當前位置:首頁 » 幣圈知識 » 宇宙次元邊界

宇宙次元邊界

發布時間: 2022-08-27 15:55:09

① 宇宙的邊界是什麼

每個人都知道宇宙極其廣大,但是每個人都好奇宇宙有沒有邊界,有的人認為有邊界,因為再大的東西也是有個限度的,有的人認為沒有邊界,因為宇宙肯定是廣闊無垠的,肯定沒有邊界。

文章圖片1
那麼我們的宇宙到底有沒有邊界呢?天文物理學認為我們的宇宙肯定是有邊界的,它本身起源於一次大爆炸,然後就一直處於膨脹的過程中,至今已經膨脹了近138億年,由於邊緣部分膨脹的速度比光速還快,所以如今宇宙的規模大到了直徑約930億光年的距離上,這無疑是一個極其廣大的空間,其中包含了約2萬億個星系,但這么說的話,雖然我們的宇宙很大,但是它也是有邊界的了。它的邊界大約就是在直徑930億光年邊緣處(註:此為可觀測宇宙的理論規模,目前我們還並沒有發現宇宙的邊界)。

文章圖片2
但是可能有的朋友要問了,那麼在這930億光年處的外面又是什麼呢?是啊,這才是一個大問題,930億光年的外面就什麼都沒有了嗎?這更是無法理解的,即便這里的時空和我們的宇宙不同,它也是應該有著屬於它的性質的,就像組成人體的基本單位——細胞,細胞的外面能有組織液,但也可能緊挨著另一個細胞,我們的宇宙外面可能是和我們的宇宙不同的事物,但也有可能緊挨著另一個宇宙。

② 二次元空間及宇宙黑洞

次元可以理解為宇宙的維數,第十次元空間即使第十維宇宙。在M-理論中,空間有十一維,但是人們認為其中六七個或七個方向被捲曲成非常小,只留下三個大的幾乎平坦的方向。霍金提出了他的宇宙模型,給出了11維空間,認為要描述宇宙,X、Y、Z和T(時間)4個未知數是不夠的,要加到11個未知數之後,才能夠解釋宇宙的很多結構。根據物理學家的看法還應該有7個維。盡管有這么多的維,但這些維是看不見的,它們自身卷在了一起,被稱為壓縮的維。為了弄清這種看法,讓我們再以螞蟻為例展開我們的想像。我們可以設想一下,將螞蟻在上面行走的那張紙捲起來,直到捲成一個圓筒形。如果螞蟻沿著的紙壁走,最後它又會回到出發點,這就是壓縮維的一個例子。如果能沿著著名的麥比烏斯帶走,也會發生上述現象,當然,它是3維的,但如果沿著它走過,總是會回到出發點的。麥比烏斯帶從維的角度講是壓縮的,按照物理學它有3個維,但誰在上面行走,都只能認知人一個維。這就有點像左圖上的人:上行或者下行,但永遠不會走到盡頭。如果螞蟻不是沿著紙筒彎曲的壁行走,它就永遠不會返回到原出發點。這就是二維(或者說被我們所感知的那種維)的例子,沿著它一直走,就不可能返回到原來的出發點。PS一維空間為線,即是以長為主的。二維空間為面,即線重合的太多了就有了長和寬,也就組成了面。三維空間為立體,即面重合的太多了,就有了長、寬和高,也就組成了立體形狀。四維空間為時間,即時間有遠近之分、現實與超現實之分、空間與超空間之分、長短之分、動態與靜態之分,是融入到所有有形與無形的空間之中的。五維空間為大腦顯意識思維,是以思維波能量的速度運行的。六維空間為大腦潛意識思維,是以思維波的暗物質能量、潛意識的深度能量來發揮的,是身心智慧的取之不盡、用之不竭、無窮無盡的能量源泉。七維空間為時空交融與分流,即時空學說
黑洞(Black hole)是現代廣義相對論中,宇宙空間內存在的一種超高質量天體,由於類似熱力學上完全不反射光線的黑體,故名為黑洞。黑洞是由質量足夠大的恆星在核聚變反應的燃料耗盡而「死亡」後,發生引力坍縮產生的。黑洞的質量極其巨大,而體積卻十分微小,它產生的引力場極為強勁,以致於任何物質和輻射在進入到黑洞的一個事件視界(臨界點)內,便再無力逃脫,就連傳播速度最快的光(電磁波)也逃逸不出。
編輯本段名詞解釋
指時空曲率大到光都無法從其視界逃脫的天體。
編輯本段產生過程
黑洞就是中心的一個密度無限大、時空曲率無限高、熱量無限高、體積無限小的奇點和周圍一部分空空如也的天區,這個天區范圍之內不可見。黑洞的產生過程類似於中子星的產生過程;某一個恆星在准備滅亡,核心在自身重力的作用下迅速地收縮,塌陷,發生強力爆炸。當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星體,同時也壓縮了內部的空間和時間。但在黑洞情況下,由於恆星核心的質量大到使收縮過程無休止地進行下去,中子本身在擠壓引力自身的吸引下被碾為粉末,剩下來的是一個密度高到難以想像的物質。由於高質量而產生的力量,使得任何靠近它的物體都會被它吸進去。黑洞開始吞噬恆星的外殼,但黑洞並不能吞噬如此多的物質,黑洞會釋放一部分物質,射出兩道純能量——γ射線。。
也可以簡單理解:通常恆星的最初只含氫元素,恆星內部的氫原子時刻相互碰撞,發生聚變。
黑洞由於恆星質量很大,聚變產生的能量與恆星萬有引力抗衡,以維持恆星結構的穩定。由於聚變,氫原子內部結構最終發生改變,破裂並組成新的元素——氦元素,接著,氦原子也參與聚變,改變結構,生成鋰元素。如此類推,按照元素周期表的順序,會依次有鈹元素、硼元素、碳元素、氮元素等生成,直至鐵元素生成,該恆星便會坍塌。這是由於鐵元素相當穩定,參與聚變時不釋放能量,而鐵元素存在於恆星內部,導致恆星內部不具有足夠的能量與質量巨大的恆星的萬有引力抗衡,從而引發恆星坍塌,最終形成黑洞。說它「黑」,是指它就像宇宙中的無底洞,任何物質一旦掉進去,就再不能逃出。跟白矮星和中子星一樣,黑洞可能也是由質量大於太陽質量好幾倍以上的恆星演化而來的。
黑洞當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料(氫),由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。所以在外殼的重壓之下,核心開始坍縮,物質將不可阻擋地向著中心點進軍,直到最後形成體積接近無限小、密度幾乎無限大的星體。而當它的半徑一旦收縮到一定程度(一定小於史瓦西半徑),質量導致的時空扭曲就使得即使光也無法向外射出——「黑洞」就誕生了。[3]
編輯本段表現形式
引力強大的黑洞。恆星的時空扭曲改變了光線的路徑,使之和原先沒有恆星情況下的路徑不一樣。光在恆星表面附近稍微向內偏折,在日食時觀察遠處恆星發出的光線,可以看到這種偏折現象。當該恆星向內坍塌時,其質量導致的時空扭曲變得很強,光線向內偏折得也更強,從而使得光線從恆星逃逸變得更為困難。對於在遠處的觀察者而言,光線變得更黯淡更紅。最後,當這恆星收縮到某一臨界半徑(史瓦西半徑)時,其質量導致時空扭曲變得如此之強,使得光向內偏折得也如此之強,以至於光線再也逃逸不出去 。這樣,如果光都逃逸不出來,其他東西更不可能逃逸,都會被拉回去。也就是說,存在一個事件的集合或時空區域,光或任何東西都不可能從該區域逃逸而到達遠處的觀察者,這樣的區域稱作黑洞。將其邊界稱作事件視界,它和剛好不能從黑洞逃逸的光線的軌跡相重合。

