幣圈如何使用非波拉切
Ⅰ 求一個高中數學相關的比較偏的研究性課題
我之前曾是數學課代表 ... 寫過的 並不難 比如說斐波那契數列的研究
碼字不容易 望採納 謝謝
斐波那契數列,
又稱黃金分割數列,指的是這樣一個數列:1、1、2、3、5、8、13、21、……在數學上,斐波納契數列以如下被以遞歸的方法定義:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在現代物理、准晶體結構、化學等領域,斐波納契數列都有直接的應用,為此,美國數學會從1963起出版了以《斐波納契數列季刊》為名的一份數學雜志,用於專門刊載這方面的研究成果。
定義
斐波那契數列指的是這樣一個數列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368
特別指出:第0項是0,第1項是第一個1。
這個數列從第二項開始,每一項都等於前兩項之和。
斐波那契數列的發明者,是義大利數學家列昂納多·斐波那契(Leonardo Fibonacci)
遞推公式
斐波那契數列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
如果設F(n)為該數列的第n項(n∈N*),那麼這句話可以寫成如下形式:
顯然這是一個線性遞推數列。
通項公式
(如上,又稱為「比內公式」,是用無理數表示有理數的一個範例。)
註:此時a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)
通項公式的推導
方法一:利用特徵方程(線性代數解法)
線性遞推數列的特徵方程為:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
則F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2=C1*X1^2 + C2*X2^2=1
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根號5】
方法二:待定系數法構造等比數列1(初等代數解法)
設常數r,s。
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
則r+s=1, -rs=1。
n≥3時,有。
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。
……
F⑶-r*F⑵=s*[F⑵-r*F⑴]。
聯立以上n-2個式子,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。
∵s=1-r,F⑴=F⑵=1。
上式可化簡得:
F(n)=s^(n-1)+r*F(n-1)。
那麼:
F(n)=s^(n-1)+r*F(n-1)。
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。
(這是一個以s^(n-1)為首項、以r^(n-1)為末項、r/s為公比的等比數列的各項的和)。
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。
=(s^n - r^n)/(s-r)。
r+s=1, -rs=1的一解為 s=(1+√5)/2,r=(1-√5)/2。
則F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法三:待定系數法構造等比數列2(初等代數解法)
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求數列{an}的通項公式。
解 :設an-αa(n-1)=β(a(n-1)-αa(n-2))。
得α+β=1。
αβ=-1。
構造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。
所以。
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。
由式1,式2,可得。
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。
將式3*(1+√5)/2-式4*(1-√5)/2,化簡得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法四:母函數法。
對於斐波那契數列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2時)
令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。
那麼有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x
.因此S(x)=x/(1-x-x^2).
不難證明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].
因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.
再利用展開式1/(1-x)=1+x+x^2+x^3+……+x^n+……
於是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……
其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.
因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
與黃金分割
關系
有趣的是:這樣一個完全是自然數的數列,通項公式卻是用無理數來表達的。而且當n趨向於無窮大時,後一項與前一項的比值越來越逼近黃金分割0.618.(或者說後一項與前一項的比值小數部分越來越逼近黃金分割0.618、前一項與後一項的比值越來越逼近黃金分割0.618)
1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625,…………,55÷89=0.617977…,…………144÷233=0.618025…46368÷75025=0.6180339886…...
越到後面,這些比值越接近黃金比.
證明
a[n+2]=a[n+1]+a[n]。
兩邊同時除以a[n+1]得到:
a[n+2]/a[n+1]=1+a[n]/a[n+1]。
若a[n+1]/a[n]的極限存在,設其極限為x,
則lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。
所以x=1+1/x。
即x²=x+1。
所以極限是黃金分割比..
特性
平方與前後項
從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1。
如:第二項1的平方比它的前一項1和它的後一項2的積2少1,第三項2的平方比它的前一項1和它的後一項3的積3多1。
(註:奇數項和偶數項是指項數的奇偶,而並不是指數列的數字本身的奇偶,比如從數列第二項1開始數,第4項5是奇數,但它是偶數項,如果認為5是奇數項,那就誤解題意,怎麼都說不通)
證明經計算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)
與集合子集
斐波那契數列的第n+2項同時也代表了集合{1,2,...,n}中所有不包含相鄰正整數的子集個數。
奇數項求和
偶數項求和
平方求和
隔項關系
f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]
兩倍項關系
f(2n)/f(n)=f(n-1)+f(n+1)
其他公式
應用
生活中斐波那契
斐波那契數列中的斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),黃金矩形、黃金分割、等角螺線,十二平均律等。
斐波那契數與植物花瓣
3………………………百合和蝴蝶花
5………………………藍花耬斗菜、金鳳花、飛燕草、毛茛花
8………………………翠雀花
13………………………金盞和玫瑰
21………………………紫宛
34、55、89……………雛菊
斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比。多數的葉序比呈現為斐波那契數的比。
黃金分割
隨著數列項數的增加,前一項與後一項之比越來越逼近黃金分割的數值0.6180339887..…
楊輝三角
將楊輝三角左對齊,成如圖所示排列,將同一斜行的數加起來,即得一數列1、1、2、3、5、8、……
公式表示如下:
f⑴=C(0,0)=1。
f⑵=C(1,0)=1。
f⑶=C(2,0)+C(1,1)=1+1=2。
f⑷=C(3,0)+C(2,1)=1+2=3。
f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。
f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。
F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。
……
F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)
質數數量
斐波那契數列的整除性與素數生成性
每3個連續的數中有且只有一個被2整除,
每4個連續的數中有且只有一個被3整除,
每5個連續的數中有且只有一個被5整除,
每6個連續的數中有且只有一個被8整除,
每7個連續的數中有且只有一個被13整除,
每8個連續的數中有且只有一個被21整除,
每9個連續的數中有且只有一個被34整除,
.......
我們看到第5、7、11、13、17、23位分別是素數:5,13,89,233,1597,28657(第19位不是)
斐波那契數列的素數無限多嗎?
尾數循環
斐波那契數列的個位數:一個60步的循環
11235,83145,94370,77415,61785.38190,
99875,27965,16730,33695,49325,72910…
進一步,斐波那契數列的最後兩位數是一個300步的循環,最後三位數是一個1500步的循環,最後四位數是一個15000步的循環,最後五位數是一個150000步的循環。
自然界中巧合
斐波那契數列在自然科學的其他分支,有許多應用。例如,樹木的生長,由於新生的枝條,往往需要一段「休息」時間,供自身生長,而後才能萌發新枝。所以,一株樹苗在一段間隔,例如一年,以後長出一條新枝;第二年新枝「休息」,老枝依舊萌發;此後,老枝與「休息」過一年的枝同時萌發,當年生的新枝則次年「休息」。這樣,一株樹木各個年份的枝椏數,便構成斐波那契數列。這個規律,就是生物學上著名的「魯德維格定律」。
另外,觀察延齡草、野玫瑰、南美血根草、大波斯菊、金鳳花、耬斗菜、百合花、蝴蝶花的花瓣,可以發現它們花瓣數目具有斐波那契數:3、5、8、13、21、……
其中百合花花瓣數目為3,梅花5瓣,飛燕草8瓣,萬壽菊13瓣,向日葵21或34瓣,雛菊有34,55和89三個數目的花瓣。
斐波那契螺旋:具有13條順時針旋轉和21條逆時針旋轉的螺旋的薊的頭部
這些植物懂得斐波那契數列嗎?應該並非如此,它們只是按照自然的規律才進化成這樣。這似乎是植物排列種子的「優化方式」,它能使所有種子具有差不多的大小卻又疏密得當,不至於在圓心處擠了太多的種子而在圓周處卻又稀稀拉拉。葉子的生長方式也是如此,對於許多植物來說,每片葉子從中軸附近生長出來,為了在生長的過程中一直都能最佳地利用空間(要考慮到葉子是一片一片逐漸地生長出來,而不是一下子同時出現的),每片葉子和前一片葉子之間的角度應該是222.5度,這個角度稱為「黃金角度」,因為它和整個圓周360度之比是黃金分割數0.618033989……的倒數,而這種生長方式就決定了斐波那契螺旋的產生。向日葵的種子排列形成的斐波那契螺旋有時能達到89,甚至144條。1992年,兩位法國科學家通過對花瓣形成過程的計算機模擬實驗,證實了在系統保持最低能量的狀態下,花朵會以斐波那契數列長出花瓣。
數字謎題
三角形的三邊關系定理和斐波那契數列的一個聯系:
現有長為144cm的鐵絲,要截成n小段(n>2),每段的長度不小於1cm,如果其中任意三小段都不能拼成三角形,則n的最大值為多少?
