幣圈斐波那契數列
『壹』 斐波那契數列求和公式
1、奇數項求和
(1)幣圈斐波那契數列擴展閱讀:
斐波那契數列的應用:
1、生物應用
斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,如果選擇樹幹上的一片葉子,將其計數為零,然後按順序(假設沒有損壞)計數葉子,直到達到適合這些葉子的位置,它們之間的葉子數基本上是斐波那契數。從一個位置移動到下一個位置的葉子稱為周期。
葉子在一個周期內旋轉的圈數也是斐波那契數。一個循環中葉數與葉旋轉圈數之比稱為葉序比(源自希臘語,意為葉的排列)。大多數葉序比是斐波那契數。
2、自然界中的應用
自然界中的斐波那契數列斐波那契數列在自然科學的其他分支,有許多應用。例如,樹木的生長,由於新的枝條,往往需要一段時間的「休息」時間來自己生長,才能使新的枝條發芽。因此,例如,幼苗每隔一年生長一個新的枝條。
第二年,新樹枝「休息」,老樹枝仍在發芽。之後,老枝和老枝「休憩」一年的同時發芽,而當年的新枝則在第二年「休息」。這樣,一棵樹每年的分枝數就構成了斐波那契數列。這個定律是生物學中著名的「魯德維格定律」。
『貳』 斐波那契數列在實際生活中有沒有應用價值何在呢
一、斐波那契的生活應用:
1、斐波那契數列中的斐波那契數會經常出現在生活中,比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣)、蜂巢、蜻蜓翅膀、超越數e(可以推出更多)、黃金矩形、黃金分割、等角螺線、十二平均律等。
2、斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子,直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。
二、矩形面積的價值體現在很多方面,比如:
斐波那契數列與矩形面積的生成相關,由此可以導出一個斐波那契數列的一個性質。斐波那契數列前幾項的平方和可以看做不同大小的正方形,由於斐波那契的遞推公式,它們可以拼成一個大的矩形,這樣所有小正方形的面積之和等於大矩形的面積。
三、在科學領域沒有被廣泛應用。
(2)幣圈斐波那契數列擴展閱讀
1、「斐波那契數列」的定義:
斐波那契數列指的是這樣一個數列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368等等。這個數列從第3項開始,每一項都等於前兩項之和。
2、「斐波那契數列」的發現者:
斐波那契數列的定義者,是義大利數學家列昂納多·斐波那契(Leonardo Fibonacci),生於公元1170年,卒於1250年,籍貫是比薩,他被人稱作「比薩的列昂納多」。
1202年,他撰寫了《算盤全書》一書。他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點於阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯等地研究數學。
『叄』 斐波那契數列的公式是什麼意思
而從第三項起,每一項是之前兩項之和,則稱該數列為斐波那契數列.即: 1 , 1 , 2 , 3 , 5 , 8 , 13 , … … 1 + 1...後來的數學家發現了許多關於斐波那契數列的特性.
『肆』 斐波那契數列是什麼在股市中怎麼應用
斐波那契數列指的是這樣一個數列:
1、1、2、3、5、8、13、21、……
這個數列從第三項開始,每一項都等於前兩項之和。
通用公式:
(4)幣圈斐波那契數列擴展閱讀
斐波那契數列中的斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),黃金矩形、黃金分割、等角螺線,十二平均律等。
斐波那契數列在自然科學的其他分支,有許多應用。例如,樹木的生長,由於新生的枝條,往往需要一段「休息」時間,供自身生長,而後才能萌發新枝。所以,一株樹苗在一段間隔,例如一年,以後長出一條新枝;第二年新枝「休息」,老枝依舊萌發;此後,老枝與「休息」過一年的枝同時萌發,當年生的新枝則次年「休息」。這樣,一株樹木各個年份的枝椏數,便構成斐波那契數列。這個規律,就是生物學上著名的「魯德維格定律」。
另外,觀察延齡草、野玫瑰、南美血根草、大波斯菊、金鳳花、耬斗菜、百合花、蝴蝶花的花瓣,可以發現它們花瓣數目具有斐波那契數:3、5、8、13、21、……
其中百合花花瓣數目為3,梅花5瓣,飛燕草8瓣,萬壽菊13瓣,向日葵21或34瓣,雛菊有34,55和89三個數目的花瓣。
『伍』 什麼是斐波那契數列
斐波那契數列數列從第3項開始,每一項都等於前兩項之和。
例子:數列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........