與別的天體相比,黑洞十分特殊。人們無法直接觀察到它,科學家也只能對它內部結構提出各種猜想。而使得黑洞把自己隱藏起來的的原因即是彎曲的時空。根據廣義相對論,時空會在引力場作用下彎曲。這時候,光雖然仍然沿任意兩點間的最短光程傳播,但相對而言它已彎曲。在經過大密度的天體時,時空會彎曲,光也就偏離了原來的方向。
在地球上,由於引力場作用很小,時空的扭曲是微乎其微的。而在黑洞周圍,時空的這種變形非常大。這樣,即使是被黑洞擋著的恆星發出的光,雖然有一部分會落入黑洞中消失,可另一部分光線會通過彎曲的空間中繞過黑洞而到達地球。觀察到黑洞背面的星空,就像黑洞不存在一樣,這就是黑洞的隱身術。
更有趣的是,有些恆星不僅是朝著地球發出的光能直接到達地球,它朝其它方向發射的光也可能被附近的黑洞的強引力折射而能到達地球。這樣我們不僅能看見這顆恆星的「臉」,還同時看到它的「側面」、甚至「後背」,這是宇宙中的「引力透鏡」效應。
這張紅外波段圖像拍攝的是我們所居住銀河系的中心部位,所有銀河系的恆星都圍繞銀心部位可能存在的一個超大質量黑洞公轉。 據美國太空網報道,一項新的研究顯示,宇宙中最大質量的黑洞開始快速成長的時期可能比科學家原先的估計更早,並且現在仍在加速成長。
一個來自以色列特拉維夫大學的天文學家小組發現,宇宙中最大質量黑洞的首次快速成長期出現在宇宙年齡約為12億年時,而非之前認為的20~40億年。天文學家們估計宇宙目前的年齡約為136億年。
同時,這項研究還發現宇宙中最古老、質量最大的黑洞同樣具有非常快速的成長。有關這一發現的詳細情況將發表在最新一期的《天體物理學報》。
編輯本段大型黑洞
巨型黑洞
宇宙中大部分星系,包括我們居住的銀河系的中心都隱藏著一個超大質量黑洞。這些黑洞質量大小不一,大約100萬~100億個太陽質量。天文學家們通過探測黑洞周圍吸積盤發出的強烈輻射推斷這些黑洞的存在。物質在受到強烈黑洞引力下落時,會在其周圍形成吸積盤盤旋下降,在這一過程中勢能迅速釋放,將物質加熱到極高的溫度,從而發出強烈輻射。黑洞通過吸積方式吞噬周圍物質,這可能就是它的成長方式。
這項最新的研究採用了全世界最先進的地基觀測設施,包括位於美國夏威夷莫納克亞山頂,海拔4000多米處的北雙子座望遠鏡,位於智利帕拉那山的南雙子座望遠鏡,以及位於美國新墨西哥州聖阿古斯丁平原上的甚大陣射電望遠鏡。
特大黑洞
新發現的黑洞,位置在距地球5000~1億光年的處女座與白羊座中。專家指出,大部分黑洞質量,只比太陽多出數倍,但是新搜集到的數據顯示,這3個黑洞的質量,約是太陽的5000~1億倍。
黑洞的資料
名稱 質量(太陽=1) 伴星質量(太陽=1)
MGR0J1655-40 5.5 1.2
大麥哲倫雲X-3 6.5 20
J0422432 10 0.3
A0620-00 11 0.5
天鵝座V404 12 0.6
天鵝座X-1 16 30
大質量黑洞的成長
中子星-內部結構模型圖[4]觀測結果顯示,出現在宇宙年齡僅為12億年時的活躍黑洞,其質量要比稍後出現的大部分大質量黑洞質量小10倍。但是它們的成長速度非常快,因而現在它們的質量要比後者大得多。通過對這種成長速度的測算,研究人員可以估算出這些黑洞天體之前和之後的發展路徑。
該研究小組發現,那些最古老的黑洞,即那些在宇宙年齡僅為數億年時便開始進入全面成長期的黑洞,它們的質量僅為太陽的100到1000倍。研究人員認為這些黑洞的形成和演化可能和宇宙中最早的恆星有關。
天文學家們還注意到,在最初的12億年後,這些被觀測的黑洞天體的成長期僅僅持續了1億到2億年。
這項研究是一個已持續7年的研究計劃的成果。特拉維夫大學主持的這項研究旨在追蹤研究宇宙中最大質量黑洞的演化,並觀察它們對宿主星系產生的影響。
已知最大的黑洞
目前,天文學家最新觀測發現小型星系竟包含著一個超大質量黑洞,其質量是太陽的170億倍。天文學家也沒有線索證實這一奇怪現象。
天文學家發現一個超級質量黑洞,所在NGC 1277星系中心膨脹區域59%恆星質量都聚集在黑洞中,這項發現將進一步增添了星系與黑洞之間關系的神秘性。
位於英仙座星系群的小型星系NGC 1277距離地球2.5億光年,這個處在其內部的黑洞質量竟然達到太陽質量的170億倍。相比之下,銀河系中心的超大質量黑洞就是小巫見大巫了,它僅是太陽質量的400萬倍。
普通黑洞僅占星系膨脹區域的0.1%質量,在此之前觀測到擁有最大比例質量黑洞的星系是NCG 4486B,它的黑洞質量占星系的11%。而當前發現NGC 1277星系的神秘巨型黑洞仍是一個謎團,德國馬克思-普朗克天文研究所的天文學家雷姆科-范德-博世說:「我們並未想到宇宙中會存在如此巨大的黑洞,目前我們進一步揭開其中的秘密,並掌握類似的星系在宇宙中如何形成,以及存在的普遍性。」
NGC 1277星系可能並不是唯一的,目前天文學家正在研究多個類似情況的星系,它們可能蘊藏著不成比例的大型黑洞。
編輯本段首次發現
1970年,美國的「自由」號人造衛星發現了與其他射線源不同的天鵝座X-1,位於天鵝座X-1上的是一個比太陽重30多倍的巨大藍色星球,該星球被一個重約10個太陽的看不見的物體牽引著。天文學家一致認為這個物體就是黑洞,它就是人類發現的第一個黑洞。