分析:由於形成三角形的充要條件是任何兩邊之和大於第三邊,因此不構成三角形的條件就是任意兩邊之和不超過最大邊。截成的鐵絲最小為1,因此可以放2個1,第三條線段就是2(為了使得n最大,因此要使剩下來的鐵絲盡可能長,因此每一條線段總是前面的相鄰2段之和),依次為:1、1、2、3、5、8、13、21、34、55,以上各數之和為143,與144相差1,因此可以取最後一段為56,這時n達到最大為10。
我們看到,「每段的長度不小於1」這個條件起了控制全局的作用,正是這個最小數1產生了斐波那契數列,如果把1換成其他數,遞推關系保留了,但這個數列消失了。這里,三角形的三邊關系定理和斐波那契數列發生了一個聯系。
在這個問題中,144>143,這個143是斐波那契數列的前n項和,我們是把144超出143的部分加到最後的一個數上去,如果加到其他數上,就有3條線段可以構成三角形了。
影視作品中的斐波那契數列
斐波那契數列在歐美可謂是盡人皆知,於是在電影這種通俗藝術中也時常出現,比如在風靡一時的《達芬奇密碼》里它就作為一個重要的符號和情節線索出現,在《魔法玩具城》里又是在店主招聘會計時隨口問的問題。可見此數列就像黃金分割一樣流行。可是雖說叫得上名,多數人也就背過前幾個數,並沒有深入理解研究。在電視劇中也出現斐波那契數列,比如:日劇《考試之神》第五回,義嗣做全國模擬考試題中的最後一道數學題~在FOX熱播美劇《Fringe》中更是無數次引用,甚至作為全劇宣傳海報的設計元素之一。
推廣
斐波那契—盧卡斯數列
盧卡斯數列1、3、4、7、11、18…,也具有斐波那契數列同樣的性質。(我們可稱之為斐波那契—盧卡斯遞推:從第三項開始,每一項都等於前兩項之和f(n) = f(n-1)+ f(n-2)。
盧卡斯數列的通項公式為 f(n)=[(1+√5)/2]^n+[(1-√5)/2]^n
這兩個數列還有一種特殊的聯系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)
n
1
2
3
4
5
6
7
8
9
10
…
斐波那契數列F(n)
1
1
2
3
5
8
13
21
34
55
…
盧卡斯數列L(n)
1
3
4
7
11
18
29
47
76
123
…
F(n)*L(n)
1
3
8
21
55
144
377
987
2584
6765
…
類似的數列還有無限多個,我們稱之為斐波那契—盧卡斯數列。
如1,4,5,9,14,23…,因為1,4開頭,可記作F[1,4],斐波那契數列就是F[1,1],盧卡斯數列就是F[1,3],斐波那契—盧卡斯數列就是F[a,b]。
斐波那契—盧卡斯數列之間的廣泛聯系
①任意兩個或兩個以上斐波那契—盧卡斯數列之和或差仍然是斐波那契—盧卡斯數列。
如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),
n
1
2
3
4
5
6
7
8
9
10
…
F[1,4]n
1
4
5
9
14
23
37
60
97
157
…
F[1,3]n
1
3
4
7
11
18
29
47
76
123
…
F[1,4]n-F[1,3]n
0
1
1
2
3
5
8
13
21
34
…
F[1,4]n+F[1,3]n
2
7
9
16
25
41
66
107
173
280
…
②任何一個斐波那契—盧卡斯數列都可以由斐波那契數列的有限項之和獲得,如
n
1
2
3
4
5
6
7
8
9
10
…
F[1,1](n)
1
1
2
3
5
8
13
21
34
55
…
F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34
…
F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34
…
F[1,3]n
1
3
4
7
11
18
29
47
76
123
…
黃金特徵與孿生斐波那契—盧卡斯數列
斐波那契—盧卡斯數列的另一個共同性質:中間項的平方數與前後兩項之積的差的絕對值是一個恆值,
斐波那契數列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1
盧卡斯數列:|3*3-1*4|=|4*4-3*7|=…=5
F[1,4]數列:|4*4-1*5|=11
F[2,5]數列:|5*5-2*7|=11
F[2,7]數列:|7*7-2*9|=31
斐波那契數列這個值是1最小,也就是前後項之比接近黃金比例最快,我們稱為黃金特徵,黃金特徵1的數列只有斐波那契數列,是獨生數列。盧卡斯數列的黃金特徵是5,也是獨生數列。前兩項互質的獨生數列只有斐波那契數列和盧卡斯數列這兩個數列。
而F[1,4]與F[2,5]的黃金特徵都是11,是孿生數列。F[2,7]也有孿生數列:F[3,8]。其他前兩項互質的斐波那契—盧卡斯數列都是孿生數列,稱為孿生斐波那契—盧卡斯數列。
廣義斐波那契數列
斐波那契數列的黃金特徵1,還讓我們聯想到佩爾數列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(該類數列的這種特徵值稱為勾股特徵)。
佩爾數列Pn的遞推規則:P1=1,P2=2,Pn=P(n-2)+2P(n-1).
據此類推到所有根據前兩項導出第三項的通用規則:f(n) = f(n-1) * p + f(n-2) * q,稱為廣義斐波那契數列。
當p=1,q=1時,我們得到斐波那契—盧卡斯數列。
當p=1,q=2時,我們得到佩爾—勾股弦數(跟邊長為整數的直角三角形有關的數列集合)。
當p=-1,q=2時,我們得到等差數列。其中f1=1,f2=2時,我們得到自然數列1,2,3,4…。自然數列的特徵就是每個數的平方與前後兩數之積的差為1(等差數列的這種差值稱為自然特徵)。
具有類似黃金特徵、勾股特徵、自然特徵的廣義——斐波那契數列p=±1。
當f1=1,f2=2,p=2,q=1時,我們得到等比數列1,2,4,8,16……
相關數學
排列組合
有一段樓梯有10級台階,規定每一步只能跨一級或兩級,要登上第10級台階有幾種不同的走法?
這就是一個斐波那契數列:登上第一級台階有一種登法;登上兩級台階,有兩種登法;登上三級台階,有三種登法;登上四級台階,有五種登法……
1,2,3,5,8,13……所以,登上十級,有89種走法。
類似的,一枚均勻的硬幣擲10次,問不連續出現正面的可能情形有多少種?
