化學是有區別的。研究宇宙化學和地球化學,是研究地球人體化學結構的基礎,並不能取代地球活體人的數據。 宇宙化學是物質化學和生命化學的基礎。並不是說生命化學和地球化學是宇宙化學的分支,宇宙化學和地球化學是同一問題的兩個方向。研究宇宙化學和地球化學必須在中國納音學指導下,才是正確的。按太陽中心論是論不出宇宙化學的數據的。不承認銀河半月瓣180度的天河傾斜的機理,豈能正確的認識銀河系;沒有正確的宇宙化學和地球化學,豈能有正確的地球人類的預防科學,國際上對地球化學,只是在地球上尋找地球化學元素的來源。地球上的生命化學,是按陰生陽長規律的,所有地球生命物包括人類,都是地球的產物,是月球全息物,是地球上的水和五酸為基礎的生命物。純鹼和純酸都沒有生命物,也不會產生生命物。國際上對地球人類的研討,是在斷層文化中憑空設想的研討,如人是天外來的等等荒謬論調。研究地球化學,是研究人體化學,研究宇宙化學,是為了研究地球化學。
③ 宇宙化學的介紹
宇宙化學是研究宇宙物質的化學組成及其演化規律的學科,是天文學的一個分支,也是天文學與化學之間的邊緣學科。宇宙化學研究的對象包括隕石、月球、行星系天體、行星際物質、太陽、恆星、星際物質、宇宙線、星系和星系際物質等。
④ 地球上的化學元素是宇宙中的全部元素嗎還有其他嗎
科學的進步一直以來都是人們發展的根本條件,我們所看到的科技其實都是源自科學的進步發展,一開始的時候化學也是科學的研究方向,地球上的元素其實是很多的,這時候人們就會問地球上的化學元素是宇宙中的全部元素嗎?還有其他嗎?其實肯定不是宇宙裡面全部的,因為其實不少元素是隕石帶給地球的,宇宙裡面肯定不止地球上的元素,或者地球上的元素,我們其實也沒有完全發現。
所以宇宙裡面的星球是無數的,元素也是無數的,我們地球上的元素不可能說是就是宇宙裡面所有的元素,完全就不是一個數量級別,這是一個很嚴重的問題,大家不要以為地球就是宇宙最厲害的存在,說白了也僅僅只是一個普通的存在,但是對於我們是很特殊的存在,宇宙裡面其他元素肯定還有。
⑤ 宇宙化學的簡介
宇宙化學(cosmic chemistry)是研究宇宙物質的化學組成及其演化規律的分支學科。主要研究內容有:
①確定組成宇宙物質的元素、同位素和分子,測定它們的含量。
②探討宇宙物質的化學演化。這對研究天體起源和生命起源都有重要的意義,也推動了宇宙化學的發展。
古人只能進行思辨猜測,直至19世紀才逐漸成為科學。1833年瑞典化學家貝采利烏斯第一次從隕星殘片成分分析測定了宇宙物質的化學成分,而19世紀中期誕生的光譜分析法使人們獲得了恆星的化學組成資料。20世紀後則有了更加廣泛的手段,空間觀測使得頻譜分析擴展到「全波」范圍:從射電、紅外、可見光到紫外線、X射線、γ射線都能從事宇宙化學的研究,加上空間探測的直接登月、登火星等天體採集岩石、土壤樣品,使得該學科獲得了巨大的進展,例如星際分子的發現被譽為60年代四大天文發現之一。
按照研究對象不同。宇宙化學又大致可分為:隕石化學、行星系化學、恆星化學、星際化學、同位素宇宙化學、宇宙線核化學等。
⑥ 宇宙中的化學元素的起源
歐洲航天局的XMM-牛頓衛星對兩個明亮的X射線星系團所做的深入觀測,使一個國際天文學家小組可以以空前的精度測定它們的化學成分。對於理解宇宙中化學元素的起源來說,了解星系團的化學成分是至關重要的。
這兩張星系團的X射線照片是由XMM-牛頓衛星上的歐洲光子成像相機(EPIC)拍攝的,左側的星系團名叫2A 0335+096,右側的是Sersic 159-03。Credits: ESA and the XMM-Newton EPIC consortium
星系團是宇宙中最大的天體。透過光學望遠鏡觀察它們,你也許會看見成百、甚至上千個星系聚集在一個直徑幾百萬光年的空間范圍之中。不過,這樣的望遠鏡揭露的僅僅是冰山的一角。事實上,星系團中的大部分原子都是以輻射著X射線的高溫氣體的形式存在著,它們的質量是星系團中星系本身總質量的 五倍。