編輯本段演化過程吸積
黑洞通常是因為它們聚攏周圍的氣體產生輻射而被發現的,這一過程被稱為吸積。高溫氣體輻射熱能的效率會嚴重影響吸積流的幾何與動力學特性。目前觀測到了輻射效率較高的薄盤以及輻射效率較低的厚盤。當吸積氣體接近中央黑洞時,它們產生的輻射對黑洞的自轉以及視界的存在極為敏感。對吸積黑洞光度和光譜的分析為旋轉黑洞和視界的存在提供了強有力的證據。數值模擬也顯示吸積黑洞經常出現相對論噴流也部分是由黑洞的自轉所驅動的。

黑洞拉伸,撕裂並吞噬恆星
通常天體物理學家會用「吸積」這個詞來描述物質向中央引力體或者是中央延展物質系統的流動。吸積是天體物理中最普遍的過程之一,而且也正是因為吸積才形成了我們周圍許多常見的結構。在宇宙早期,當氣體朝由暗物質造成的引力勢阱中心流動時形成了星系。即使到了今天,恆星依然是由氣體雲在其自身引力作用下坍縮碎裂,進而通過吸積周圍氣體而形成的。行星(包括地球)也是在新形成的恆星周圍通過氣體和岩石的聚集而形成的。當中央天體是一個黑洞時,吸積就會展現出它最為壯觀的一面。黑洞除了吸積物質之外,還通過霍金蒸發過程向外輻射粒子。
蒸發
由於黑洞的密度極大,根據公式我們可以知道密度=質量/體積,為了讓黑洞密度無限大,那就說明黑洞的體積要無限小,然後質量要無限大,這樣才能成為黑洞。黑洞是由一些恆星「滅亡」後所形成的死星,它的質量極大,體積極小。但黑洞也有滅亡的那天,按照霍金的理論,在量子物理中,有一種名為「隧道效應」的現象,即一個粒子的場強分布雖然盡可能讓能量低的地方較強,但即使在能量相當高的地方,場強仍會有分布,黑洞噴射物不斷變亮[5]對於黑洞的邊界來說,這就是一堵能量相當高的勢壘,但是粒子仍有可能出去。

霍金還證明,每個黑洞都有一定的溫度,而且溫度的高低與黑洞的質量成反比例。也就是說,大黑洞溫度低,蒸發也微弱;小黑洞的溫度高蒸發也強烈,類似劇烈的爆發。一個太陽大的黑洞,大約要1後面66個0年才能蒸發殆盡;一顆小行星大小的黑洞會在10小數點後面21個0加1秒內蒸發得乾乾凈凈。[1][6]
毀滅
黑洞會發出耀眼的光芒,體積會縮小,甚至會爆炸。當英國物理學家史迪芬·霍金於1974年做此預言時,整個科學界為之震動。

霍金的理論是受靈感支配的思維的飛躍,他結合了廣義相對論和量子理論,他發現黑洞周圍的引力場釋放出能量,同時消耗黑洞的能量和質量。
假設一對粒子會在任何時刻、任何地點被創生,被創生的粒子就是正粒子與反粒子,而如果這一創生過程發生在黑洞附近的話就會有兩種情況發生:兩粒子湮滅、一個粒子被吸入黑洞。「一個粒子被吸入黑洞」這一情況:在黑洞附近創生的一對粒子其中一個反粒子會被吸入黑洞,而正粒子會逃逸,由於能量不能憑空創生,我們設反粒子攜帶負能量,正粒子攜帶正能量,而反粒子的所有運動過程可以視為是一個正粒子的為之相反的運動過程,如一個反粒子被吸入黑洞可視為一個正粒子從黑洞逃逸。這一情況就是一個攜帶著從黑洞里來的正能量的粒子逃逸了,即黑洞的總能量少了,而愛因斯坦的公式E=mc^2表明,能量的損失會導致質量的損失。
當黑洞的質量越來越小時,它的溫度會越來越高。這樣,當黑洞損失質量時,它的溫度和發射率增加,因而它的質量損失得更快。這種「霍金輻射」對大多數黑洞來說可以忽略不計,因為大黑洞輻射的比較慢,而小黑洞則以極高的速度輻射能量,直到黑洞的爆炸。

③ 四次元是什麼意思

次元,數學上姐系次等。
異次元,從文字上解出來便是另一個level。
異次元空間姐系一個不在我們處身空間的空間區域。
據說,在本宇宙外還有另外一些宇宙。
那便是異次元空間。
此外,有人估計黑洞中的強大引力便是穿越異次元空間的通道。
但這些只是假說,沒有真正的證明。