答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144種。
求遞推數列a⑴=1,a(n+1)=1+1/a(n)的通項公式
由數學歸納法可以得到:a(n)=F(n+1)/F(n),將斐波那契數列的通項式代入,化簡就得結果。
兔子繁殖問題
斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為「兔子數列」。
一般而言,兔子在出生兩個月後,就有繁殖能力,一對兔子每個月能生出一對小兔子來。如果所有兔子都不死,那麼一年以後可以繁殖多少對兔子?
我們不妨拿新出生的一對小兔子分析一下:
第一個月小兔子沒有繁殖能力,所以還是一對
兩個月後,生下一對小兔對數共有兩對
三個月以後,老兔子又生下一對,因為小兔子還沒有繁殖能力,所以一共是三對
------
依次類推可以列出下表:
經過月數
0
1
2
3
4
5
6
7
8
9
10
11
12
幼仔對數
1
0
1
1
2
3
5
8
13
21
34
55
89
成兔對數
0
1
1
2
3
5
8
13
21
34
55
89
144
總體對數
1
1
2
3
5
8
13
21
34
55
89
144
233
幼仔對數=前月成兔對數
成兔對數=前月成兔對數+前月幼仔對數
總體對數=本月成兔對數+本月幼仔對數
可以看出幼仔對數、成兔對數、總體對數都構成了一個數列。這個數列有關十分明顯的特點,那是:前面相鄰兩項之和,構成了後一項。
這個數列是義大利中世紀數學家斐波那契在<算盤全書>中提出的,這個級數的通項公式,除了具有a(n+2)=an+a(n+1)的性質外,還可以證明通項公式為:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)
數列與矩陣
對於斐波那契數列1、1、2、3、5、8、13、……。有如下定義
F(n)=f(n-1)+f(n-2)
F(1)=1
F(2)=1
對於以下矩陣乘法
F(n+1) = 11 F(n)
F(n) 10 F(n-1)
它的運算就是右邊的矩陣 11乘以矩陣 F(n) 得到:
10 F(n-1)
F(n+1)=F(n)+F(n-1)
F(n)=F(n)
可見該矩陣的乘法完全符合斐波那契數列的定義
設矩陣A=1 1 迭代n次可以得到:F(n+1) =A^(n) * F(1)= A^(n)*1
1 0 F(n) F(0) 0
這就是斐波那契數列的矩陣乘法定義。
另矩陣乘法的一個運演算法則A^n(n為偶數) = A^(n/2)* A^(n/2),這樣我們通過二分的思想,可以實現對數復雜度的矩陣相乘。
因此可以用遞歸的方法求得答案。
數列值的另一種求法:
F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距離 x 最近的整數。
Ⅱ 請問下大家知道高中數學小論文要從什麼方面寫喲幫幫著急的人吧,書我在此先感受大夥了
我原來是數學課代表 我寫過的 並不難 比如說斐波那契數列的研究
斐波那契數列,
又稱黃金分割數列,指的是這樣一個數列:1、1、2、3、5、8、13、21、……在數學上,斐波納契數列以如下被以遞歸的方法定義:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在現代物理、准晶體結構、化學等領域,斐波納契數列都有直接的應用,為此,美國數學會從1963起出版了以《斐波納契數列季刊》為名的一份數學雜志,用於專門刊載這方面的研究成果。
定義
斐波那契數列指的是這樣一個數列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368
特別指出:第0項是0,第1項是第一個1。
這個數列從第二項開始,每一項都等於前兩項之和。
斐波那契數列的發明者,是義大利數學家列昂納多·斐波那契(Leonardo Fibonacci)
遞推公式
斐波那契數列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
如果設F(n)為該數列的第n項(n∈N*),那麼這句話可以寫成如下形式:
顯然這是一個線性遞推數列。
通項公式
(如上,又稱為「比內公式」,是用無理數表示有理數的一個範例。)
註:此時a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)
通項公式的推導
方法一:利用特徵方程(線性代數解法)
線性遞推數列的特徵方程為:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
則F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2=C1*X1^2 + C2*X2^2=1
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根號5】
方法二:待定系數法構造等比數列1(初等代數解法)
設常數r,s。
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
則r+s=1, -rs=1。
n≥3時,有。
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。
……
F⑶-r*F⑵=s*[F⑵-r*F⑴]。
聯立以上n-2個式子,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。
∵s=1-r,F⑴=F⑵=1。
上式可化簡得:
F(n)=s^(n-1)+r*F(n-1)。
那麼:
F(n)=s^(n-1)+r*F(n-1)。
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。
(這是一個以s^(n-1)為首項、以r^(n-1)為末項、r/s為公比的等比數列的各項的和)。
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。
=(s^n - r^n)/(s-r)。
r+s=1, -rs=1的一解為 s=(1+√5)/2,r=(1-√5)/2。
則F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法三:待定系數法構造等比數列2(初等代數解法)
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求數列{an}的通項公式。
解 :設an-αa(n-1)=β(a(n-1)-αa(n-2))。
得α+β=1。
αβ=-1。
構造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。
所以。
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。
由式1,式2,可得。
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。
將式3*(1+√5)/2-式4*(1-√5)/2,化簡得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法四:母函數法。
對於斐波那契數列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2時)
令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。
那麼有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x
.因此S(x)=x/(1-x-x^2).
不難證明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].
因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.
再利用展開式1/(1-x)=1+x+x^2+x^3+……+x^n+……
於是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……
其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.
因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
與黃金分割
關系
有趣的是:這樣一個完全是自然數的數列,通項公式卻是用無理數來表達的。而且當n趨向於無窮大時,後一項與前一項的比值越來越逼近黃金分割0.618.(或者說後一項與前一項的比值小數部分越來越逼近黃金分割0.618、前一項與後一項的比值越來越逼近黃金分割0.618)
1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625,…………,55÷89=0.617977…,…………144÷233=0.618025…46368÷75025=0.6180339886…...
越到後面,這些比值越接近黃金比.
證明
a[n+2]=a[n+1]+a[n]。
兩邊同時除以a[n+1]得到:
a[n+2]/a[n+1]=1+a[n]/a[n+1]。
若a[n+1]/a[n]的極限存在,設其極限為x,
則lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。
所以x=1+1/x。
即x²=x+1。
所以極限是黃金分割比..
特性
平方與前後項
從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1。
如:第二項1的平方比它的前一項1和它的後一項2的積2少1,第三項2的平方比它的前一項1和它的後一項3的積3多1。
(註:奇數項和偶數項是指項數的奇偶,而並不是指數列的數字本身的奇偶,比如從數列第二項1開始數,第4項5是奇數,但它是偶數項,如果認為5是奇數項,那就誤解題意,怎麼都說不通)
證明經計算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)
與集合子集
斐波那契數列的第n+2項同時也代表了集合{1,2,...,n}中所有不包含相鄰正整數的子集個數。
奇數項求和
偶數項求和
平方求和
隔項關系
f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]
兩倍項關系
f(2n)/f(n)=f(n-1)+f(n+1)
其他公式
應用
生活中斐波那契
斐波那契數列中的斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),黃金矩形、黃金分割、等角螺線,十二平均律等。
斐波那契數與植物花瓣
3………………………百合和蝴蝶花
5………………………藍花耬斗菜、金鳳花、飛燕草、毛茛花
8………………………翠雀花
13………………………金盞和玫瑰
21………………………紫宛
34、55、89……………雛菊
斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比。多數的葉序比呈現為斐波那契數的比。
黃金分割
隨著數列項數的增加,前一項與後一項之比越來越逼近黃金分割的數值0.6180339887..…
楊輝三角
將楊輝三角左對齊,成如圖所示排列,將同一斜行的數加起來,即得一數列1、1、2、3、5、8、……
公式表示如下:
f⑴=C(0,0)=1。
f⑵=C(1,0)=1。
f⑶=C(2,0)+C(1,1)=1+1=2。
f⑷=C(3,0)+C(2,1)=1+2=3。
f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。
f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。
F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。
……
F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)
質數數量
斐波那契數列的整除性與素數生成性
每3個連續的數中有且只有一個被2整除,
每4個連續的數中有且只有一個被3整除,
每5個連續的數中有且只有一個被5整除,
每6個連續的數中有且只有一個被8整除,
每7個連續的數中有且只有一個被13整除,
每8個連續的數中有且只有一個被21整除,
每9個連續的數中有且只有一個被34整除,
.......