化學元素由星系團中的恆星製造,超新星爆炸和恆星風會將它們驅散到周圍的空間之中。大部分元素會變成高溫氣體的一部分,釋放出X射線。天文學家將超新星分為兩個大類:「核心坍縮」和「Ia型」超新星。前一類是在大質量恆星的生命即將結束,坍縮形成中子星或者黑洞時產生的。這些超新星會產生大量的氧、氖和鎂。Ia型超新星則是白矮星從其伴星上掠奪了太多的物質,超過了質量極限而爆炸產生的。它們會產生大量的鐵和鎳。
XMM-牛頓衛星分別在2002年11月和2003年8月,各花了一天半的時間,對兩個名叫「Sersic 159-03」和「2A 0335+096」的星系團進行了深入的觀測。多虧了這些數據,天文學家才在星系團的氣體中,測定了九種化學元素的含量。
這些元素包括氧、鐵、氖、鎂、硅、氬、鈣、鎳和鉻,最後一種元素是第一次在星系團中被檢測到。「將檢測到的元素含量與理論計算的超新星產量進行比較,我們發現這些星系團中大約30%的超新星都是爆炸的白矮星(『Ia型』),其餘的則是在生命結束時發生坍縮的恆星(『核心坍縮』),」諾伯特·活納(Norbert Werner)說,他來自於SRON荷蘭空間研究所,是這項研究的主要作者之一。
「這個數字介於我們銀河系的數據(Ia型超新星所佔的比例大約是13%)和利克天文台(Lick Observatory)超新星搜索計劃測定的當前河外超新星的數據(在所有被觀測到的超新星中,Ia型超新星約佔42%)之間,」他繼續說。
天文學家還發現,所有的超新星模型所預言的鈣含量都比星系團中觀測到的含量少得多,觀測到的鎳含量也無法用這些模型解釋。這些差異表明,超新星產生化學元素的細節還沒有被徹底理解。星系團的X射線光譜數據可以幫助改善這些超新星模型。
星系團中化學元素的空間分布也掌握著關於星系團自身歷史的信息。2A 0335+096中的元素分布表明,一場並合正在發生。Sersic 159-03中氧和鐵的分布表明,盡管大多數元素是由核心坍縮超新星在很久以前產生的,但Ia型超新星仍在繼續向高溫氣體中輸送重元素,特別是在星系團的核心區域之中。
⑦ 宇宙中共含有多少化學元素
截至目前為止,被科學界確認的排在化學元素周期表中的元素為118種!
⑧ 在宇宙大爆炸中後十五分鍾內出現的核反應壘而成的宇宙中幾乎所有的什麼化學元
重元素是在超新星爆炸時產生的,超新星是質量巨大的恆星即將消亡時,由於巨大的引力使內部壓力變得很大,最終將外部的物質在一次劇烈的爆炸中拋出,此時產生的巨大能量足以生成重元素,並將它們拋進宇宙,進入下一次恆星的循環.
⑨ 宇宙化學的研究任務
宇宙物質的化學組成是指構成宇宙物質的元素、同位素、分子和礦物。宇宙化學的研究任務之一就是確定這些組成,並測定它們的相對含量和絕對含量。測定方法有兩種:一種是直接取樣,如測定隕石、月球岩石樣品、宇宙塵、宇宙射線核成分等;另一種是測定來自天體的電磁輻射中的特徵譜線。例如對恆星作光譜分析,對星際物質進行射電、紅外、可見光波段的頻譜分析。研究表明,宇宙物質是由《化學元素周期表》中近百種化學元素和280多種同位素組成的。在宇宙物質中發現了地球上尚未發現的若干種礦物和分子。 宇宙化學另一個任務是研究宇宙物質的化學演化。大致有幾個過程:首先由某種過程(例如「宇宙大爆炸」)生成元素氫,再通過核合成過程(如恆星內部核合成、超新星爆發核合成等)生成其他元素。元素的原子在恆星表面或星際空間結合形成分子,這些分子在行星系中將循兩條路線繼續演化:分子凝聚為塵埃,塵埃聚集而成星子,進而形成行星等天體;一些含碳、氮、氧、氫等元素的分子在星際雲中生成後,通過生命前的化學演化生成復雜分子,在地球上(還可能在其他行星系的行星上)生成氨基酸、蛋白質,最後導致生命的出現。恆星的一生不斷地向星際空間拋射物質,最後瓦解為星際雲;反過來,星際雲又通過漫長過程凝聚而形成各種恆星。
⑩ 宇宙中最重要化學元素的有幾種
氫是宇宙中最豐富最重要的元素
氫是一種化學元素,化學符號為H,原子序數是1,在元素周期表中位於第一位.它的原子是所有原子中最細小的.氫通常的單質形態是氫氣.它是無色無味無臭,極易燃燒的由雙原子分子組成的氣體,氫氣是最輕的氣體.它是宇宙中含量最高的物質.氫原子存在於水,所有有機化合物和活生物中.導熱能力特別強,跟氧化合成水.在0攝氏度和一個大氣壓下,每升氫氣只有0.09克重——僅相當於同體積空氣重量的14.5分之一.