我們的宇宙是三次元,就是立體,也就是由X Y Z 三個座標軸所組成的世界,四次元,就是三次元加上時間軸,從宇宙整體而言當不屬於之。
二次元就是平面,也就是由X Y 兩個座標軸所組成的世界。
一次元就是直線,也就是由X 一個座標軸所組成的世界。
零次元就是空,是不允許任何東西存在的。
一切皆不會有任何變化的,存在於一個事實上是無限的領域中,就如同存在於事實上是零的領域中,也就是"無"的狀態。
一度空間:廣義來說是一條直線。
二度空間:廣義來說是直線所組成。
三度空間:正是我們所處狀態,廣義是平面所組成。
其中時間夾雜在裡面且指前進不後退
〈所以不列入任何一度空間〉
四度空間:目前科學家正在研究。
事實上,廣義應該是所謂三度空間加上一度時間,因為時間的相對關系,在四度空間可前進可後退。
四度空間也就是所謂了時間、空間。
只有在所謂的三度空間受到擠壓或扭曲時才會感受到它的差異,有時雖然看起來靜止,但是仍舊在動作中且受時間支配。
根據傅利曼與愛因斯坦的廣義相對論為基礎所提出的宇宙模型,答案是否定的,宇宙沒有邊界、即空間的邊緣。
你頂多進入一片虛無,但若這一片虛無也能被定義為空間的話─不論它是否具有物質,那它就依然是宇宙的一部份,因此我沒並沒有辦法去找到宇宙的邊界。
不過在我們的空間之外,還有更高次元的空間包含著;
而在我們的空間之內,其實也包含了更高次元的空間,一般的認知是宇宙外是由四次元空間(時間)所包含。
宇宙外的空間是零次元空間?零次元空間是點,是沒有辦法包含我們的宇宙的,低次元空間中的高次元空間必然是捲曲的,但很顯然我們的宇宙不是捲曲的狀態,因此這是一個錯誤的觀念。
我們因為被困在三度空間內的生物無法看到所謂的「四度空間」的全貌,就像被困在二度空間內的生物無法看到三度空間的全貌一樣。
但是二度空間內的數學家可以從「三度空間物體投射在二度空間的影象」
去推測一些三度空間物體的數學性質,如果想理解四度空間,可以先研究二度空間,再如何理解三度空間。
但須注意:不論在幾度空間中,並非任意兩點都可決定唯一的直線,恰好兩點正好重疊;並非任意三點都可決定唯一的平面,恰好三點正好在一直線上;
像這種幾乎不可能自然發生的特例狀況,叫做 degeneracy 或 singularity。同樣地並非任意兩個平面的交集都是一條直線,恰好兩平面平行或重疊,並非任意三個平面的交集都是一個點,這三個平面除了可以平行或重疊之外,還可能兩兩各交於一線,但三條交線彼此平行。

按照科學家的推論:
你不可能穿破宇宙,因為宇宙外的世界稱為太虛,太虛是零次元空間,什麼也沒有,什麼也進不去。如果你離開了這個宇宙(母宇宙),那你一定是利用空間的出入口到了子宇宙,你也可以用空間的出入口回到母宇宙。
極限的次元則可統稱為零次元和超次元或異次元:
異次元空間是一種人類感受不到的空間,也就是人類未知的空間,也許這種空間存在每個角落,也可能根本就沒有,就算存在人類也沒辦法探索這種東西。
具有神秘與神經兮兮光怪陸離現象。
也許人進的去,但是可能永遠出不來了,所以沒有人知道異次元空間這種東西了。
異次元空間就是我們所說的平行宇宙,有人提出蟲洞是宇宙間的通道,而蠱洞是所有宇宙的根源,不過都只是推測,尚無有力證據。
如果你是以兩倍光速離開,是不是就表示在你出發後的一秒里,你就會追到你的上一秒的光,於是你就會看到前一秒發生的事,但是你要知道那隻是一個虛像,並不是實體,所以你並沒有辦法去改變什麼,那既然是虛像,你覺得在虛像里的人看的到你嗎?
答案當然是否定的。
科學家認為,宇宙存在「時光隧道」,它的時間運動方式,和人類感受的完全不一樣,有時它是極度靜止的,有時卻是高度行動的。
凡是進入時光隧道的人,就等於是失蹤,而且無論失蹤多久,不管5年、10年,甚至更久,這段時間等於零。
所以,當這些失蹤者再度出現時,還是跟失蹤之前一樣。
「時光隧道」看不見也摸不著,但它是客觀存在,而且一直都存在。

簡單來說:
宇宙由不規則的量子組成,萬物由不規則的分量子組成,杜治所說的不規則屬更大層面,量子力學認為世上不止一個宇宙,有些相似,有些不一樣,有些空間和我們的空間只相差一顆光子或量子,差別較大的不會見到我們,有些甚至沒有我的存在。
這是以不規則定律所作的大膽推論,杜治認為每顆量子代表一個空間,他說的不是夢話,他有真憑實據,而且是物理學生必會做的著名實驗,這個實驗歷史悠久。
源自1909年,在實驗中要有光源-光束型,光源會被鏡子反射到這些縫隙里去,隔片上有兩縫隙,在攝影機里可以看見那初步形成的交錯圖案,所謂交錯圖案就是鏡頭中間一組昏暗的條紋,有兩條縫時才會出現。
因為有兩條縫時,光源就會分走兩邊,然後就像漣漪交錯,有時候漣漪會融合,有時會互相抵消產生條紋,如果用濾鏡將光的強度減弱至只有一顆光子能穿越縫隙,在液體氮下就會清楚看見一束光,在氮氣下光束四散,去到濾鏡前便停止,而濾鏡隔開了肉眼所見的一切,但攝影機會拍攝到流過去的光子。
光子一顆一顆的穿過夾縫,因此在螢幕上該只見到兩條明亮的線,而不是會交錯的條紋,但事實上並非如似,從電腦中可看到提示中的條紋結果。
做這個單光子實驗時,多顆光子所造成的圖案,在強光下完全一樣,人們想不透箇中原因,書本中所讀到的理論是由於光子是粒子,也是波紋,但現在才發現那是謬論。
光子其實既固定同時又四散,杜治認為單一的光子能造出條紋,是因為附近另有肉眼看不見的光子,我們看不見的光子是另一個空間的光子,這宇宙在我們附近撞擊原有的光子,令它們改變方向,這實驗結果是杜治所見過最古怪的。
它充份證明了世上不止有一個空間,否則不會有以上的實驗結果。

④ 宇宙是否有邊界

宇宙起源的問題有點像這個古老的問題:是先有雞呢,還是先有蛋。換句話說,就是何物創生宇宙,又是何物創生該物呢?也許宇宙,或者創生它的東西已經存在了無限久的時間,並不需要被創生。直到不久之前,科學家們還一直試圖迴避這樣的問題,覺得它們與其說是屬於科學,不如說是屬於形而上學或宗教的問題,然而,人們在過去幾年發現,科學定律甚至在宇宙的開端也是成立的。在那種情形下,宇宙可以是自足的,並由科學定律所完全確定。