我們看到第5、7、11、13、17、23位分別是素數:5,13,89,233,1597,28657(第19位不是)
斐波那契數列的素數無限多嗎?
尾數循環
斐波那契數列的個位數:一個60步的循環
11235,83145,94370,77415,61785.38190,
99875,27965,16730,33695,49325,72910…
進一步,斐波那契數列的最後兩位數是一個300步的循環,最後三位數是一個1500步的循環,最後四位數是一個15000步的循環,最後五位數是一個150000步的循環。
自然界中巧合
斐波那契數列在自然科學的其他分支,有許多應用。例如,樹木的生長,由於新生的枝條,往往需要一段「休息」時間,供自身生長,而後才能萌發新枝。所以,一株樹苗在一段間隔,例如一年,以後長出一條新枝;第二年新枝「休息」,老枝依舊萌發;此後,老枝與「休息」過一年的枝同時萌發,當年生的新枝則次年「休息」。這樣,一株樹木各個年份的枝椏數,便構成斐波那契數列。這個規律,就是生物學上著名的「魯德維格定律」。
另外,觀察延齡草、野玫瑰、南美血根草、大波斯菊、金鳳花、耬斗菜、百合花、蝴蝶花的花瓣,可以發現它們花瓣數目具有斐波那契數:3、5、8、13、21、……
其中百合花花瓣數目為3,梅花5瓣,飛燕草8瓣,萬壽菊13瓣,向日葵21或34瓣,雛菊有34,55和89三個數目的花瓣。
斐波那契螺旋:具有13條順時針旋轉和21條逆時針旋轉的螺旋的薊的頭部
這些植物懂得斐波那契數列嗎?應該並非如此,它們只是按照自然的規律才進化成這樣。這似乎是植物排列種子的「優化方式」,它能使所有種子具有差不多的大小卻又疏密得當,不至於在圓心處擠了太多的種子而在圓周處卻又稀稀拉拉。葉子的生長方式也是如此,對於許多植物來說,每片葉子從中軸附近生長出來,為了在生長的過程中一直都能最佳地利用空間(要考慮到葉子是一片一片逐漸地生長出來,而不是一下子同時出現的),每片葉子和前一片葉子之間的角度應該是222.5度,這個角度稱為「黃金角度」,因為它和整個圓周360度之比是黃金分割數0.618033989……的倒數,而這種生長方式就決定了斐波那契螺旋的產生。向日葵的種子排列形成的斐波那契螺旋有時能達到89,甚至144條。1992年,兩位法國科學家通過對花瓣形成過程的計算機模擬實驗,證實了在系統保持最低能量的狀態下,花朵會以斐波那契數列長出花瓣。
數字謎題
三角形的三邊關系定理和斐波那契數列的一個聯系:
現有長為144cm的鐵絲,要截成n小段(n>2),每段的長度不小於1cm,如果其中任意三小段都不能拼成三角形,則n的最大值為多少?
分析:由於形成三角形的充要條件是任何兩邊之和大於第三邊,因此不構成三角形的條件就是任意兩邊之和不超過最大邊。截成的鐵絲最小為1,因此可以放2個1,第三條線段就是2(為了使得n最大,因此要使剩下來的鐵絲盡可能長,因此每一條線段總是前面的相鄰2段之和),依次為:1、1、2、3、5、8、13、21、34、55,以上各數之和為143,與144相差1,因此可以取最後一段為56,這時n達到最大為10。
我們看到,「每段的長度不小於1」這個條件起了控制全局的作用,正是這個最小數1產生了斐波那契數列,如果把1換成其他數,遞推關系保留了,但這個數列消失了。這里,三角形的三邊關系定理和斐波那契數列發生了一個聯系。
在這個問題中,144>143,這個143是斐波那契數列的前n項和,我們是把144超出143的部分加到最後的一個數上去,如果加到其他數上,就有3條線段可以構成三角形了。
影視作品中的斐波那契數列
斐波那契數列在歐美可謂是盡人皆知,於是在電影這種通俗藝術中也時常出現,比如在風靡一時的《達芬奇密碼》里它就作為一個重要的符號和情節線索出現,在《魔法玩具城》里又是在店主招聘會計時隨口問的問題。可見此數列就像黃金分割一樣流行。可是雖說叫得上名,多數人也就背過前幾個數,並沒有深入理解研究。在電視劇中也出現斐波那契數列,比如:日劇《考試之神》第五回,義嗣做全國模擬考試題中的最後一道數學題~在FOX熱播美劇《Fringe》中更是無數次引用,甚至作為全劇宣傳海報的設計元素之一。
推廣
斐波那契—盧卡斯數列
盧卡斯數列1、3、4、7、11、18…,也具有斐波那契數列同樣的性質。(我們可稱之為斐波那契—盧卡斯遞推:從第三項開始,每一項都等於前兩項之和f(n) = f(n-1)+ f(n-2)。
盧卡斯數列的通項公式為 f(n)=[(1+√5)/2]^n+[(1-√5)/2]^n
這兩個數列還有一種特殊的聯系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)
n
1
2
3
4
5
6
7
8
9
10
…
斐波那契數列F(n)
1
1
2
3
5
8
13
21
34
55
…
盧卡斯數列L(n)
1
3
4
7
11
18
29
47
76
123
…
F(n)*L(n)
1
3
8
21
55
144
377
987
2584
6765
…
類似的數列還有無限多個,我們稱之為斐波那契—盧卡斯數列。
如1,4,5,9,14,23…,因為1,4開頭,可記作F[1,4],斐波那契數列就是F[1,1],盧卡斯數列就是F[1,3],斐波那契—盧卡斯數列就是F[a,b]。
斐波那契—盧卡斯數列之間的廣泛聯系
①任意兩個或兩個以上斐波那契—盧卡斯數列之和或差仍然是斐波那契—盧卡斯數列。
如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),
n
1
2
3
4
5
6
7
8
9
10
…
F[1,4]n
1
4
5
9
14
23
37
60
97
157
…
F[1,3]n
1
3
4
7
11
18
29
47
76
123
…
F[1,4]n-F[1,3]n
0
1
1
2
3
5
8
13
21
34
…
F[1,4]n+F[1,3]n
2
7
9
16
25
41
66
107
173
280
…
②任何一個斐波那契—盧卡斯數列都可以由斐波那契數列的有限項之和獲得,如
n
1
2
3
4
5
6
7
8
9
10
…
F[1,1](n)
1
1
2
3
5
8
13
21
34
55
…
F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34
…
F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34
…
F[1,3]n
1
3
4
7
11
18
29
47
76
123
…
黃金特徵與孿生斐波那契—盧卡斯數列
斐波那契—盧卡斯數列的另一個共同性質:中間項的平方數與前後兩項之積的差的絕對值是一個恆值,
斐波那契數列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1
盧卡斯數列:|3*3-1*4|=|4*4-3*7|=…=5
F[1,4]數列:|4*4-1*5|=11
F[2,5]數列:|5*5-2*7|=11
F[2,7]數列:|7*7-2*9|=31
斐波那契數列這個值是1最小,也就是前後項之比接近黃金比例最快,我們稱為黃金特徵,黃金特徵1的數列只有斐波那契數列,是獨生數列。盧卡斯數列的黃金特徵是5,也是獨生數列。前兩項互質的獨生數列只有斐波那契數列和盧卡斯數列這兩個數列。
而F[1,4]與F[2,5]的黃金特徵都是11,是孿生數列。F[2,7]也有孿生數列:F[3,8]。其他前兩項互質的斐波那契—盧卡斯數列都是孿生數列,稱為孿生斐波那契—盧卡斯數列。
廣義斐波那契數列
斐波那契數列的黃金特徵1,還讓我們聯想到佩爾數列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(該類數列的這種特徵值稱為勾股特徵)。
佩爾數列Pn的遞推規則:P1=1,P2=2,Pn=P(n-2)+2P(n-1).
