為什麼大數據用來挖礦
Ⅰ 大數據時代,為什麼要使用大數據
大數據是什麼?是一種運營模式,是一種能力,還是一種技術,或是一種數據集合的統稱?今天我們所說的「大數據」和過去傳統意義上的「數據」的區別又在哪裡?大數據的來源又有哪些?等等。當然,我不是專家學者,我無法給出一個權威的,讓所有人信服的定義,以下所談只是我根據自己的理解進行小結歸納,只求表達出我個人的理解,並不求全面權威。先從「大數據」與「數據」的區別說起吧,過去我們說的「數據」很大程度上是指「數字」,如我們所說的客戶量,業務量,營業收入額,利潤額等等,都是一個個數字或者是可以進行編碼的簡單文本,這些數據分析起來相對簡單,過去傳統的數據解決方案(如資料庫或商業智能技術)就能輕松應對;而今天我們所說的「大數據」則不單純指「數字」,可能還包括「文本,圖片,音頻,視頻……」等多種格式,其涵括的內容十分豐富,如我們的博客,微博,輕博客,我們的音頻視頻分享,我們的通話錄音,我們位置信息,我們的點評信息,我們的交易信息,互動信息等等,包羅萬象。用正規的語句來概括就是,「數據」是結構化的,而「大數據」則包括了「結構化數據」「半結構化數據」和「非結構化數據」。關於「結構化」「半結構化」「非結構化」可能從字面上比較難理解,在此我試著用我的語言看能否形象點地表達出來:由於數據是結構化的,數據分析可以遵循一定現有規律的,如通過簡單的線性相關,數據分析可以大致預測下個月的營業收入額;而大數據是半結構化和非結構化的,其在分析過程中遵循的規律則是未知的,它通過綜合方方面面的信息進行模擬,它以分析形式評估證據,假設應答結果,並計算每種可能性的可信度,通過大數據分析我們可以准確找到下一個市場熱點。
因為挖礦的機器相當於大中型伺服器的用電量,而且機器數量大量集中,總的耗電量動輒是以若干萬千瓦計算,所以,也算是高耗能產業。
Ⅲ 大數據挖礦是個什麼組織
Ⅳ 我們為什麼需要大數據技術
我們為什麼需要大數據技術
大數據到底是什麼?我們為什麼需要大數據技術?
Mike Jude:從本質上來說,大數據就是曾經被稱為數據倉庫的邏輯延伸。顧名思義,大數據就是一個大型的數據倉庫,一般有一個能支持業務決策的業務重點。但是,它和傳統資料庫不同的是,大數據不用構建。
在典型的資料庫中,數據會被組織成標準的欄位,並使用特定的密鑰索引。如果你熟悉Microsoft Access應用程序,那麼你就能完全理解這個概念。比如,一個顧客記錄可以由姓氏、名字、地址和其它信息組成有通用標簽的欄位。每個顧客記錄樣式都是相同的,這樣可以通過使用搜索關鍵詞來檢索,比如搜索姓氏。
現在,如果你想鏈接到這些客戶記錄需要怎麼做?鏈接到客戶的圖片或者視頻呢?如果是鏈接到客戶的所有記錄呢?
將這么多不同的數據源互相映射,一般的資料庫還做不到。另外,需要鏈接的數據量是非常巨大的。這就產生了「大數據」的概念。大數據使用特殊的數據結構來組織和訪問巨大數量的數據,可能達到多個艾位元組的范圍。一般情況下,這需要跨多個伺服器和離散數據存儲進行並行計算,而小企業往往難以維持這種大數據的存儲庫。但是,大數據正逐漸成為雲服務提供商能提供的一種服務,從而把大數據應用推向更多的公司。
但是,還有一個「大」問題,就是我們為什麼需要大數據?答案就是相關性的價值。如果你能看到乍一看似乎沒什麼關系的數據設置之間的關系,你會獲取很多重要信息。比如你想知道你的公司是不是容易被黑客利用。那麼你需要跨多個應用程序和數據中心檢查無數條交易。這時如果沒有大數據技術和相關的分析技術,這幾乎是不可能完成的。
最終,隨著數據量的增長、業務的可用性和重要性的增加,大數據的定義可能會用來描述大多數資料庫應用。IT專業人士應該掌握大數據相關概念和術語,以免遇到困難。
Ⅳ 為什麼需要大數據技術
大數據的價值體現在以下幾個方面:
1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷
2) 做小而美模式的中小微企業可以利用大數據做服務轉型
3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值
(5)為什麼大數據用來挖礦擴展閱讀
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
參考資料來源:網路-大數據
Ⅵ 大數據是幹嘛的
大數據是一系列技術的統稱,經過多年的發展,大數據已經形成了從數據採集、整理、傳輸、存儲、安全、分析、呈現和應用等一系列環節,這些環節涉及到諸多大數據工作崗位,這些工作崗位與物聯網、雲計算也都有密切的聯系。
大數據是一個抽象的概念,對當前無論是企業還是政府、高校等單位面臨的數據無法存儲、無法計算的狀態。
(6)為什麼大數據用來挖礦擴展閱讀:
大數據應用舉例
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
Ⅶ 第1章 什麼是大數據,大數據為什麼重要
大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據的重要性體現在以下幾個方面:
1.對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷
2.做小而美模式的中長尾企業可以利用大數據做服務轉型
3.面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值
Ⅷ 什麼是大數據,大數據為什麼重要,如何應用大數據
「大數據」簡單理解為:
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。大數據是一個抽象的概念,對當前無論是企業還是政府、高校等單位面臨的數據無法存儲、無法計算的狀態。大數據,在於海量,單機無法快速處理,需要通過垂直擴展,即大內存高效能,水平擴展,即大磁碟大集群等來進行處理。
大數據為什麼重要:
獲取大數據後,用這些數據做:數據採集、數據存儲、數據清洗、數據分析、數據可視化
大數據技術對這些含有意義的數據進行專業化處理,對企業而言,大數據可提高工作效率,降低企業成本,精準營銷帶來更多客戶。對政府而言,可以利用大數進行統籌分析、提高管理效率、管理抓獲犯罪分子等。對個人而言,可以利用大數據更了解自己等。
如何應用大數據:
大數據的應用對象可以簡單的分為給人類提供輔助服務,以及為智能體提供決策服務。
大數據不僅包括企業內部應用系統的數據分析,還包括與行業、產業的深度融合。具體場景包括:互聯網行業、政府行業、金融行業、傳統企業中的地產、醫療、能源、製造、電信行業等等。通俗地講「大數據就像互聯網+,可以應用在各行各業",如電信、金融、教育、醫療、軍事、電子商務甚至政府決策等。
Ⅸ 為什麼大數據如此重要
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
根據維基網路的定義,大數據是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。[1]
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘電網、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
意義:
有人把數據比喻為蘊[4] 藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。
大數據的價值體現在以下幾個方面:
1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;
2) 做小而美模式的中長尾企業可以利用大數據做服務轉型;
3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。