關於宇宙是否並如何啟始的爭論貫穿了整個記載的歷史。基本上存在兩個思想學派。許多早期的傳統,以及猶太教、基督教和伊斯蘭教認為宇宙是相當近的過去創生的。(十七世紀時鄔謝爾主教算出宇宙誕生的日期是公元前4004年,這個數目是由把在舊約聖經中人物的年齡加起來而得到的。)承認人類在文化和技術上的明顯進化,是近代出現的支持上述思想的一個事實。我們記得那種業績的首創者或者這種技術的發展者。可以如此這般地進行論證,即我們不可能存在了那許久;因為否則的話,我們應比目前更加先進才對。事實上,聖經的創世日期和上次冰河期結束相差不多,而這似乎正是現代人類首次出現的時候。

另一方面,還有諸如希臘哲學家亞里斯多德的一些人,他們不喜歡宇宙有個開端的思想。他們覺得這意味著神意的干涉。他們寧願相信宇宙已經存在了並將繼續存在無限久。某種不朽的東西比某種必須被創生的東西更加完美。他們對上述有關人類進步的詰難的回答是:周期性洪水或者其他自然災難重復地使人類回到起始狀態。

兩種學派都認為,宇宙在根本上隨時間不變。它要麼以現在形式創生,要麼以今天的樣子維持了無限久。這是一種自然的信念,由於人類生命——整個有記載的歷史是如此之短暫,宇宙在此期間從未顯著地改變過。在一個穩定不變的宇宙的框架中,它是否已經存在了無限久或者是在有限久的過去誕生的問題,實在是一種形而上學或宗教的問題:任何一種理論都對此作解釋。1781年哲學家伊曼努爾·康德寫了一部里程碑式的,也是非常模糊的著作《純粹理性批判》。他在這部著作中得出結論,存在同樣有效的論證分別用以支持宇宙有一個開端或者宇宙沒有開端的信仰。正如他的書名所提示的,他是簡單地基於推理得出結論,換句話說,就是根本不管宇宙的觀測。畢竟也是,在一個不變的宇宙中,有什麼可供觀測的呢?

然而在十九世紀,證據開始逐漸積累起來,它表明地球戲及宇宙拭其他部分事實上是隨時間而變化的。地學家們意識到岩石以及其中的化石的形成需要花費幾億甚至幾十億年的時間。這比創生論者計算的地球年齡長得太多了。由德國物理學家路德維希·破爾茲曼提出的所謂熱力學第二定律還提供了進一步的證據,宇宙中的無序度的總量(它是由稱為熵的量所測量的)總是隨時間而增加,正如有關人類進步的論證,它暗示只能運行了有限的時間,否則的話,它現在應已退化到一種完全無序的狀態,在這種狀態下萬物都牌相同的溫度下。

穩恆宇宙思想所遭遇到的另外困難是,根據牛頓的引力定律,宇宙中的每一顆恆星必須相互吸引。如果是這樣的話,它們怎麼能維持相互間恆定距離,並且靜止地停在那裡呢?

牛頓曉得這個問題。在一封致當時一位主要哲學家裡查德·本特里的信中,他同意這樣的觀點,即有限的一群恆星不可能靜止不動,它們全部會落某個中心點。然而,他論斷道,一個無限的恆星集合不會落到一起,由於不存在任何可供它們落去的中心點。這種論證是人們在談論無限系統時會遭遇到的陷阱的一個例子。用不同的方法將從宇宙的其餘的無限數目的恆星作用到每顆恆星的力加起來,會對恆星是否維持恆常距離給出不同的答案。我們現在知道,其正確的步驟是考慮恆星的有限區域,然後加上在該區域之外大致均勻分布的更多恆星。恆星的有限區域會落到一起,而按照牛頓定律,在該區域外加上更多的恆星不能阻止其坍縮。這樣,一個恆星的無限集合不能處於靜止不動的狀態。如果它們在某一時刻不在作相對運動,它們之間的吸引力會引起它們開始朝相互方向落去。另一種情形是,它們可能正在相互離開,而引力使這種退行速度降低。

盡管恆定不變的宇宙的觀念具有這些困難,十七、十八、十九甚至至二十世紀初斯都沒有人提出過,宇宙也許是隨時間演化的,不管是牛頓還是愛因期坦都失去了預言宇宙不是在收縮便是在膨脹的機會。因為牛頓生活在觀測發現宇宙膨脹以前的二百五十年,所以人們實在不能責備他。但是愛因斯坦應該知道得更好。他在1915年提出的廣義相對論預言正在膨脹。但是他對穩恆宇宙是如此之執迷不悟,以至於要在理論中加上一個使之和牛頓理論相調和並用於抗衡引力的因素。

1929年埃德溫·哈勃的宇宙膨脹的發現完全改觀了有關其起源的討論。如果你把星系現在的運動往時間的過去方向例溯,它們在一百億和二百億年前之間的某一時刻似乎應該重疊在一起,在這個稱為大爆炸奇點的時刻,宇宙的密度和時空的曲率應為無窮大。所有的已知的科學定律在這種條件下都失效了。這對科學是一樁災難。科學所能告訴我們的一切是:宇宙現狀之所以如此是因為它是過去是處於那種形態。但是科學不能解釋為何它在大爆炸後的那一瞬間是那個樣子的。

這樣,許多科學家對此結論感到不悅就毫不足怪了。為了避免存在大爆炸奇點以及由此引起的時間具有開端的結論,人們進行了若干嘗試。其中一種稱為穩恆態理論。它的思想是,隨著星不互相分離而去,由連續產生的物質在星系之間的空間中形成新的星系。這樣宇宙就多多少少以今日這樣的狀態不但已經存在了,而且還將繼續存在無限長時間。