據此類推到所有根據前兩項導出第三項的通用規則:f(n) = f(n-1) * p + f(n-2) * q,稱為廣義斐波那契數列。
當p=1,q=1時,我們得到斐波那契—盧卡斯數列。
當p=1,q=2時,我們得到佩爾—勾股弦數(跟邊長為整數的直角三角形有關的數列集合)。
當p=-1,q=2時,我們得到等差數列。其中f1=1,f2=2時,我們得到自然數列1,2,3,4…。自然數列的特徵就是每個數的平方與前後兩數之積的差為1(等差數列的這種差值稱為自然特徵)。
具有類似黃金特徵、勾股特徵、自然特徵的廣義——斐波那契數列p=±1。
當f1=1,f2=2,p=2,q=1時,我們得到等比數列1,2,4,8,16……
相關數學
排列組合
有一段樓梯有10級台階,規定每一步只能跨一級或兩級,要登上第10級台階有幾種不同的走法?
這就是一個斐波那契數列:登上第一級台階有一種登法;登上兩級台階,有兩種登法;登上三級台階,有三種登法;登上四級台階,有五種登法……
1,2,3,5,8,13……所以,登上十級,有89種走法。
類似的,一枚均勻的硬幣擲10次,問不連續出現正面的可能情形有多少種?
答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144種。
求遞推數列a⑴=1,a(n+1)=1+1/a(n)的通項公式
由數學歸納法可以得到:a(n)=F(n+1)/F(n),將斐波那契數列的通項式代入,化簡就得結果。
兔子繁殖問題
斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為「兔子數列」。
一般而言,兔子在出生兩個月後,就有繁殖能力,一對兔子每個月能生出一對小兔子來。如果所有兔子都不死,那麼一年以後可以繁殖多少對兔子?
我們不妨拿新出生的一對小兔子分析一下:
第一個月小兔子沒有繁殖能力,所以還是一對
兩個月後,生下一對小兔對數共有兩對
三個月以後,老兔子又生下一對,因為小兔子還沒有繁殖能力,所以一共是三對
------
依次類推可以列出下表:
經過月數
0
1
2
3
4
5
6
7
8
9
10
11
12
幼仔對數
1
0
1
1
2
3
5
8
13
21
34
55
89
成兔對數
0
1
1
2
3
5
8
13
21
34
55
89
144
總體對數
1
1
2
3
5
8
13
21
34
55
89
144
233
幼仔對數=前月成兔對數
成兔對數=前月成兔對數+前月幼仔對數
總體對數=本月成兔對數+本月幼仔對數
可以看出幼仔對數、成兔對數、總體對數都構成了一個數列。這個數列有關十分明顯的特點,那是:前面相鄰兩項之和,構成了後一項。
這個數列是義大利中世紀數學家斐波那契在<算盤全書>中提出的,這個級數的通項公式,除了具有a(n+2)=an+a(n+1)的性質外,還可以證明通項公式為:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)
數列與矩陣
對於斐波那契數列1、1、2、3、5、8、13、……。有如下定義
F(n)=f(n-1)+f(n-2)
F(1)=1
F(2)=1
對於以下矩陣乘法
F(n+1) = 11 F(n)
F(n) 10 F(n-1)
它的運算就是右邊的矩陣 11乘以矩陣 F(n) 得到:
10 F(n-1)
F(n+1)=F(n)+F(n-1)
F(n)=F(n)
可見該矩陣的乘法完全符合斐波那契數列的定義
設矩陣A=1 1 迭代n次可以得到:F(n+1) =A^(n) * F(1)= A^(n)*1
1 0 F(n) F(0) 0
這就是斐波那契數列的矩陣乘法定義。
另矩陣乘法的一個運演算法則A^n(n為偶數) = A^(n/2)* A^(n/2),這樣我們通過二分的思想,可以實現對數復雜度的矩陣相乘。
因此可以用遞歸的方法求得答案。
數列值的另一種求法:
F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距離 x 最近的整數。
斐波那契弧線
斐波那契弧線,也稱為斐波那契扇形線。第一,此趨勢線以二個端點為准而畫出,例如,最低點反向到最高點線上的兩個點。然後通過第二點畫出一條「無形的(看不見的)」垂直線。然後,從第一個點畫出第三條趨勢線:38.2%, 50%和61.8%的無形垂直線交叉。
斐波納契弧線,是潛在的支持點和阻力點水平價格。斐波納契弧線和斐波納契扇形線常常在圖表裡同時繪畫出。支持點和阻力點就是由這些線的交匯點得出。
要注意的是弧線的交叉點和價格曲線會根據圖表數值范圍而改變,因為弧線是圓周的一部分,它的形成總是一樣的。
於公元1170年,卒於1250年,籍貫是比薩。他被人稱作「比薩的列昂納多」。1202年,他撰寫了《算盤全書》(Liber Abacci)一書。他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點相當於今日的阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯等地研究數學。
斐波那契數列在股市中的應用
時間周期理論是股價漲跌的根本原因之一,它能夠解釋大多數市場漲跌的奧秘。在時間周期循環理論中,除了利用固定的時間周期數字尋找變盤點之外,還可以利用波段與波段之間的關系進行研究。但無論如何尋找變盤點,斐波那契數列都是各種重要分析的基礎之一,本文將簡單闡述斐波那契數列及其與市場的關系。
工具/原料
步驟/方法
斐波那契數列由十三世紀義大利數學家斐波那契發現。數列中的一系列數字常被人們稱之為神奇數奇異數。具體數列為:1,1,2,3,5,8,13,21,34,55,89,144,233等,從該數列的第三項數字開始,每個數字等於前兩個相鄰數字之和。而斐波那契數列中相鄰兩項之商就接近黃金分割數0.618,與這一數字相關的0.191、0.382、0.5和0.809等數字就構成了股市中關於市場時間和空間計算的重要數字。
大到整個宇宙空間到小到分子原子,從時間到空間,從自然到人類社會,政治、經濟、軍事等,各種現象中的規律都能找到斐波那契數的蹤跡。世界著名建築如巴黎聖母院、埃菲爾鐵塔、埃及金字塔等均能從它們身上找到0.618的影子。名畫、攝影、雕塑等作品的主題都在畫的0.618處。報幕員站在舞台的0.618處所報出的聲音最為甜美、動聽。人的肚臍眼是人體長度的0.618位置,人的膝蓋是從腳底到肚臍眼長度的0.618。戰爭中0.618的運用也是無所不在,小到兵器的製造、中到排兵布陣到戰爭時間周期的運用,相傳拿破崙大帝即敗於黃金分割線。