應用:
生活斐波那契
斐波那契數列中的斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),黃金矩形、黃金分割、等角螺線,十二平均律等。
斐波那契數與植物花瓣3………………………
百合和蝴蝶花5……………………
藍花耬斗菜、金鳳花、飛燕草、毛茛花8………………………
翠雀花13………………………
金盞和玫瑰21……………………
紫宛34、55、89……………雛菊
斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。
葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比。多數的葉序比呈現為斐波那契數的比。
黃金分割
隨著數列項數的增加,前一項與後一項之比越來越逼近黃金分割的數值0.6180339887..…
(5)幣圈斐波那契數列擴展閱讀:
性質:
平方與前後項
從第二項開始,每個奇數項的平方都比前後兩項之積少1,每個偶數項的平方都比前後兩項之積多1。
如:第二項1的平方比它的前一項1和它的後一項2的積2少1,第三項2的平方比它的前一項1和它的後一項3的積3多1。
(註:奇數項和偶數項是指項數的奇偶,而並不是指數列的數字本身的奇偶,比如從數列第二項1開始數,第4項5是奇數,但它是偶數項,如果認為5是奇數項,那就誤解題意,怎麼都說不通)
證明經計算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)
發明者:
斐波那契數列的發明者,是義大利數學家列昂納多·斐波那契(Leonardo Fibonacci),生於公元1170年,卒於1250年,籍貫是比薩。他被人稱作「比薩的列昂納多」。1202年,他撰寫了《算盤全書》(Liber Abacci)一書。
他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點相當於今日的阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯等地研究數學。
『陸』 什麼是斐波那契數列在日常生活中有什麼實例
菲波那契數列指的是這樣一個數列:
1,1,2,3,5,8,13,21……
這個數列從第三項開始,每一項都等於前兩項之和
它的通項公式為:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根號5】
很有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的。
該數列有很多奇妙的屬性
比如:隨著數列項數的增加,前一項與後一項之比越逼近黃金分割0.6180339887……
還有一項性質,從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1
如果你看到有這樣一個題目:某人把一個8*8的方格切成四塊,拼成一個5*13的長方形,故作驚訝地問你:為什麼64=65?其實就是利用了斐波那契數列的這個性質:5、8、13正是數列中相鄰的三項,事實上前後兩塊的面積確實差1,只不過後面那個圖中有一條細長的狹縫,一般人不容易注意到
如果任意挑兩個數為起始,比如5、-2.4,然後兩項兩項地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你將發現隨著數列的發展,前後兩項之比也越來越逼近黃金分割,且某一項的平方與前後兩項之積的差值也交替相差某個值
斐波那契數列別名
斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為「兔子數列」。
『柒』 斐波那契數列從幾開始
斐波那契數列
斐波那契數列(Fibonacci sequence),又稱黃金分割數列、因數學家萊昂納多·斐波那契(Leonardoda Fibonacci)以兔子繁殖為例子而引入,故又稱為「兔子數列」,指的是這樣一個數列:0、1、1、2、3、5、8、13、21、34、……在數學上,斐波那契數列以如下被以遞推的方法定義:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N*)在現代物理、准晶體結構、化學等領域,斐波納契數列都有直接的應用,為此,美國數學會從 1963 年起出版了以《斐波納契數列季刊》為名的一份數學雜志,用於專門刊載這方面的研究成果。
中文名
斐波那契數列
外文名
Fibonacci sequence
別名
黃金分割數列、兔子數列
表達式
F[n]=F[n-1]+F[n-2](n>=3,F[1]=1,F[2]=1)
提出者
萊昂納多·斐波那契
快速
導航
通項公式
特性
應用
推廣
相關數學
斐波那契弧線
Java代碼實現
Javascript代碼實現
C++代碼實現
Python3代碼實現
php代碼實現
Rust代碼實現
定義
斐波那契數列指的是這樣一個數列:
這個數列從第3項開始,每一項都等於前兩項之和。
自然中的斐波那契數列
斐波那契數列的定義者,是義大利數學家萊昂納多·斐波那契(Leonardo Fibonacci),生於公元1170年,卒於1250年,籍貫是比薩。他被人稱作「比薩的萊昂納多」。1202年,他撰寫了《算盤全書》(Liber Abacci)一書。他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點於阿爾及利亞地區,萊昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯等地研究數學。另外斐波納契還在計算機C語言程序題中應用廣泛
斐波那契數列的黃金特徵1,還讓我們聯想到佩爾數列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(該類數列的這種特徵值稱為勾股特徵)。
佩爾數列Pn的遞推規則:
據此類推到所有根據前兩項導出第三項的通用規則:,稱為廣義斐波那契數列。
當時,我們得到斐波那契—盧卡斯數列。
當時,我們得到佩爾—勾股弦數(跟邊長為整數的直角三角形有關的數列集合)。
當時,我們得到等差數列。其中時,我們得到自然數列1,2,3,4,5…自然數列的特徵就是每個數的平方與前後兩數之積的差為 1(等差數列的這種差值稱為自然特徵)。
具有類似黃金特徵、勾股特徵、自然特徵的廣義——斐波那契數列 。
當,時,我們得到等比數列1,2,4,8,16…
相關數學
排列組合
有一段樓梯有10級台階,規定每一步只能跨一級或兩級,要登上第 10 級台階有幾種不同的走法?