為了使宇宙繼續膨脹並創生新物質,穩恆態模型需要修改廣義相對論。但是所需要的產生率非常低:大約為每年每立方公里一個粒子,這不會和觀測相沖突。該理論還預言了,星系和類似物體的平均密度不但在空間上而且在時間上必須是常數。然而,由馬丁·賴爾和他的劍橋小組進行的銀河系外射電源的普查顯示,弱源的數目比強源的數目多得多。人們可以預料,弱的源在平均上講應是較遙遠的。這樣就存在兩種可能性:或許我們正位於宇宙中的一個強源不如平均源頻繁的區域;或者過去的源的密度更高,光線在離開這些源向我們傳播時更遙遠的距離。這兩種可能性沒有一種和穩恆態理論相協調,因為該理論預言射電源密度不僅在空間上而且在時間上必須為常數。1964年阿諾·彭齊亞斯和羅伯特·威爾遜發現了從比我們的銀河系遙遠得多的地方起源的微波輻射背景,這是對該理論的致命打擊。它具有從一個熱體發射出的輻射的特徵譜,盡管在這種情形下熱這個字根本不適合,因為其溫度只不過比絕對零度高2.7度而已。宇宙是一個既寒冷又黑暗的地方!穩恆態理論中沒有一種產生具有這種譜的微波的合理機制,所以穩恆態理論難逃被拋棄的命運。

1963年兩位俄國科學家歐格尼·利費席茲和伊薩克·哈拉尼科夫提出另一種思想,企圖用來避免大爆炸奇性。他們說,只有當星系直接相互接近或離開時,它們才會在過去的一個單獨的點上相重疊,才導致無限密度狀態。可惜的是,星系還多少具有一些側向速度,宇宙早斯就可能存在過這樣的一種收縮相,這時,星系雖然曾經非常靠近過,卻能設法避免互相撞擊。然後宇宙會繼續重新膨脹,而不必通過一種無限的密度的狀態。

當利費席茲和哈拉尼科夫提出其設想時,我正是一名研究生,亟需一個問題以完成博士論文。因為是否有守大爆炸奇點的問題對於理解宇宙的起源關系重大,所以它引起了我的興趣。我和羅傑·彭羅斯一道發展了一套數學工具,用以處理這個以及類似的問題。我們指出,如果廣義相對論是正確的,任何合理的宇宙模型都必需起始於一個奇點。這就表明,科學能夠預言,宇宙必須有一個開端,但是它不能夠預言宇宙應如何啟始的:正因為如此,人們必須求助於上帝。

審察人閃對奇性看法的變化是十分有趣的。當我還是一名研究生時,幾乎沒人認真地看待之。現在,作為奇性定理的一個結果,幾乎無人不信宇宙是從一個奇眯起始的,物理定律在該處失效。然而,現在我認為,雖然存在奇點,物理定律仍能確定宇宙是如何起始的。

廣義相對論是一種被稱為經典的理論。也就是說,它沒有顧及這個事實,即粒子不具備精確定義的位置和速度,由於量子力學的不確定性原理位置和速度的小范圍內被「抹平」,不確定性原理不允許我們同時既測量又測量速度。因為正常情形下時空的曲率在和粒子位置的不確定性相比較時非常大,這些以我們沒什麼影響。然而奇性定理指出,在現在的宇宙膨脹相的開端,時空被高度地畸變,並且具有很小的曲率半徑。不確定性原理在這種情形下變成非常重要。這樣,廣義相對論因預言奇性而導致自身的垮台。為了討論宇宙的開端,我們需要一種結合廣義相對論和量子力學的理論。

那種理論便是量子引力論。我們尚未知道正確的量子引力論應採取的准確形式。我們此刻所擁有的最佳候選者是超弦理論,但它仍有許多耒解決的困難。然而,人們可以期望,任何有前途的理論都應具有某些特徵。其中之一便是愛因斯坦的思想,引力效應由被物質和能量所彎曲甚至捲曲的時空來體現。物體在彎曲空間中沿著最接近於直線的軌跡運行。然而,由於時空是彎曲的。所以它們的路徑就顯得是彎折的,正如同被引力場所彎折的似的。

另一種在這個終極理論中可以預料的要素是里查德·費因曼的設想,即量子理論可以表達成「對歷史的求和」。該思想可以最簡單的形式表達成,每顆粒子在時間中走過任何可能的路徑或歷史。每一路徑或歷史具有依其形狀而定的概率。為了使這種思想可行,人們必須考慮在虛時間里發生的歷史,而不是在我們感受生活於其中的實時間城發生的歷史。虛時間聽起來有點像是科學幻想的東西,其實它是定義得很好的數學概念。它在某種意義上可被認為是和實時間成直角的時間方向。人們把所有具有某種性質粒子歷史,譬如講在某些時刻通過某些點的歷史的概率加起來。然後應把這結果延拓到我們在其中生活的實的時空中去。這不是量子力學的最熟知的手段,但它給出和其他方法得到的相同結果。

在量子引力的情形下,費因曼的對歷史求和的思想牽涉到對宇宙的不同的可能性的歷史,也就是對不同的彎曲時空的求和。這些代表了宇宙和它之中的任何東西的歷史。人們必須指明,在對歷史的求和中,應包括哪些種類的彎曲空間。這種空間種類包括具有奇性的的空間,則該理論就不能確定這類空間的概率。相反的,它們必須以某種任意的方法被賦予概率。這意味著科學不能預言時空這類奇性歷史的概率。這樣,它就不能預言宇宙應如何運行。然而,宇宙可能處於由只包括非奇性彎曲空間的求和所定義的狀態。在這種情形下,科學定律就把宇宙完全確定,人們就不必籲求宇宙之外的某物來確定宇宙如何啟始。由只對非奇性歷史的求和確定宇宙的狀態有點像一名醉漢在燈柱之下找他的鑰匙:這兒也許不是他遺失之處,但是這兒是他可能找到的僅有的地方。類似的,宇宙也許不處於由對非奇性歷史求和定義的狀態,但這是科學能預言應當什麼樣子的僅有的狀態。

1983年詹姆·哈特爾和我提出,宇宙的狀態應由對一定種類歷史的求和給出。這類歷史由沒有奇性的,而且具有有限尺度卻沒有邊界或邊緣的彎曲空間組成。它們像是地球的表面,只不過多了兩維。地球的表面具有有限的面積,但是它不具有任何奇性、邊界或邊緣。我曾經用實驗驗證過這一點。我作過環球旅行,而沒有落到外面去。