在金融市場的分析方法中,斐波那契數字頻頻出現。例如,在波浪理論中,一輪牛市行情可以用1個上升浪來表示,也可以用5個低一個層次的小浪來表示,還可繼續細分為21個或89個小浪;在空間分析體系中,反彈行情的高度通常是前方下降趨勢幅度的0.382、0.5、0.618;回調行情通常是前方上升趨勢的0.382、0.5和0.618。
斐波那契數列在實際操作過程中有兩個重要意義:
第一個實戰意義在於數列本身。本數列前面的十幾個數字對於市場日線的時間關系起到重要的影響,當市場行情處於重要關鍵變盤時間區域時,這些數字可以確定具體的變盤時間。使用斐波那契數列時可以由市場中某個重要的階段變盤點向未來市場推算,到達時間時市場發生方向變化的概率較大。
圖1綜合指數(1A0001)2009年7月29日—12月31日日線圖
如圖1所示,綜合指數(1A0001)2009年8月4日的3478點到2009年9月1日階段低點2639點的時間關系是21個交易日,2009年9月1日的階段低點2639點到2009年9月18日的高點3068點是13個交易日的時間,到2009年9月29日的低點2712點是21個交易日,到2009年10月23日的高點3123點的時間是34個交易日,到2009年11月24日的年度次高點3361點的時間是55個交易日。
圖2綜合指數(1A0001)2009年7月10日—12月31日周線圖
如圖2所示,綜合指數(1A0001)2009年8月4日的高點3478點到2009年9月4日2639點的運行時間是5周;2009年9月4日的低點2639點到2009年11月27日反彈高點3361點的時間是13周。
斐波那契數列在股市中的應用
斐波那契數列在股市中的應用
第二個實戰意義在於本數列的衍生數字是市場中縱向時間周期計算未來市場變盤時間的理論基礎。這組衍生數列分別是:1.236、1.309、1.5、1.618、1.809、2、2.236、2.382、2.5等一系列與黃金分割0.618相關的數字。
在使用神奇數列時主要有六個重要的時間計算方法:
第一、通過完整的下跌波段時間推算未來行情上漲波段的運行時間。
第二、通過完整的上漲波段時間推算未來行情下跌波段的運行時間。
這兩種比例關系就像生活中我們經常見到的作用力與反作用的關系,乒乓球垂直掉到地面的高度決定乒乓球觸擊地面以後反彈的高度是同樣的道理。
第三、通過上升波段中第一個子波段低點到高點的時間推算本上升波段最終的運行時間。
第四、通過下降波段中第一子波段高點到低點的時間推算本下跌波段最終的運行時間。
這兩種比例關系就像生活中我們經常見到的推動力與慣性的關系,當古代弓箭的弓與弦被拉開的距離直接決定了未來箭向前飛行的距離。
第五、通過本上升波段中第一子波段的兩個相鄰低點的時間推算未來上升波段的最終運行時間。
第六、通過下降波段中第一子波段的兩個相鄰高點的時間推算本下跌波段最終的運行時間。
這兩種比例關系就像生活中我們經常見到的建築物地基寬度影響未來高度一樣重要。在材質相同的情況下,地基寬度越大,未來高度越高。
5
在這六種重要的時間計算方法中最為重要的就是計算過程中實際使用的參數,利用不同的參數會得到不同的答案,而使用過程中幾乎所有的重要參數都與斐波那契數列有關。由於篇幅原因,這里先埋個伏筆,我會在以後的文章中為股民朋友詳細闡述計算方法。
Ⅲ BTC走勢當中的各項指標運用和話術參考
大俠:
近期有很多新韭菜關注大俠公眾號,這批新韭菜指的是今年才進入市場的新人,所以今日文章的開頭給大家來歸類一些簡單的分析話術,以免大家看分析文章的時候一頭霧水。這些話術我們不按照標准來解釋,大俠用自己的觀點來給大家表明,不是最標準的,但卻是易懂的。
上漲趨勢
利於多頭,表明對市場看好
每一段漲勢都持續向上穿越先前的高點,中間夾雜的下降或盤整走勢都不會向下跌破前一波跌勢的低點,一般用於表達對行情的看好,簡單理解為大方向看漲。
下跌趨勢
利於空頭,表明對市場看空
下跌趨勢和上升趨勢截然相反,主要代表市場資金出逃,指由連續一系列的跌勢構成。一般用於表達大方向看跌。
向下插針,下影線
從實體向下延伸的細線叫下影線
一般用於下跌之後快速收回,在K線上形成了一根向下的『針』,這種K線也可稱為下影線,同『下探』相互對應。比如5月17日BTC就是收了下影線,表明有大量抄底盤。出現下影線之後有較大概率出現反抽或反彈,按照標准來講,下影線的出現對短期多頭較為有利。
向上插針,上影線
從實體向上延伸的細線叫上影線
向上插針指出現上漲之後快速回落,在K線上形成了一根向上的『針』,也可看做上影線,同『上沖』相互對應。一方面顯示主力在做試盤,另一方面也存在主力拉高出貨的嫌疑,這需要對影線的長短來做具體判斷。按照標准來說,對短期空頭比較有利。
反彈,反抽
指下跌之後出現的小幅上漲
反彈是指從高點下跌之後出現的小幅上漲行情,比如柚子從7美元開始下跌至5美元,然後上漲至6.2美元,這叫做反彈。反抽指的是力度要弱於反彈的回升走勢,可簡單視為反彈力度強,反抽力度弱。
回調,回踩
用於上漲趨勢當中的短暫向下走勢
回調是指在價格上漲趨勢中,價格由於上漲速度太快,導致多空分歧,從而形成的一段向下走勢,而回調後將恢復上漲趨勢。回踩,向下的力度小於回調力度,可理解為上漲跑步狀態中的換氣,分析師經常說:回踩xxx點位加倉。
盤整,震盪
常用於分析師『看平』
指短期價格不會用太大波動,在某個區間內進行反復整理、上下波動,主力可以藉此洗盤、建倉、出貨。分析師一般用震盪、盤整,表達看平的狀態。弱勢震盪:指震盪當中偏向空頭,震盪之後下跌概率較大。強勢震盪:指震盪當中偏向多頭,震盪之後上漲概率較大。
做波段,做T,高拋低吸
用於高位賣出,低位買入,以減少持倉成本來獲取更多收益
這幾個詞道理其實差不多,意思就是在相對高位賣出,等到一定低位的時候在買進去,然後賺得更多的籌碼。比如EOS在7美元賣出,跌至6美元買入,同樣的錢,但買到的EOS就會多13%,也是我們經常說的『賺幣』。不過這些都是說起來容易做起來難的事情。
均線MA,支撐,壓力
均線指標,和支撐位壓力位的意義
移動平均線又稱為MA,指的的近期多少天當中的平均價格,如五日線(MA5),簡單理解為最近5天的平均價格,一般五日線和十日線是作為短線參考指標,上漲趨勢當中會沿著這兩天均線慢慢上漲,在這兩根均線至少,則上漲趨勢並未破壞,跌破這兩個均線之後則表明短期走勢有概率走壞。除此之外,均線的參考還有30日線、120日線,年線365日線,斐波那契均線144、233、377等均線,可作為長線指標看待。在牛市裡,所有的短期均線和長期均線都會拐頭向上,也稱之為『多頭排列』。熊市裡,長期均線或短期均線會處於向下拐頭,稱之為『空頭排列』。
支撐位:向下過程當中,價格跌至某個精確點位或區間的時候不會跌破,看似一種跌不下去的狀態,從而止跌企穩。
壓力位:向上過程當中,短期上漲至某個精準點位或區間的時候不會突破,看似有一種漲不上去的感覺,被視為廣義上的壓力。
支撐和壓力在大多數情況下是市場的前期密集成交區形成的,另一種則是心理價位導致。而均線MA也可在一些特發情況下當做支撐壓力位的作用來表現。