這就是一個斐波那契數列:登上第一級台階有一種登法;登上兩級台階,有兩種登法;登上三級台階,有三種登法;登上四級台階,有五種登法……
1,2,3,5,8,13…… 所以,登上十級,有 89 種走法。
類似的,一枚均勻的硬幣擲10次,問不連續出現正面的可能情形有多少種?
答案是種。
求遞推數列的通項公式
由數學歸納法可以得到:,將斐波那契數列的通項式代入,化簡就得結果。
『捌』 斐波那契數列第十二個數是什麼(要求如下)
「斐波那契數列」的發明者,是義大利數學家列昂納多·斐波那契(LeonardoFibonacci,生於公元1170年,卒於1240年,籍貫大概是比薩)。他被人稱作「比薩的列昂納多」。1202年,他撰寫了《珠算原理》(LiberAbaci)一書。他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點相當於今日的阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯研究數學。斐波那契數列通項公式
斐波那契數列指的是這樣一個數列:1、1、2、3、5、8、13、21、……
這個數列從第三項開始,每一項都等於前兩項之和。它的通項公式為:(見圖)(又叫「比內公式」,是用無理數表示有理數的一個範例。)
有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的。隨著數列項數的增加,前一項與後一項之比越來越逼近黃金分割的數值0.6180339887……
從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1。(註:奇數項和偶數項是指項數的奇偶,而並不是指數列的數字本身的奇偶,比如第五項的平方比前後兩項之積多1,第四項的平方比前後兩項之積少1)
『玖』 斐波那契數列都有哪些規律
斐波那契數列中的斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),黃金矩形、黃金分割、等角螺線,十二平均律等。
其中百合花花瓣數目為3,梅花5瓣,飛燕草8瓣,萬壽菊13瓣,向日葵21或34瓣,雛菊有34,55和89三個數目的花瓣。
斐波那契螺旋:具有13條順時針旋轉和21條逆時針旋轉的螺旋的薊的頭部
這些植物懂得斐波那契數列嗎?應該並非如此,它們只是按照自然的規律才進化成這樣。這似乎是植物排列種子的「優化方式」,它能使所有種子具有差不多的大小卻又疏密得當,不至於在圓心處擠了太多的種子而在圓周處卻又稀稀拉拉。葉子的生長方式也是如此,對於許多植物來說,每片葉子從中軸附近生長出來,為了在生長的過程中一直都能最佳地利用空間(要考慮到葉子是一片一片逐漸地生長出來,而不是一下子同時出現的),每片葉子和前一片葉子之間的角度應該是222.5度,這個角度稱為「黃金角度」,因為它和整個圓周360度之比是黃金分割數0.618033989……的倒數,而這種生長方式就決定了斐波那契螺旋的產生。向日葵的種子排列形成的斐波那契螺旋有時能達到89,甚至144條。1992年,兩位法國科學家通過對花瓣形成過程的計算機模擬實驗,證實了在系統保持最低能量的狀態下,花朵會以斐波那契數列長出花瓣。
數字謎題
三角形的三邊關系定理和斐波那契數列的一個聯系:
現有長為144cm的鐵絲,要截成n小段(n>2),每段的長度不小於1cm,如果其中任意三小段都不能拼成三角形,則n的最大值為多少?
分析:由於形成三角形的充要條件是任何兩邊之和大於第三邊,因此不構成三角形的條件就是存在兩邊之和不超過另一邊。截成的鐵絲最小為1,因此可以放2個1,第三條線段就是2(為了使得n最大,因此要使剩下來的鐵絲盡可能長,因此每一條線段總是前面的相鄰2段之和),依次為:1、1、2、3、5、8、13、21、34、55,以上各數之和為143,與144相差1,因此可以取最後一段為56,這時n達到最大為10。
我們看到,「每段的長度不小於1」這個條件起了控制全局的作用,正是這個最小數1產生了斐波那契數列,如果把1換成其他數,遞推關系保留了,但這個數列消失了。這里,三角形的三邊關系定理和斐波那契數列發生了一個聯系。
在這個問題中,144>143,這個143是斐波那契數列的前n項和,我們是把144超出143的部分加到最後的一個數上去,如果加到其他數上,就有3條線段可以構成三角形了。
影視作品中的斐波那契數列
斐波那契數列在歐美可謂是盡人皆知,於是在電影這種通俗藝術中也時常出現,比如在風靡一時的《達芬奇密碼》里它就作為一個重要的符號和情節線索出現,在《魔法玩具城》里又是在店主招聘會計時隨口問的問題。可見此數列就像黃金分割一樣流行。可是雖說叫得上名,多數人也就背過前幾個數,並沒有深入理解研究。在電視劇中也出現斐波那契數列,比如:日劇《考試之神》第五回,義嗣做全國模擬考試題中的最後一道數學題~在FOX熱播美劇《Fringe》中更是無數次引用,甚至作為全劇宣傳海報的設計元素之一。