哈特爾和我所做的設想可以被重新表達成:宇宙的邊界條件是它沒有邊界。只有當宇宙處於這個無邊界狀態時,科學定律自身才能確定每種可能歷史的概率。因此,只有在這種情形下,已知的定律才會確定宇宙應如何運行。如果宇宙處於任何其他的狀態,則歷史求和中的彎曲空間的種類就要包括具有奇性的空間。人們必須求助於已知科學定律以外的某種原理,才能確定這種奇性歷史的概率。這種原理就會是外在於我們宇宙的某種東西。我們不能從我們宇宙之中將其推導出來。而另一方面,如果宇宙是處於無邊界狀態,在原則上,我們就能在不確定性原理容忍的限制之仙完全確定宇宙應如何運行。

如果宇宙處於無邊界狀態,那對於科學而言就太好了,但是我們如何才能知道事情究竟是否如此呢?其答案是,無邊界設想對宇宙應如何運行作出了明確的預言。如果這些預言不與觀測相符合,則我們就能得出結論說,宇宙不處於無邊界狀態。這樣,在哲學家卡爾·波普定義的意義上說,無邊界設想是一種好的科學理論:它可被觀測證偽。

如果觀測不與預言相符合,我們就知道在可能歷史的種類中必須有奇性。然而,這就大致上是我們知道的一切。我們不能計算出這種奇性歷史的概率,因此我們不能預言宇宙應如何運行。有人也許會認為,如果不可預見性只發生在大爆炸處,那不會太礙事,那畢竟是一百億或二百億年以前的事。但是,如果可預言性在大爆炸的非常強引力場中失效,那麼只要恆星坍縮它也會失效。這種事件僅在我們的銀河系中每周就會發生幾次。我們的預言能力甚至按照天氣預報的標准來說也是非常差勁的。

當然,人們還會說,我們根本不必在乎發生在一顆遙遠恆星處的可預言性的失效。然而,在量子理論中任何不被實際上禁止的東西都能夠並將要發生。這樣,如果可能歷史的種類中包括奇性空間的話,這些奇性可在任何地方發生,而不僅在大爆炸處以及坍縮星之中。這意味著,我們不能預言任何東西。反過來說,我們能夠預言事件的這一事實是反對奇性並贊同無邊界設想的實驗證據。

那麼無邊界設想為宇宙做出什麼預言呢?第一個預言是,因為宇宙的怕有可能的歷史在廣延上都是有限的,所以人們用來作為時間測度的任何量都必須有一個最大值和一個最小值。這樣宇宙就有一個開端和一個終結。在實時間中的開端即是大爆炸奇點。然而在虛時間中這個開端就不再是奇點。相反的,它有點像地球的北極。如果人們把地球表面的緯度當作時間的類似物,則可以說地球的表面從北極開始。然而,北極是地球上完全普通的一點。它沒有任何特殊之處,同樣的定律在北極正如同在地球上的其他地方同樣地成立。類似的,我們用來標志作撛諦槭奔淠謨鈧嫻鈉羰紨的事件是時空中的一個通常的點,正如其他的點那樣。科學定律在開端處正如在其他地方一樣成立。

人們從和地球表面的類比,也許會預料到,正如北極和南極相似一樣,宇宙的終結會和開端相類似。然而,北南二極是對應於虛時間向實時間延拓,就會發現宇宙在實時間中的開端和它的終結可以非常不同。

約納遜·哈里威爾和我對無邊界條件的含義作過一個近似計算。我們把宇宙當作一個完全光滑和均勻的背景來處理,在這個背景上存在密度的小微擾。宇宙在之前時間中從非常小的半徑開始膨脹。最初的這種膨脹稱作暴漲,也就是說,宇宙尺度在比一秒還要短暫非常多的每一時間間隔中得到加倍,這正如在某些國家中每一年價格都要加倍一樣。第一次世界大戰後的德國也許創下了通貨膨脹的世界紀錄,一捆麵包的價格在幾個月的時間內從一個馬克漲到一百萬馬克。但是沒有任何東西可與似乎在極早期宇宙發生過的暴漲相比擬,宇宙尺度在一秒的極微小的部分時間內至少增加了一百萬億億億倍。這當然是發生在當局政府之前的事。

暴漲在如下意義上來說,是件好事,它產生了一個在大尺度上光滑而均勻的宇宙,而且這個宇宙以剛好避免坍縮的臨界速度膨脹。它還能在相當嚴格的意義上把宇宙的怕有內容從無中創生出來,這是暴漲的又一好處。當宇宙像北極那樣的一個單獨點時,它不包含有任何東西。然而,在我們可觀測到的宇宙部分至少有十的八十次方顆粒子。所有這些粒子從何而來呢?其答案是,相對論和量子力學允許物質從能量中以粒子反粒子對的形式創生出來。那麼能量又是從何而來以創生物質呢?其答案是,它是從宇宙的引力能中借來的。宇宙虧欠了極大數量的負引力能的債務,它剛好和物質的正能量相平衡。其結果便是凱恩斯經濟學的勝利:一個充滿物質的、充滿活力的正在膨脹的宇宙。引力能的債務只有在宇宙終結時才能償付清。

早期宇宙不能是完全均勻一致的,因為否則的話就會違反量子力學的不確定性原理。相反的,必須存在對均勻密度的一些偏差。無邊界設想意味著,這些密度差別是從它們的基態開始,也就是說,它們是和不確定性原理相一盡可能的小。然而,這些差別在暴漲時被放大了。在暴漲時期結束之後,留下的宇宙是一些地方比另一些地方膨脹得稍快一些。在膨脹稍慢的區域,物質的引力吸引使膨脹進一步減慢。該區域最終會停止膨脹,並且收縮形成星系和恆星。這樣,無邊界設想可以解釋我們四周看到的所有復雜結構。然而,它沒有給宇宙作出單獨的預言。相反地,它預言整整一族可能的歷史,每一個歷史都具有自己的概率。也許可能有這樣的歷史,工黨在上次英國競選中取勝,雖然這種概率很小。

無邊界設想對於上商在宇宙事務中的作用含義極其深遠。人們現在廣泛接受,宇宙按照定義很好的定律演化。這些定律可能是上帝欽定的,但是它似乎不去干涉宇宙去違反這些定律。然而,直到不久以前,人們都認為這些定律不能適用於宇宙的開初。那就要依賴上帝去旋緊發條,並讓宇宙順著它的意願的方式去運行。這樣,宇宙的現狀是上帝對初始條件選擇的結果。