還要說明的是,以上的表述不一定是完全標準的,但卻是合適幣圈所用的,大家可以把這篇文章收藏起來,也可以轉發給你們身邊的朋友們,以免以後對分析師的話術不為理解。以上都是一些簡單的話術,還沒涉及到各項技術指標,在下周的文章里,大俠再給大家做個簡單的指標作用歸類。
5-19分析
1、BTC
大餅連續兩日下跌後,在6900美元附近獲得支撐,下跌幅度18%附近,今日開始出現強力反彈,前兩日下跌殺出了很多恐慌盤,短期內出逃的資金選擇了謹慎觀望。大俠將此次下跌後的反彈定義為築頂行情,當初在大餅回踩年線加倉的搶反彈操作,目前依然是收益的,對於後市波動加大的築頂走勢,要以鎖定利潤為主,我們不可能吃到一段走勢的所有漲幅,因此後市的操作策略是逢拉升以減倉鎖定利潤為主。
今日分析:大餅今日反彈幅度較大,短期內或將保持在7800—8100美元區間震盪,震盪完成後有再次沖擊試探前高的可能,後面有形成頂部之後回落的風險。主流梯隊或許出現超跌後的大反彈走勢,後一階段我們要分批止盈鎖定利潤,逢高進行減倉,大餅短期支撐位:7800美元。
2、主流梯隊
EOS:柚子今日反彈幅度一般,沒有跑贏大餅,超過了我們預期的反彈點位6.2美元,短期盤整結束後有望慢慢試探前高。短期支撐位:6.1美元,壓力位:6.8美元。
ETH:今日反彈重新回到250美元上方,整體走勢較為穩健,大概率還會向上沖一段,跟隨大俠操作的基本上都是低位籌碼,對於前兩日突發的下跌走勢,也並不倡導大家殺跌操作,而是讓大家對應反彈再說減倉操作。今日已經站上我們的預期點位250美元,後市操作仍然以分批止盈鎖定利潤為主,短期支撐位245美元,壓力位:270美元。
ADA:近兩日的波動幅度較大,今日反彈後回落的幅度減小,但由於前期漲幅是主流梯隊里最大的,所以接下來的反彈更多的是聯動大餅為主。短期支撐位:0.083美元,壓力位:0.09美元。
BCH:今日反彈力度最大的主流幣種,昨日說到的350美元密集成交區並未跌破,所以今日出現強勢反彈。短期盤整結束後有望再次向上沖一段。短期支撐位:380美元。壓力位:430美元。
LTC:萊特今日的反彈走勢也比較強勢,短期內有望繼續延續反彈走勢去試探100美元整數壓力關口,短期支撐位:88美元,壓力位:100美元。
3、其他分析:
ONT:本體和比原鏈還有ZIL一直作為我們看好的長線山寨梯隊,是可作為長線投資的。目前大俠對Token的研究,第一看好的是主流幣BCH,第二看好的就是山寨梯隊當中的ONT。至今年0.6美元開始操作ONT以來,幾次波段下來我們至少拿了3倍收益,所以沒理由不看好他。回到短期的走勢當中,目前受到MA5的壓制,預計沖高回落的概率較大,前面大俠讓大家鎖定利潤出來觀望,近幾日依然保持這樣的心態。
聲明:核財經登載此文出於傳遞更多信息之目的,並不意味著贊同其觀點或證實其描述。文章內容僅供參考,不構成投資建議。投資者據此操作,風險自擔。部分圖片來源於網路,我們尊重版權,如有疑問敬請聯系,我們將核實並刪除。
Ⅳ 舉出至少兩個例子說明數學的簡潔美或和諧美或奇異美或統一美,並且說明自己的體會
個人比較喜歡 黃金分割 和 斐波那契數列 ,覺得挺神奇的 生活中好多例子都是他們
下面是點簡單介紹
斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),黃金矩形、黃金分割、等角螺線,十二平均律等。
隨著數列項數的增加,前一項與後一項之比越來越逼近黃金分割的數值0.6180339887..…
從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之[1]積少1。
如:第二項1的平方比它的前一項1和它的後一項2的積2少1,第三項2的平方比它的前一項1和它的後一項3的積3多1。
(註:奇數項和偶數項是指項數的奇偶,而並不是指數列的數字本身的奇偶,比如從數列第二項1開始數,第4項5是奇數,但它是偶數項,如果認為5是奇數項,那就誤解題意,怎麼都說不通)因為:經計算可得:an^2-aa=(-1)^(n-1)
斐波那契數列的第n項同時也代表了集合{1,2,...,n}中所有不包含相鄰正整數的子集個數。
斐波那契數列(f(n),f(0)=0,f⑴=1,f⑵=1,f⑶=2……)的其他性質:
1.f(0)+f⑴+f⑵+…+f(n)=f(n+2)-1。
2.f⑴+f⑶+f⑸+…+f(2n-1)=f(2n)。
3.f⑵+f⑷+f⑹+…+f(2n) =f(2n+1)-1。
4.[f(0)]^2+[f⑴]^2+…+[f(n)]^2=f(n)·f(n+1)。
5.f(0)-f⑴+f⑵-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]-1。
6.f(n+m)=f(n+1)·f(m)+f(n)·f(m-1)。
利用這一點,可以用程序編出時間復雜度僅為O(log n)的程序。
怎樣實現呢?偽代碼描述一下
7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)。
8.f(2n-1)=[f(n)]^2-[f(n-2)]^2。
9.3f(n)=f(n+2)+f(n-2)。
10.f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1] 斐波那契數列11.f(2n+1)=[f(n)]^2+[f(n+1)]^2.
12.f(2n)/f(n)=f(n-1)+f(n+1)
隱藏斐波那契數列
將楊輝三角依次下降,成如圖所示排列,將同一行的數加起來,即得一數列1、1、2、3、5、8、……
公式表示如下:
f⑴=C(0,0)=1。
f⑵=C(1,0)=1。
f⑶=C(2,0)+C(1,1)=1+1=2。
f⑷=C(3,0)+C(2,1)=1+2=3。
f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。
f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。
F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。
……
F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)
斐波那契數列的整除性與素數生成性
每3個連續的數中有且只有一個被2整除,
每4個連續的數中有且只有一個被3整除,
每5個連續的數中有且只有一個被5整除,
每6個連續的數中有且只有一個被8整除,
每7個連續的數中有且只有一個被13整除,
每8個連續的數中有且只有一個被21整除,
每9個連續的數中有且只有一個被34整除,
.......