然而,如果某種像無邊界設想的東西是正確的話,則情況就會大大改觀。在那種情形下,物理定律甚至也適用於宇宙的開端,這樣上帝就沒有選取初始條件的自由。當然它在選取宇宙要服從的定律上仍然具有自由。然而,這里並沒有許多選擇的餘地。也許只存在很少數目的定律,這些定律是自洽的,並能導致像我們自己這么復雜的生物的存在,他能詢問什麼是上帝的性質。

甚至即使只存在唯一的一族可能的定律,它也只不過是一族方程。究竟是什麼東西將生命之火賦予這些方程,使之產生一個受它們制約的宇宙呢?難道終結的統一理論是如此之咄咄逼人,以至於其自身的實現成為不可避免?雖然科學能解決宇宙如何啟始的課題,它仍然無法回答這個問題:為何宇宙必須存在?我對此沒有答案。

⑤ 宇宙有沒有邊界宇宙的外面究竟是什麼樣的

6500萬年前一顆小行星撞擊地球滅絕了當時大部分生物,其中就有統治地球數億年的恐龍,在恐龍滅絕後哺乳動物開始出現,這其中就包括了人類祖先的祖先。

數千萬年後,人類正式登上歷史的舞台開始角逐地球霸主之位,經過幾十萬年的演化角逐,人類成為了地球的霸主並且開始建立文明。


當然了,以上的三種說法只是科學家的一些推測,並不具備實際的參考價值,畢竟人類現在的科技水平還不夠高,現階段連太陽系都出不去就更別提知道宇宙之外究竟有什麼了。

或許有一天當人類文明發展到可以利用恆星能源的二級文明時,才有資格接觸宇宙本源的秘密,才有能力去探尋宇宙之外究竟有些什麼。

⑥ 宇宙有沒有邊際

從最新的觀測資料看,人們已觀測到的離我們最遠的星系是137億光年。也就是說,如果有一束光以每秒30萬千米的速度從該星系發出,那麼要經過137億年才能到達地球。這137億光年的距離便是我們今天所知道的宇宙的范圍。再說得明確一些,我們今天所知道的宇宙范圍,或者說大小,是一個以地球為中心,以137億光年的距離為半徑的球形空間。當然,地球並不真的是什麼宇宙的中心,宇宙也未必是一個球體,只是限於我們目前的觀測能力,我們只能了解到這一程度。
所以宇宙沒有邊界,以我們的觀測能力決定了我們能看多遠,我們的觀測能力在發展,觀測的范圍也在變大。不過按照宇宙大爆炸的理論,宇宙還在不斷的擴大。

茫茫宇宙無邊無際,其深邃讓人難以想像, 1999年4月,美國紐約州立大學的一個天文研究小組,利用"哈勃"太空望遠鏡的巨大威力。經過2年多時間的周密觀測,並用電子計算機進行科學處理,剔除了分布在該方向上交迭在一起的400多個天體圖像,終於"請"出了一個最古老星系,從它退行膨脹的速度高達光速的96.66%推算,它應處於137億光年的宇宙邊緣!

137億光年的距離實在難以比喻,連最快的光也要疾行137億年才能到達。 由此可見,這個最遠的星系也是宇宙大爆炸後不久的天體,是極其珍貴的最古老的"宇宙化石",因為在探索宇宙起源、演化,宇宙早期歷史將有無可估量的意義。

宇宙不是無限的,或者說,我們所居住的這個狹義的宇宙並不是無限的。它的邊界在哪裡、以何形式存在現在尚在爭論,但「我們的宇宙」不是無限的,這個觀點基本已經得到了認同。

現在一個觀點認為,在宇宙的邊緣時空是扭曲的,就是說你能無限接近它,但無法到達它。
至於廣義的宇宙,即「我們的宇宙」之外的宇宙是否無限,這個就說不清了,正如無法對夏蟲語冰,現在的人類科技對此還毫無認識,現在的研究尚未突破我們的宇宙這個范圍。

宇宙是無限的,但是是有界的.霍金理解的宇宙就象一個籃球一樣,你在球面上無法找到起點和終點,但它卻是有界的.就象很多天文學的書籍裡面都有介紹,如果看看斯蒂芬.霍金的著作會明白得更多.

或者從大爆炸理論里可以得到,我們的宇宙仍然在膨脹之中,星系彼此仍然在退行,也就是我們所認識的宇宙仍然在膨脹,在延伸,在擴大,但還沒有到它的盡頭。

⑦ 宇宙的邊界在什麼地方

思想有多遠,宇宙就有多遠。思想想到「空」,「空」亦是宇宙的一部分。按照正常邏輯,所謂的邊界之外的「哪裡」又是一個地方了。只有跳出這種抽象思維的錯覺,才能考慮「真空」。因為你無法想像無限的小與無限的大。

⑧ 宇宙是無限的還是有限的,看了很多回答說是有限的,那麼宇宙邊界在哪裡,邊界後面就沒有空間嗎就好比一

絕大部分人都是你這樣想的,誤區是你習慣了到處都有東西的思維方式,沒東西、沒空間、沒時間、沒體積,什麼都沒有的世界你從沒見過,想想不出來而已,其實我們所處的這個世界是在不斷膨脹稀釋的世界,時間在拉長,空間在向四面八方擴張著,而你所說的外面的外面什麼都沒有,什麼都沒有的意思簡單描繪就是連太空都沒有連時間都不存在,還有另外的理論說這個世界是個曲面,我所能想像出來的也就這么多,都是親手打出來的,請採納謝謝

熱點內容
區塊鏈對於普通人怎麼賺錢 發布:2025-09-10 08:01:20 瀏覽:148
比特幣定義為貨幣是什麼意思 發布:2025-09-10 07:44:45 瀏覽:605
區塊鏈金融到哪家好 發布:2025-09-10 07:44:02 瀏覽:278
國外優秀區塊鏈創業公司梳理 發布:2025-09-10 07:16:05 瀏覽:234
比特幣司法機關 發布:2025-09-10 07:14:51 瀏覽:151
trx4遙控設置 發布:2025-09-10 06:59:28 瀏覽:972
trx熱身動作大全 發布:2025-09-10 06:39:03 瀏覽:104
比特幣實質算力 發布:2025-09-10 06:18:21 瀏覽:931
以太坊2019減產 發布:2025-09-10 05:54:48 瀏覽:32
什麼區塊鏈最核心的內容 發布:2025-09-10 05:38:40 瀏覽:140