我們看到第5、7、11、13、17、23位分別是素數:5,13,89,233,1597,28657(第19位不是)
斐波那契數列的素數無限多嗎?
斐波那契數列的個位數:一個60步的循環
11235,83145,94370,77415,61785.38190,
99875,27965,16730,33695,49325,72910…
斐波那契數與植物花瓣
3………………………百合和蝴蝶花
5………………………藍花耬斗菜、金鳳花、飛燕草、毛茛花
8………………………翠雀花
13………………………金盞 和玫瑰
21………………………紫宛
34、55、89……………雛菊
斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比。多數的葉序比呈現為斐波那契數的比。
編輯本段斐波那契斐波那契—盧卡斯數列
盧卡斯數列1、3、4、7、11、18…,也具有斐波那契數列同樣的性質。(我們可稱之為斐波那契—盧卡斯遞推:從第三項開始,每一項都等於前兩項之和f(n) = f(n-1)+ f(n-2))。
這兩個數列還有一種特殊的聯系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)
n12345678910…
斐波那契數列F(n)11235813213455…
盧卡斯數列L(n)13471118294776123…
F(n)*L(n)138215514437798725846765…
類似的數列還有無限多個,我們稱之為斐波那契—盧卡斯數列。
如1,4,5,9,14,23…,因為1,4開頭,可記作F[1,4],斐波那契數列就是F[1,1],盧卡斯數列就是F[1,3],斐波那契—盧卡斯數列就是F[a,b]。
斐波那契—盧卡斯數列之間的廣泛聯系
①任意兩個或兩個以上斐波那契—盧卡斯數列之和或差仍然是斐波那契—盧卡斯數列。
如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),
n12345678910…
F[1,4]n14591423376097157…
F[1,3]n13471118294776123…
F[1,4]n-F[1,3]n0112358132134…
F[1,4]n+F[1,3]n27916254166107173280…
②任何一個斐波那契—盧卡斯數列都可以由斐波那契數列的有限項之和獲得,如
n12345678910…
F[1,1](n)11235813213455…
F[1,1](n-1)0112358132134…
F[1,1](n-1)0112358132134…
F[1,3]n13471118294776123…
黃金特徵與孿生斐波那契—盧卡斯數列
斐波那契—盧卡斯數列的另一個共同性質:中間項的平方數與前後兩項之積的差的絕對值是一個恆值,
斐波那契數列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1
盧卡斯數列:|3*3-1*4|=|4*4-3*7|=…=5
F[1,4]數列:|4*4-1*5|=11
F[2,5]數列:|5*5-2*7|=11
F[2,7]數列:|7*7-2*9|=31
斐波那契數列這個值是1最小,也就是前後項之比接近黃金比例最快,我們稱為黃金特徵,黃金特徵1的數列只有斐波那契數列,是獨生數列。盧卡斯數列的黃金特徵是5,也是獨生數列。前兩項互質的獨生數列只有斐波那契數列和盧卡斯數列這兩個數列。
而F[1,4]與F[2,5]的黃金特徵都是11,是孿生數列。F[2,7]也有孿生數列:F[3,8]。其他前兩項互質的斐波那契—盧卡斯數列都是孿生數列,稱為孿生斐波那契—盧卡斯數列。
廣義斐波那契數列
斐波那契數列的黃金特徵1,還讓我們聯想到佩爾數列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(該類數列的這種特徵值稱為勾股特徵)。
佩爾數列Pn的遞推規則:P1=1,P2=2,Pn=P(n-2)+2P(n-1).
據此類推到所有根據前兩項導出第三項的通用規則:f(n) = f(n-1) * p + f(n-2) * q,稱為廣義斐波那契數列。
當p=1,q=1時,我們得到斐波那契—盧卡斯數列。
當p=1,q=2時,我們得到佩爾—勾股弦數(跟邊長為整數的直角三角形有關的數列集合)。
當p=-1,q=2時,我們得到等差數列。其中f1=1,f2=2時,我們得到自然數列1,2,3,4…。自然數列的特徵就是每個數的平方與前後兩數之積的差為1(等差數列的這種差值稱為自然特徵)。
具有類似黃金特徵、勾股特徵、自然特徵的廣義斐波那契數列p=±1。
當f1=1,f2=2,p=2,q=1時,我們得到等比數列1,2,4,8,16……
編輯本段相關數學1.排列組合
有一段樓梯有10級台階,規定每一步只能跨一級或兩級,要登上第10級台階有幾種不同的走法?
這就是一個斐波那契數列:登上第一級台階有一種登法;登上兩級台階,有兩種登法;登上三級台階,有三種登法;登上四級台階,有五種登法……
1,2,3,5,8,13……所以,登上十級,有89種走法。
類似的,一枚均勻的硬幣擲10次,問不連續出現正面的可能情形有多少種?
答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144種。
2.數列中相鄰兩項的前項比後項的極限
當n趨於無窮大時,F(n)/F(n+1)的極限是多少?
這個可由它的通項公式直接得到,極限是(-1+√5)/2,這個就是黃金分割的數值,也是代表大自然的和諧的一個數字。
3.求遞推數列a⑴=1,a(n+1)=1+1/a(n)的通項公式
由數學歸納法可以得到:a(n)=F(n+1)/F(n),將斐波那契數列的通項式代入,化簡就得結果。
3.兔子繁殖問題(關於斐波那契數列的別名)
斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為「兔子數列」。
一般而言,兔子在出生兩個月後,就有繁殖能力,一對兔子每個月能生出一對小兔子來。如果所有兔都不死,那麼一年以後可以繁殖多少對兔子?
我們不妨拿新出生的一對小兔子分析一下:
第一個月小兔子沒有繁殖能力,所以還是一對
兩個月後,生下一對小兔民數共有兩對
三個月以後,老兔子又生下一對,因為小兔子還沒有繁殖能力,所以一共是三對
------
依次類推可以列出下表:
經過月數0123456789101112
幼仔對數101123581321345589
成兔對數01123581321345589144
總體對數1123581321345589144233
幼仔對數=前月成兔對數
成兔對數=前月成兔對數+前月幼仔對數
總體對數=本月成兔對數+本月幼仔對數
可以看出幼仔對數、成兔對數、總體對數都構成了一個數列。這個數列有關十分明顯的特點,那是:前面相鄰兩項之和,構成了後一項。
這個數列是義大利中世紀數學家斐波那契在<;;算盤全書>;;中提出的,這個級數的通項公式,除了具有a(n+2)=an+a(n+1)的性質外,還可以證明通項公式為:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)
`````
Ⅳ 外匯寶:什麼是斐波那契回歸線
斐波那契回調線,也被稱作「黃金分割線」,是通過分析技術圖形來預判未來價格走勢的一種常用工具。斐波那契回調線通常被用作分析貨幣對、商品價格重要支撐/阻力位。
斐波那契回調線的畫線方法是:選取一段時期內一波行情的高點和低點,通過計算得出兩個點位間38.2%、50%、61.8%位置。若有需要可以擴展至23.6%、80.9%、100%、138.2%、161.8%位置。其中,38.2%、61.8%最容易形成關鍵阻力位/支撐位。
通常而言,貨幣對、商品價格之前一波下跌行情的38.2%位置為弱勢反彈位,61.8%位置為強勢反彈位;之前一波上漲行情的38.2%位置為弱勢回調位,61.8%位置為強勢回調位。